1 //===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains code dealing with the IR generation for cleanups 11 // and related information. 12 // 13 // A "cleanup" is a piece of code which needs to be executed whenever 14 // control transfers out of a particular scope. This can be 15 // conditionalized to occur only on exceptional control flow, only on 16 // normal control flow, or both. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CGCleanup.h" 21 #include "CodeGenFunction.h" 22 #include "llvm/Support/SaveAndRestore.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 bool DominatingValue<RValue>::saved_type::needsSaving(RValue rv) { 28 if (rv.isScalar()) 29 return DominatingLLVMValue::needsSaving(rv.getScalarVal()); 30 if (rv.isAggregate()) 31 return DominatingLLVMValue::needsSaving(rv.getAggregatePointer()); 32 return true; 33 } 34 35 DominatingValue<RValue>::saved_type 36 DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) { 37 if (rv.isScalar()) { 38 llvm::Value *V = rv.getScalarVal(); 39 40 // These automatically dominate and don't need to be saved. 41 if (!DominatingLLVMValue::needsSaving(V)) 42 return saved_type(V, ScalarLiteral); 43 44 // Everything else needs an alloca. 45 Address addr = 46 CGF.CreateDefaultAlignTempAlloca(V->getType(), "saved-rvalue"); 47 CGF.Builder.CreateStore(V, addr); 48 return saved_type(addr.getPointer(), ScalarAddress); 49 } 50 51 if (rv.isComplex()) { 52 CodeGenFunction::ComplexPairTy V = rv.getComplexVal(); 53 llvm::Type *ComplexTy = 54 llvm::StructType::get(V.first->getType(), V.second->getType()); 55 Address addr = CGF.CreateDefaultAlignTempAlloca(ComplexTy, "saved-complex"); 56 CGF.Builder.CreateStore(V.first, 57 CGF.Builder.CreateStructGEP(addr, 0, CharUnits())); 58 CharUnits offset = CharUnits::fromQuantity( 59 CGF.CGM.getDataLayout().getTypeAllocSize(V.first->getType())); 60 CGF.Builder.CreateStore(V.second, 61 CGF.Builder.CreateStructGEP(addr, 1, offset)); 62 return saved_type(addr.getPointer(), ComplexAddress); 63 } 64 65 assert(rv.isAggregate()); 66 Address V = rv.getAggregateAddress(); // TODO: volatile? 67 if (!DominatingLLVMValue::needsSaving(V.getPointer())) 68 return saved_type(V.getPointer(), AggregateLiteral, 69 V.getAlignment().getQuantity()); 70 71 Address addr = 72 CGF.CreateTempAlloca(V.getType(), CGF.getPointerAlign(), "saved-rvalue"); 73 CGF.Builder.CreateStore(V.getPointer(), addr); 74 return saved_type(addr.getPointer(), AggregateAddress, 75 V.getAlignment().getQuantity()); 76 } 77 78 /// Given a saved r-value produced by SaveRValue, perform the code 79 /// necessary to restore it to usability at the current insertion 80 /// point. 81 RValue DominatingValue<RValue>::saved_type::restore(CodeGenFunction &CGF) { 82 auto getSavingAddress = [&](llvm::Value *value) { 83 auto alignment = cast<llvm::AllocaInst>(value)->getAlignment(); 84 return Address(value, CharUnits::fromQuantity(alignment)); 85 }; 86 switch (K) { 87 case ScalarLiteral: 88 return RValue::get(Value); 89 case ScalarAddress: 90 return RValue::get(CGF.Builder.CreateLoad(getSavingAddress(Value))); 91 case AggregateLiteral: 92 return RValue::getAggregate(Address(Value, CharUnits::fromQuantity(Align))); 93 case AggregateAddress: { 94 auto addr = CGF.Builder.CreateLoad(getSavingAddress(Value)); 95 return RValue::getAggregate(Address(addr, CharUnits::fromQuantity(Align))); 96 } 97 case ComplexAddress: { 98 Address address = getSavingAddress(Value); 99 llvm::Value *real = CGF.Builder.CreateLoad( 100 CGF.Builder.CreateStructGEP(address, 0, CharUnits())); 101 CharUnits offset = CharUnits::fromQuantity( 102 CGF.CGM.getDataLayout().getTypeAllocSize(real->getType())); 103 llvm::Value *imag = CGF.Builder.CreateLoad( 104 CGF.Builder.CreateStructGEP(address, 1, offset)); 105 return RValue::getComplex(real, imag); 106 } 107 } 108 109 llvm_unreachable("bad saved r-value kind"); 110 } 111 112 /// Push an entry of the given size onto this protected-scope stack. 113 char *EHScopeStack::allocate(size_t Size) { 114 Size = llvm::alignTo(Size, ScopeStackAlignment); 115 if (!StartOfBuffer) { 116 unsigned Capacity = 1024; 117 while (Capacity < Size) Capacity *= 2; 118 StartOfBuffer = new char[Capacity]; 119 StartOfData = EndOfBuffer = StartOfBuffer + Capacity; 120 } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) { 121 unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer; 122 unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer); 123 124 unsigned NewCapacity = CurrentCapacity; 125 do { 126 NewCapacity *= 2; 127 } while (NewCapacity < UsedCapacity + Size); 128 129 char *NewStartOfBuffer = new char[NewCapacity]; 130 char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity; 131 char *NewStartOfData = NewEndOfBuffer - UsedCapacity; 132 memcpy(NewStartOfData, StartOfData, UsedCapacity); 133 delete [] StartOfBuffer; 134 StartOfBuffer = NewStartOfBuffer; 135 EndOfBuffer = NewEndOfBuffer; 136 StartOfData = NewStartOfData; 137 } 138 139 assert(StartOfBuffer + Size <= StartOfData); 140 StartOfData -= Size; 141 return StartOfData; 142 } 143 144 void EHScopeStack::deallocate(size_t Size) { 145 StartOfData += llvm::alignTo(Size, ScopeStackAlignment); 146 } 147 148 bool EHScopeStack::containsOnlyLifetimeMarkers( 149 EHScopeStack::stable_iterator Old) const { 150 for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) { 151 EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*it); 152 if (!cleanup || !cleanup->isLifetimeMarker()) 153 return false; 154 } 155 156 return true; 157 } 158 159 bool EHScopeStack::requiresLandingPad() const { 160 for (stable_iterator si = getInnermostEHScope(); si != stable_end(); ) { 161 // Skip lifetime markers. 162 if (auto *cleanup = dyn_cast<EHCleanupScope>(&*find(si))) 163 if (cleanup->isLifetimeMarker()) { 164 si = cleanup->getEnclosingEHScope(); 165 continue; 166 } 167 return true; 168 } 169 170 return false; 171 } 172 173 EHScopeStack::stable_iterator 174 EHScopeStack::getInnermostActiveNormalCleanup() const { 175 for (stable_iterator si = getInnermostNormalCleanup(), se = stable_end(); 176 si != se; ) { 177 EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si)); 178 if (cleanup.isActive()) return si; 179 si = cleanup.getEnclosingNormalCleanup(); 180 } 181 return stable_end(); 182 } 183 184 185 void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) { 186 char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size)); 187 bool IsNormalCleanup = Kind & NormalCleanup; 188 bool IsEHCleanup = Kind & EHCleanup; 189 bool IsActive = !(Kind & InactiveCleanup); 190 bool IsLifetimeMarker = Kind & LifetimeMarker; 191 EHCleanupScope *Scope = 192 new (Buffer) EHCleanupScope(IsNormalCleanup, 193 IsEHCleanup, 194 IsActive, 195 Size, 196 BranchFixups.size(), 197 InnermostNormalCleanup, 198 InnermostEHScope); 199 if (IsNormalCleanup) 200 InnermostNormalCleanup = stable_begin(); 201 if (IsEHCleanup) 202 InnermostEHScope = stable_begin(); 203 if (IsLifetimeMarker) 204 Scope->setLifetimeMarker(); 205 206 return Scope->getCleanupBuffer(); 207 } 208 209 void EHScopeStack::popCleanup() { 210 assert(!empty() && "popping exception stack when not empty"); 211 212 assert(isa<EHCleanupScope>(*begin())); 213 EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin()); 214 InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup(); 215 InnermostEHScope = Cleanup.getEnclosingEHScope(); 216 deallocate(Cleanup.getAllocatedSize()); 217 218 // Destroy the cleanup. 219 Cleanup.Destroy(); 220 221 // Check whether we can shrink the branch-fixups stack. 222 if (!BranchFixups.empty()) { 223 // If we no longer have any normal cleanups, all the fixups are 224 // complete. 225 if (!hasNormalCleanups()) 226 BranchFixups.clear(); 227 228 // Otherwise we can still trim out unnecessary nulls. 229 else 230 popNullFixups(); 231 } 232 } 233 234 EHFilterScope *EHScopeStack::pushFilter(unsigned numFilters) { 235 assert(getInnermostEHScope() == stable_end()); 236 char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters)); 237 EHFilterScope *filter = new (buffer) EHFilterScope(numFilters); 238 InnermostEHScope = stable_begin(); 239 return filter; 240 } 241 242 void EHScopeStack::popFilter() { 243 assert(!empty() && "popping exception stack when not empty"); 244 245 EHFilterScope &filter = cast<EHFilterScope>(*begin()); 246 deallocate(EHFilterScope::getSizeForNumFilters(filter.getNumFilters())); 247 248 InnermostEHScope = filter.getEnclosingEHScope(); 249 } 250 251 EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) { 252 char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers)); 253 EHCatchScope *scope = 254 new (buffer) EHCatchScope(numHandlers, InnermostEHScope); 255 InnermostEHScope = stable_begin(); 256 return scope; 257 } 258 259 void EHScopeStack::pushTerminate() { 260 char *Buffer = allocate(EHTerminateScope::getSize()); 261 new (Buffer) EHTerminateScope(InnermostEHScope); 262 InnermostEHScope = stable_begin(); 263 } 264 265 /// Remove any 'null' fixups on the stack. However, we can't pop more 266 /// fixups than the fixup depth on the innermost normal cleanup, or 267 /// else fixups that we try to add to that cleanup will end up in the 268 /// wrong place. We *could* try to shrink fixup depths, but that's 269 /// actually a lot of work for little benefit. 270 void EHScopeStack::popNullFixups() { 271 // We expect this to only be called when there's still an innermost 272 // normal cleanup; otherwise there really shouldn't be any fixups. 273 assert(hasNormalCleanups()); 274 275 EHScopeStack::iterator it = find(InnermostNormalCleanup); 276 unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth(); 277 assert(BranchFixups.size() >= MinSize && "fixup stack out of order"); 278 279 while (BranchFixups.size() > MinSize && 280 BranchFixups.back().Destination == nullptr) 281 BranchFixups.pop_back(); 282 } 283 284 void CodeGenFunction::initFullExprCleanup() { 285 // Create a variable to decide whether the cleanup needs to be run. 286 Address active = CreateTempAlloca(Builder.getInt1Ty(), CharUnits::One(), 287 "cleanup.cond"); 288 289 // Initialize it to false at a site that's guaranteed to be run 290 // before each evaluation. 291 setBeforeOutermostConditional(Builder.getFalse(), active); 292 293 // Initialize it to true at the current location. 294 Builder.CreateStore(Builder.getTrue(), active); 295 296 // Set that as the active flag in the cleanup. 297 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 298 assert(!cleanup.hasActiveFlag() && "cleanup already has active flag?"); 299 cleanup.setActiveFlag(active); 300 301 if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup(); 302 if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup(); 303 } 304 305 void EHScopeStack::Cleanup::anchor() {} 306 307 static void createStoreInstBefore(llvm::Value *value, Address addr, 308 llvm::Instruction *beforeInst) { 309 auto store = new llvm::StoreInst(value, addr.getPointer(), beforeInst); 310 store->setAlignment(addr.getAlignment().getQuantity()); 311 } 312 313 static llvm::LoadInst *createLoadInstBefore(Address addr, const Twine &name, 314 llvm::Instruction *beforeInst) { 315 auto load = new llvm::LoadInst(addr.getPointer(), name, beforeInst); 316 load->setAlignment(addr.getAlignment().getQuantity()); 317 return load; 318 } 319 320 /// All the branch fixups on the EH stack have propagated out past the 321 /// outermost normal cleanup; resolve them all by adding cases to the 322 /// given switch instruction. 323 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 324 llvm::SwitchInst *Switch, 325 llvm::BasicBlock *CleanupEntry) { 326 llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; 327 328 for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { 329 // Skip this fixup if its destination isn't set. 330 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 331 if (Fixup.Destination == nullptr) continue; 332 333 // If there isn't an OptimisticBranchBlock, then InitialBranch is 334 // still pointing directly to its destination; forward it to the 335 // appropriate cleanup entry. This is required in the specific 336 // case of 337 // { std::string s; goto lbl; } 338 // lbl: 339 // i.e. where there's an unresolved fixup inside a single cleanup 340 // entry which we're currently popping. 341 if (Fixup.OptimisticBranchBlock == nullptr) { 342 createStoreInstBefore(CGF.Builder.getInt32(Fixup.DestinationIndex), 343 CGF.getNormalCleanupDestSlot(), 344 Fixup.InitialBranch); 345 Fixup.InitialBranch->setSuccessor(0, CleanupEntry); 346 } 347 348 // Don't add this case to the switch statement twice. 349 if (!CasesAdded.insert(Fixup.Destination).second) 350 continue; 351 352 Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), 353 Fixup.Destination); 354 } 355 356 CGF.EHStack.clearFixups(); 357 } 358 359 /// Transitions the terminator of the given exit-block of a cleanup to 360 /// be a cleanup switch. 361 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, 362 llvm::BasicBlock *Block) { 363 // If it's a branch, turn it into a switch whose default 364 // destination is its original target. 365 llvm::TerminatorInst *Term = Block->getTerminator(); 366 assert(Term && "can't transition block without terminator"); 367 368 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 369 assert(Br->isUnconditional()); 370 auto Load = createLoadInstBefore(CGF.getNormalCleanupDestSlot(), 371 "cleanup.dest", Term); 372 llvm::SwitchInst *Switch = 373 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); 374 Br->eraseFromParent(); 375 return Switch; 376 } else { 377 return cast<llvm::SwitchInst>(Term); 378 } 379 } 380 381 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { 382 assert(Block && "resolving a null target block"); 383 if (!EHStack.getNumBranchFixups()) return; 384 385 assert(EHStack.hasNormalCleanups() && 386 "branch fixups exist with no normal cleanups on stack"); 387 388 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; 389 bool ResolvedAny = false; 390 391 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 392 // Skip this fixup if its destination doesn't match. 393 BranchFixup &Fixup = EHStack.getBranchFixup(I); 394 if (Fixup.Destination != Block) continue; 395 396 Fixup.Destination = nullptr; 397 ResolvedAny = true; 398 399 // If it doesn't have an optimistic branch block, LatestBranch is 400 // already pointing to the right place. 401 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; 402 if (!BranchBB) 403 continue; 404 405 // Don't process the same optimistic branch block twice. 406 if (!ModifiedOptimisticBlocks.insert(BranchBB).second) 407 continue; 408 409 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); 410 411 // Add a case to the switch. 412 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); 413 } 414 415 if (ResolvedAny) 416 EHStack.popNullFixups(); 417 } 418 419 /// Pops cleanup blocks until the given savepoint is reached. 420 void CodeGenFunction::PopCleanupBlocks( 421 EHScopeStack::stable_iterator Old, 422 std::initializer_list<llvm::Value **> ValuesToReload) { 423 assert(Old.isValid()); 424 425 bool HadBranches = false; 426 while (EHStack.stable_begin() != Old) { 427 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 428 HadBranches |= Scope.hasBranches(); 429 430 // As long as Old strictly encloses the scope's enclosing normal 431 // cleanup, we're going to emit another normal cleanup which 432 // fallthrough can propagate through. 433 bool FallThroughIsBranchThrough = 434 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); 435 436 PopCleanupBlock(FallThroughIsBranchThrough); 437 } 438 439 // If we didn't have any branches, the insertion point before cleanups must 440 // dominate the current insertion point and we don't need to reload any 441 // values. 442 if (!HadBranches) 443 return; 444 445 // Spill and reload all values that the caller wants to be live at the current 446 // insertion point. 447 for (llvm::Value **ReloadedValue : ValuesToReload) { 448 auto *Inst = dyn_cast_or_null<llvm::Instruction>(*ReloadedValue); 449 if (!Inst) 450 continue; 451 452 // Don't spill static allocas, they dominate all cleanups. These are created 453 // by binding a reference to a local variable or temporary. 454 auto *AI = dyn_cast<llvm::AllocaInst>(Inst); 455 if (AI && AI->isStaticAlloca()) 456 continue; 457 458 Address Tmp = 459 CreateDefaultAlignTempAlloca(Inst->getType(), "tmp.exprcleanup"); 460 461 // Find an insertion point after Inst and spill it to the temporary. 462 llvm::BasicBlock::iterator InsertBefore; 463 if (auto *Invoke = dyn_cast<llvm::InvokeInst>(Inst)) 464 InsertBefore = Invoke->getNormalDest()->getFirstInsertionPt(); 465 else 466 InsertBefore = std::next(Inst->getIterator()); 467 CGBuilderTy(CGM, &*InsertBefore).CreateStore(Inst, Tmp); 468 469 // Reload the value at the current insertion point. 470 *ReloadedValue = Builder.CreateLoad(Tmp); 471 } 472 } 473 474 /// Pops cleanup blocks until the given savepoint is reached, then add the 475 /// cleanups from the given savepoint in the lifetime-extended cleanups stack. 476 void CodeGenFunction::PopCleanupBlocks( 477 EHScopeStack::stable_iterator Old, size_t OldLifetimeExtendedSize, 478 std::initializer_list<llvm::Value **> ValuesToReload) { 479 PopCleanupBlocks(Old, ValuesToReload); 480 481 // Move our deferred cleanups onto the EH stack. 482 for (size_t I = OldLifetimeExtendedSize, 483 E = LifetimeExtendedCleanupStack.size(); I != E; /**/) { 484 // Alignment should be guaranteed by the vptrs in the individual cleanups. 485 assert((I % alignof(LifetimeExtendedCleanupHeader) == 0) && 486 "misaligned cleanup stack entry"); 487 488 LifetimeExtendedCleanupHeader &Header = 489 reinterpret_cast<LifetimeExtendedCleanupHeader&>( 490 LifetimeExtendedCleanupStack[I]); 491 I += sizeof(Header); 492 493 EHStack.pushCopyOfCleanup(Header.getKind(), 494 &LifetimeExtendedCleanupStack[I], 495 Header.getSize()); 496 I += Header.getSize(); 497 } 498 LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize); 499 } 500 501 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, 502 EHCleanupScope &Scope) { 503 assert(Scope.isNormalCleanup()); 504 llvm::BasicBlock *Entry = Scope.getNormalBlock(); 505 if (!Entry) { 506 Entry = CGF.createBasicBlock("cleanup"); 507 Scope.setNormalBlock(Entry); 508 } 509 return Entry; 510 } 511 512 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 513 /// is basically llvm::MergeBlockIntoPredecessor, except 514 /// simplified/optimized for the tighter constraints on cleanup blocks. 515 /// 516 /// Returns the new block, whatever it is. 517 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, 518 llvm::BasicBlock *Entry) { 519 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 520 if (!Pred) return Entry; 521 522 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 523 if (!Br || Br->isConditional()) return Entry; 524 assert(Br->getSuccessor(0) == Entry); 525 526 // If we were previously inserting at the end of the cleanup entry 527 // block, we'll need to continue inserting at the end of the 528 // predecessor. 529 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 530 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 531 532 // Kill the branch. 533 Br->eraseFromParent(); 534 535 // Replace all uses of the entry with the predecessor, in case there 536 // are phis in the cleanup. 537 Entry->replaceAllUsesWith(Pred); 538 539 // Merge the blocks. 540 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 541 542 // Kill the entry block. 543 Entry->eraseFromParent(); 544 545 if (WasInsertBlock) 546 CGF.Builder.SetInsertPoint(Pred); 547 548 return Pred; 549 } 550 551 static void EmitCleanup(CodeGenFunction &CGF, 552 EHScopeStack::Cleanup *Fn, 553 EHScopeStack::Cleanup::Flags flags, 554 Address ActiveFlag) { 555 // If there's an active flag, load it and skip the cleanup if it's 556 // false. 557 llvm::BasicBlock *ContBB = nullptr; 558 if (ActiveFlag.isValid()) { 559 ContBB = CGF.createBasicBlock("cleanup.done"); 560 llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); 561 llvm::Value *IsActive 562 = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); 563 CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); 564 CGF.EmitBlock(CleanupBB); 565 } 566 567 // Ask the cleanup to emit itself. 568 Fn->Emit(CGF, flags); 569 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); 570 571 // Emit the continuation block if there was an active flag. 572 if (ActiveFlag.isValid()) 573 CGF.EmitBlock(ContBB); 574 } 575 576 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, 577 llvm::BasicBlock *From, 578 llvm::BasicBlock *To) { 579 // Exit is the exit block of a cleanup, so it always terminates in 580 // an unconditional branch or a switch. 581 llvm::TerminatorInst *Term = Exit->getTerminator(); 582 583 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 584 assert(Br->isUnconditional() && Br->getSuccessor(0) == From); 585 Br->setSuccessor(0, To); 586 } else { 587 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term); 588 for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) 589 if (Switch->getSuccessor(I) == From) 590 Switch->setSuccessor(I, To); 591 } 592 } 593 594 /// We don't need a normal entry block for the given cleanup. 595 /// Optimistic fixup branches can cause these blocks to come into 596 /// existence anyway; if so, destroy it. 597 /// 598 /// The validity of this transformation is very much specific to the 599 /// exact ways in which we form branches to cleanup entries. 600 static void destroyOptimisticNormalEntry(CodeGenFunction &CGF, 601 EHCleanupScope &scope) { 602 llvm::BasicBlock *entry = scope.getNormalBlock(); 603 if (!entry) return; 604 605 // Replace all the uses with unreachable. 606 llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock(); 607 for (llvm::BasicBlock::use_iterator 608 i = entry->use_begin(), e = entry->use_end(); i != e; ) { 609 llvm::Use &use = *i; 610 ++i; 611 612 use.set(unreachableBB); 613 614 // The only uses should be fixup switches. 615 llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser()); 616 if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) { 617 // Replace the switch with a branch. 618 llvm::BranchInst::Create(si->case_begin()->getCaseSuccessor(), si); 619 620 // The switch operand is a load from the cleanup-dest alloca. 621 llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition()); 622 623 // Destroy the switch. 624 si->eraseFromParent(); 625 626 // Destroy the load. 627 assert(condition->getOperand(0) == CGF.NormalCleanupDest); 628 assert(condition->use_empty()); 629 condition->eraseFromParent(); 630 } 631 } 632 633 assert(entry->use_empty()); 634 delete entry; 635 } 636 637 /// Pops a cleanup block. If the block includes a normal cleanup, the 638 /// current insertion point is threaded through the cleanup, as are 639 /// any branch fixups on the cleanup. 640 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { 641 assert(!EHStack.empty() && "cleanup stack is empty!"); 642 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 643 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 644 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 645 646 // Remember activation information. 647 bool IsActive = Scope.isActive(); 648 Address NormalActiveFlag = 649 Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() 650 : Address::invalid(); 651 Address EHActiveFlag = 652 Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() 653 : Address::invalid(); 654 655 // Check whether we need an EH cleanup. This is only true if we've 656 // generated a lazy EH cleanup block. 657 llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock(); 658 assert(Scope.hasEHBranches() == (EHEntry != nullptr)); 659 bool RequiresEHCleanup = (EHEntry != nullptr); 660 EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope(); 661 662 // Check the three conditions which might require a normal cleanup: 663 664 // - whether there are branch fix-ups through this cleanup 665 unsigned FixupDepth = Scope.getFixupDepth(); 666 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 667 668 // - whether there are branch-throughs or branch-afters 669 bool HasExistingBranches = Scope.hasBranches(); 670 671 // - whether there's a fallthrough 672 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); 673 bool HasFallthrough = (FallthroughSource != nullptr && IsActive); 674 675 // Branch-through fall-throughs leave the insertion point set to the 676 // end of the last cleanup, which points to the current scope. The 677 // rest of IR gen doesn't need to worry about this; it only happens 678 // during the execution of PopCleanupBlocks(). 679 bool HasPrebranchedFallthrough = 680 (FallthroughSource && FallthroughSource->getTerminator()); 681 682 // If this is a normal cleanup, then having a prebranched 683 // fallthrough implies that the fallthrough source unconditionally 684 // jumps here. 685 assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || 686 (Scope.getNormalBlock() && 687 FallthroughSource->getTerminator()->getSuccessor(0) 688 == Scope.getNormalBlock())); 689 690 bool RequiresNormalCleanup = false; 691 if (Scope.isNormalCleanup() && 692 (HasFixups || HasExistingBranches || HasFallthrough)) { 693 RequiresNormalCleanup = true; 694 } 695 696 // If we have a prebranched fallthrough into an inactive normal 697 // cleanup, rewrite it so that it leads to the appropriate place. 698 if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) { 699 llvm::BasicBlock *prebranchDest; 700 701 // If the prebranch is semantically branching through the next 702 // cleanup, just forward it to the next block, leaving the 703 // insertion point in the prebranched block. 704 if (FallthroughIsBranchThrough) { 705 EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup()); 706 prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing)); 707 708 // Otherwise, we need to make a new block. If the normal cleanup 709 // isn't being used at all, we could actually reuse the normal 710 // entry block, but this is simpler, and it avoids conflicts with 711 // dead optimistic fixup branches. 712 } else { 713 prebranchDest = createBasicBlock("forwarded-prebranch"); 714 EmitBlock(prebranchDest); 715 } 716 717 llvm::BasicBlock *normalEntry = Scope.getNormalBlock(); 718 assert(normalEntry && !normalEntry->use_empty()); 719 720 ForwardPrebranchedFallthrough(FallthroughSource, 721 normalEntry, prebranchDest); 722 } 723 724 // If we don't need the cleanup at all, we're done. 725 if (!RequiresNormalCleanup && !RequiresEHCleanup) { 726 destroyOptimisticNormalEntry(*this, Scope); 727 EHStack.popCleanup(); // safe because there are no fixups 728 assert(EHStack.getNumBranchFixups() == 0 || 729 EHStack.hasNormalCleanups()); 730 return; 731 } 732 733 // Copy the cleanup emission data out. This uses either a stack 734 // array or malloc'd memory, depending on the size, which is 735 // behavior that SmallVector would provide, if we could use it 736 // here. Unfortunately, if you ask for a SmallVector<char>, the 737 // alignment isn't sufficient. 738 auto *CleanupSource = reinterpret_cast<char *>(Scope.getCleanupBuffer()); 739 llvm::AlignedCharArray<EHScopeStack::ScopeStackAlignment, 8 * sizeof(void *)> CleanupBufferStack; 740 std::unique_ptr<char[]> CleanupBufferHeap; 741 size_t CleanupSize = Scope.getCleanupSize(); 742 EHScopeStack::Cleanup *Fn; 743 744 if (CleanupSize <= sizeof(CleanupBufferStack)) { 745 memcpy(CleanupBufferStack.buffer, CleanupSource, CleanupSize); 746 Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferStack.buffer); 747 } else { 748 CleanupBufferHeap.reset(new char[CleanupSize]); 749 memcpy(CleanupBufferHeap.get(), CleanupSource, CleanupSize); 750 Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferHeap.get()); 751 } 752 753 EHScopeStack::Cleanup::Flags cleanupFlags; 754 if (Scope.isNormalCleanup()) 755 cleanupFlags.setIsNormalCleanupKind(); 756 if (Scope.isEHCleanup()) 757 cleanupFlags.setIsEHCleanupKind(); 758 759 if (!RequiresNormalCleanup) { 760 destroyOptimisticNormalEntry(*this, Scope); 761 EHStack.popCleanup(); 762 } else { 763 // If we have a fallthrough and no other need for the cleanup, 764 // emit it directly. 765 if (HasFallthrough && !HasPrebranchedFallthrough && 766 !HasFixups && !HasExistingBranches) { 767 768 destroyOptimisticNormalEntry(*this, Scope); 769 EHStack.popCleanup(); 770 771 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); 772 773 // Otherwise, the best approach is to thread everything through 774 // the cleanup block and then try to clean up after ourselves. 775 } else { 776 // Force the entry block to exist. 777 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); 778 779 // I. Set up the fallthrough edge in. 780 781 CGBuilderTy::InsertPoint savedInactiveFallthroughIP; 782 783 // If there's a fallthrough, we need to store the cleanup 784 // destination index. For fall-throughs this is always zero. 785 if (HasFallthrough) { 786 if (!HasPrebranchedFallthrough) 787 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); 788 789 // Otherwise, save and clear the IP if we don't have fallthrough 790 // because the cleanup is inactive. 791 } else if (FallthroughSource) { 792 assert(!IsActive && "source without fallthrough for active cleanup"); 793 savedInactiveFallthroughIP = Builder.saveAndClearIP(); 794 } 795 796 // II. Emit the entry block. This implicitly branches to it if 797 // we have fallthrough. All the fixups and existing branches 798 // should already be branched to it. 799 EmitBlock(NormalEntry); 800 801 // III. Figure out where we're going and build the cleanup 802 // epilogue. 803 804 bool HasEnclosingCleanups = 805 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); 806 807 // Compute the branch-through dest if we need it: 808 // - if there are branch-throughs threaded through the scope 809 // - if fall-through is a branch-through 810 // - if there are fixups that will be optimistically forwarded 811 // to the enclosing cleanup 812 llvm::BasicBlock *BranchThroughDest = nullptr; 813 if (Scope.hasBranchThroughs() || 814 (FallthroughSource && FallthroughIsBranchThrough) || 815 (HasFixups && HasEnclosingCleanups)) { 816 assert(HasEnclosingCleanups); 817 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 818 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 819 } 820 821 llvm::BasicBlock *FallthroughDest = nullptr; 822 SmallVector<llvm::Instruction*, 2> InstsToAppend; 823 824 // If there's exactly one branch-after and no other threads, 825 // we can route it without a switch. 826 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && 827 Scope.getNumBranchAfters() == 1) { 828 assert(!BranchThroughDest || !IsActive); 829 830 // Clean up the possibly dead store to the cleanup dest slot. 831 llvm::Instruction *NormalCleanupDestSlot = 832 cast<llvm::Instruction>(getNormalCleanupDestSlot().getPointer()); 833 if (NormalCleanupDestSlot->hasOneUse()) { 834 NormalCleanupDestSlot->user_back()->eraseFromParent(); 835 NormalCleanupDestSlot->eraseFromParent(); 836 NormalCleanupDest = nullptr; 837 } 838 839 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); 840 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); 841 842 // Build a switch-out if we need it: 843 // - if there are branch-afters threaded through the scope 844 // - if fall-through is a branch-after 845 // - if there are fixups that have nowhere left to go and 846 // so must be immediately resolved 847 } else if (Scope.getNumBranchAfters() || 848 (HasFallthrough && !FallthroughIsBranchThrough) || 849 (HasFixups && !HasEnclosingCleanups)) { 850 851 llvm::BasicBlock *Default = 852 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); 853 854 // TODO: base this on the number of branch-afters and fixups 855 const unsigned SwitchCapacity = 10; 856 857 llvm::LoadInst *Load = 858 createLoadInstBefore(getNormalCleanupDestSlot(), "cleanup.dest", 859 nullptr); 860 llvm::SwitchInst *Switch = 861 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 862 863 InstsToAppend.push_back(Load); 864 InstsToAppend.push_back(Switch); 865 866 // Branch-after fallthrough. 867 if (FallthroughSource && !FallthroughIsBranchThrough) { 868 FallthroughDest = createBasicBlock("cleanup.cont"); 869 if (HasFallthrough) 870 Switch->addCase(Builder.getInt32(0), FallthroughDest); 871 } 872 873 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { 874 Switch->addCase(Scope.getBranchAfterIndex(I), 875 Scope.getBranchAfterBlock(I)); 876 } 877 878 // If there aren't any enclosing cleanups, we can resolve all 879 // the fixups now. 880 if (HasFixups && !HasEnclosingCleanups) 881 ResolveAllBranchFixups(*this, Switch, NormalEntry); 882 } else { 883 // We should always have a branch-through destination in this case. 884 assert(BranchThroughDest); 885 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); 886 } 887 888 // IV. Pop the cleanup and emit it. 889 EHStack.popCleanup(); 890 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); 891 892 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); 893 894 // Append the prepared cleanup prologue from above. 895 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); 896 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) 897 NormalExit->getInstList().push_back(InstsToAppend[I]); 898 899 // Optimistically hope that any fixups will continue falling through. 900 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 901 I < E; ++I) { 902 BranchFixup &Fixup = EHStack.getBranchFixup(I); 903 if (!Fixup.Destination) continue; 904 if (!Fixup.OptimisticBranchBlock) { 905 createStoreInstBefore(Builder.getInt32(Fixup.DestinationIndex), 906 getNormalCleanupDestSlot(), 907 Fixup.InitialBranch); 908 Fixup.InitialBranch->setSuccessor(0, NormalEntry); 909 } 910 Fixup.OptimisticBranchBlock = NormalExit; 911 } 912 913 // V. Set up the fallthrough edge out. 914 915 // Case 1: a fallthrough source exists but doesn't branch to the 916 // cleanup because the cleanup is inactive. 917 if (!HasFallthrough && FallthroughSource) { 918 // Prebranched fallthrough was forwarded earlier. 919 // Non-prebranched fallthrough doesn't need to be forwarded. 920 // Either way, all we need to do is restore the IP we cleared before. 921 assert(!IsActive); 922 Builder.restoreIP(savedInactiveFallthroughIP); 923 924 // Case 2: a fallthrough source exists and should branch to the 925 // cleanup, but we're not supposed to branch through to the next 926 // cleanup. 927 } else if (HasFallthrough && FallthroughDest) { 928 assert(!FallthroughIsBranchThrough); 929 EmitBlock(FallthroughDest); 930 931 // Case 3: a fallthrough source exists and should branch to the 932 // cleanup and then through to the next. 933 } else if (HasFallthrough) { 934 // Everything is already set up for this. 935 936 // Case 4: no fallthrough source exists. 937 } else { 938 Builder.ClearInsertionPoint(); 939 } 940 941 // VI. Assorted cleaning. 942 943 // Check whether we can merge NormalEntry into a single predecessor. 944 // This might invalidate (non-IR) pointers to NormalEntry. 945 llvm::BasicBlock *NewNormalEntry = 946 SimplifyCleanupEntry(*this, NormalEntry); 947 948 // If it did invalidate those pointers, and NormalEntry was the same 949 // as NormalExit, go back and patch up the fixups. 950 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) 951 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 952 I < E; ++I) 953 EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; 954 } 955 } 956 957 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); 958 959 // Emit the EH cleanup if required. 960 if (RequiresEHCleanup) { 961 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 962 963 EmitBlock(EHEntry); 964 965 llvm::BasicBlock *NextAction = getEHDispatchBlock(EHParent); 966 967 // Push a terminate scope or cleanupendpad scope around the potentially 968 // throwing cleanups. For funclet EH personalities, the cleanupendpad models 969 // program termination when cleanups throw. 970 bool PushedTerminate = false; 971 SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad( 972 CurrentFuncletPad); 973 llvm::CleanupPadInst *CPI = nullptr; 974 if (!EHPersonality::get(*this).usesFuncletPads()) { 975 EHStack.pushTerminate(); 976 PushedTerminate = true; 977 } else { 978 llvm::Value *ParentPad = CurrentFuncletPad; 979 if (!ParentPad) 980 ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext()); 981 CurrentFuncletPad = CPI = Builder.CreateCleanupPad(ParentPad); 982 } 983 984 // We only actually emit the cleanup code if the cleanup is either 985 // active or was used before it was deactivated. 986 if (EHActiveFlag.isValid() || IsActive) { 987 cleanupFlags.setIsForEHCleanup(); 988 EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag); 989 } 990 991 if (CPI) 992 Builder.CreateCleanupRet(CPI, NextAction); 993 else 994 Builder.CreateBr(NextAction); 995 996 // Leave the terminate scope. 997 if (PushedTerminate) 998 EHStack.popTerminate(); 999 1000 Builder.restoreIP(SavedIP); 1001 1002 SimplifyCleanupEntry(*this, EHEntry); 1003 } 1004 } 1005 1006 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1007 /// specified destination obviously has no cleanups to run. 'false' is always 1008 /// a conservatively correct answer for this method. 1009 bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const { 1010 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) 1011 && "stale jump destination"); 1012 1013 // Calculate the innermost active normal cleanup. 1014 EHScopeStack::stable_iterator TopCleanup = 1015 EHStack.getInnermostActiveNormalCleanup(); 1016 1017 // If we're not in an active normal cleanup scope, or if the 1018 // destination scope is within the innermost active normal cleanup 1019 // scope, we don't need to worry about fixups. 1020 if (TopCleanup == EHStack.stable_end() || 1021 TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid 1022 return true; 1023 1024 // Otherwise, we might need some cleanups. 1025 return false; 1026 } 1027 1028 1029 /// Terminate the current block by emitting a branch which might leave 1030 /// the current cleanup-protected scope. The target scope may not yet 1031 /// be known, in which case this will require a fixup. 1032 /// 1033 /// As a side-effect, this method clears the insertion point. 1034 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 1035 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) 1036 && "stale jump destination"); 1037 1038 if (!HaveInsertPoint()) 1039 return; 1040 1041 // Create the branch. 1042 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1043 1044 // Calculate the innermost active normal cleanup. 1045 EHScopeStack::stable_iterator 1046 TopCleanup = EHStack.getInnermostActiveNormalCleanup(); 1047 1048 // If we're not in an active normal cleanup scope, or if the 1049 // destination scope is within the innermost active normal cleanup 1050 // scope, we don't need to worry about fixups. 1051 if (TopCleanup == EHStack.stable_end() || 1052 TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid 1053 Builder.ClearInsertionPoint(); 1054 return; 1055 } 1056 1057 // If we can't resolve the destination cleanup scope, just add this 1058 // to the current cleanup scope as a branch fixup. 1059 if (!Dest.getScopeDepth().isValid()) { 1060 BranchFixup &Fixup = EHStack.addBranchFixup(); 1061 Fixup.Destination = Dest.getBlock(); 1062 Fixup.DestinationIndex = Dest.getDestIndex(); 1063 Fixup.InitialBranch = BI; 1064 Fixup.OptimisticBranchBlock = nullptr; 1065 1066 Builder.ClearInsertionPoint(); 1067 return; 1068 } 1069 1070 // Otherwise, thread through all the normal cleanups in scope. 1071 1072 // Store the index at the start. 1073 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1074 createStoreInstBefore(Index, getNormalCleanupDestSlot(), BI); 1075 1076 // Adjust BI to point to the first cleanup block. 1077 { 1078 EHCleanupScope &Scope = 1079 cast<EHCleanupScope>(*EHStack.find(TopCleanup)); 1080 BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); 1081 } 1082 1083 // Add this destination to all the scopes involved. 1084 EHScopeStack::stable_iterator I = TopCleanup; 1085 EHScopeStack::stable_iterator E = Dest.getScopeDepth(); 1086 if (E.strictlyEncloses(I)) { 1087 while (true) { 1088 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1089 assert(Scope.isNormalCleanup()); 1090 I = Scope.getEnclosingNormalCleanup(); 1091 1092 // If this is the last cleanup we're propagating through, tell it 1093 // that there's a resolved jump moving through it. 1094 if (!E.strictlyEncloses(I)) { 1095 Scope.addBranchAfter(Index, Dest.getBlock()); 1096 break; 1097 } 1098 1099 // Otherwise, tell the scope that there's a jump propoagating 1100 // through it. If this isn't new information, all the rest of 1101 // the work has been done before. 1102 if (!Scope.addBranchThrough(Dest.getBlock())) 1103 break; 1104 } 1105 } 1106 1107 Builder.ClearInsertionPoint(); 1108 } 1109 1110 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, 1111 EHScopeStack::stable_iterator C) { 1112 // If we needed a normal block for any reason, that counts. 1113 if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock()) 1114 return true; 1115 1116 // Check whether any enclosed cleanups were needed. 1117 for (EHScopeStack::stable_iterator 1118 I = EHStack.getInnermostNormalCleanup(); 1119 I != C; ) { 1120 assert(C.strictlyEncloses(I)); 1121 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 1122 if (S.getNormalBlock()) return true; 1123 I = S.getEnclosingNormalCleanup(); 1124 } 1125 1126 return false; 1127 } 1128 1129 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, 1130 EHScopeStack::stable_iterator cleanup) { 1131 // If we needed an EH block for any reason, that counts. 1132 if (EHStack.find(cleanup)->hasEHBranches()) 1133 return true; 1134 1135 // Check whether any enclosed cleanups were needed. 1136 for (EHScopeStack::stable_iterator 1137 i = EHStack.getInnermostEHScope(); i != cleanup; ) { 1138 assert(cleanup.strictlyEncloses(i)); 1139 1140 EHScope &scope = *EHStack.find(i); 1141 if (scope.hasEHBranches()) 1142 return true; 1143 1144 i = scope.getEnclosingEHScope(); 1145 } 1146 1147 return false; 1148 } 1149 1150 enum ForActivation_t { 1151 ForActivation, 1152 ForDeactivation 1153 }; 1154 1155 /// The given cleanup block is changing activation state. Configure a 1156 /// cleanup variable if necessary. 1157 /// 1158 /// It would be good if we had some way of determining if there were 1159 /// extra uses *after* the change-over point. 1160 static void SetupCleanupBlockActivation(CodeGenFunction &CGF, 1161 EHScopeStack::stable_iterator C, 1162 ForActivation_t kind, 1163 llvm::Instruction *dominatingIP) { 1164 EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C)); 1165 1166 // We always need the flag if we're activating the cleanup in a 1167 // conditional context, because we have to assume that the current 1168 // location doesn't necessarily dominate the cleanup's code. 1169 bool isActivatedInConditional = 1170 (kind == ForActivation && CGF.isInConditionalBranch()); 1171 1172 bool needFlag = false; 1173 1174 // Calculate whether the cleanup was used: 1175 1176 // - as a normal cleanup 1177 if (Scope.isNormalCleanup() && 1178 (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) { 1179 Scope.setTestFlagInNormalCleanup(); 1180 needFlag = true; 1181 } 1182 1183 // - as an EH cleanup 1184 if (Scope.isEHCleanup() && 1185 (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) { 1186 Scope.setTestFlagInEHCleanup(); 1187 needFlag = true; 1188 } 1189 1190 // If it hasn't yet been used as either, we're done. 1191 if (!needFlag) return; 1192 1193 Address var = Scope.getActiveFlag(); 1194 if (!var.isValid()) { 1195 var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), CharUnits::One(), 1196 "cleanup.isactive"); 1197 Scope.setActiveFlag(var); 1198 1199 assert(dominatingIP && "no existing variable and no dominating IP!"); 1200 1201 // Initialize to true or false depending on whether it was 1202 // active up to this point. 1203 llvm::Constant *value = CGF.Builder.getInt1(kind == ForDeactivation); 1204 1205 // If we're in a conditional block, ignore the dominating IP and 1206 // use the outermost conditional branch. 1207 if (CGF.isInConditionalBranch()) { 1208 CGF.setBeforeOutermostConditional(value, var); 1209 } else { 1210 createStoreInstBefore(value, var, dominatingIP); 1211 } 1212 } 1213 1214 CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var); 1215 } 1216 1217 /// Activate a cleanup that was created in an inactivated state. 1218 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C, 1219 llvm::Instruction *dominatingIP) { 1220 assert(C != EHStack.stable_end() && "activating bottom of stack?"); 1221 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1222 assert(!Scope.isActive() && "double activation"); 1223 1224 SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP); 1225 1226 Scope.setActive(true); 1227 } 1228 1229 /// Deactive a cleanup that was created in an active state. 1230 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C, 1231 llvm::Instruction *dominatingIP) { 1232 assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); 1233 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1234 assert(Scope.isActive() && "double deactivation"); 1235 1236 // If it's the top of the stack, just pop it. 1237 if (C == EHStack.stable_begin()) { 1238 // If it's a normal cleanup, we need to pretend that the 1239 // fallthrough is unreachable. 1240 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1241 PopCleanupBlock(); 1242 Builder.restoreIP(SavedIP); 1243 return; 1244 } 1245 1246 // Otherwise, follow the general case. 1247 SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP); 1248 1249 Scope.setActive(false); 1250 } 1251 1252 Address CodeGenFunction::getNormalCleanupDestSlot() { 1253 if (!NormalCleanupDest) 1254 NormalCleanupDest = 1255 CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); 1256 return Address(NormalCleanupDest, CharUnits::fromQuantity(4)); 1257 } 1258 1259 /// Emits all the code to cause the given temporary to be cleaned up. 1260 void CodeGenFunction::EmitCXXTemporary(const CXXTemporary *Temporary, 1261 QualType TempType, 1262 Address Ptr) { 1263 pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject, 1264 /*useEHCleanup*/ true); 1265 } 1266