1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/ReplaceConstant.h"
26 #include "llvm/Support/Format.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 namespace {
32 constexpr unsigned CudaFatMagic = 0x466243b1;
33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
34 
35 class CGNVCUDARuntime : public CGCUDARuntime {
36 
37 private:
38   llvm::IntegerType *IntTy, *SizeTy;
39   llvm::Type *VoidTy;
40   llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
41 
42   /// Convenience reference to LLVM Context
43   llvm::LLVMContext &Context;
44   /// Convenience reference to the current module
45   llvm::Module &TheModule;
46   /// Keeps track of kernel launch stubs and handles emitted in this module
47   struct KernelInfo {
48     llvm::Function *Kernel; // stub function to help launch kernel
49     const Decl *D;
50   };
51   llvm::SmallVector<KernelInfo, 16> EmittedKernels;
52   // Map a device stub function to a symbol for identifying kernel in host code.
53   // For CUDA, the symbol for identifying the kernel is the same as the device
54   // stub function. For HIP, they are different.
55   llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
56   // Map a kernel handle to the kernel stub.
57   llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
58   struct VarInfo {
59     llvm::GlobalVariable *Var;
60     const VarDecl *D;
61     DeviceVarFlags Flags;
62   };
63   llvm::SmallVector<VarInfo, 16> DeviceVars;
64   /// Keeps track of variable containing handle of GPU binary. Populated by
65   /// ModuleCtorFunction() and used to create corresponding cleanup calls in
66   /// ModuleDtorFunction()
67   llvm::GlobalVariable *GpuBinaryHandle = nullptr;
68   /// Whether we generate relocatable device code.
69   bool RelocatableDeviceCode;
70   /// Mangle context for device.
71   std::unique_ptr<MangleContext> DeviceMC;
72 
73   llvm::FunctionCallee getSetupArgumentFn() const;
74   llvm::FunctionCallee getLaunchFn() const;
75 
76   llvm::FunctionType *getRegisterGlobalsFnTy() const;
77   llvm::FunctionType *getCallbackFnTy() const;
78   llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
79   std::string addPrefixToName(StringRef FuncName) const;
80   std::string addUnderscoredPrefixToName(StringRef FuncName) const;
81 
82   /// Creates a function to register all kernel stubs generated in this module.
83   llvm::Function *makeRegisterGlobalsFn();
84 
85   /// Helper function that generates a constant string and returns a pointer to
86   /// the start of the string.  The result of this function can be used anywhere
87   /// where the C code specifies const char*.
88   llvm::Constant *makeConstantString(const std::string &Str,
89                                      const std::string &Name = "",
90                                      const std::string &SectionName = "",
91                                      unsigned Alignment = 0) {
92     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
93                                llvm::ConstantInt::get(SizeTy, 0)};
94     auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
95     llvm::GlobalVariable *GV =
96         cast<llvm::GlobalVariable>(ConstStr.getPointer());
97     if (!SectionName.empty()) {
98       GV->setSection(SectionName);
99       // Mark the address as used which make sure that this section isn't
100       // merged and we will really have it in the object file.
101       GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
102     }
103     if (Alignment)
104       GV->setAlignment(llvm::Align(Alignment));
105 
106     return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
107                                                 ConstStr.getPointer(), Zeros);
108   }
109 
110   /// Helper function that generates an empty dummy function returning void.
111   llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
112     assert(FnTy->getReturnType()->isVoidTy() &&
113            "Can only generate dummy functions returning void!");
114     llvm::Function *DummyFunc = llvm::Function::Create(
115         FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
116 
117     llvm::BasicBlock *DummyBlock =
118         llvm::BasicBlock::Create(Context, "", DummyFunc);
119     CGBuilderTy FuncBuilder(CGM, Context);
120     FuncBuilder.SetInsertPoint(DummyBlock);
121     FuncBuilder.CreateRetVoid();
122 
123     return DummyFunc;
124   }
125 
126   void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
127   void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
128   std::string getDeviceSideName(const NamedDecl *ND) override;
129 
130   void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
131                          bool Extern, bool Constant) {
132     DeviceVars.push_back({&Var,
133                           VD,
134                           {DeviceVarFlags::Variable, Extern, Constant,
135                            VD->hasAttr<HIPManagedAttr>(),
136                            /*Normalized*/ false, 0}});
137   }
138   void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
139                           bool Extern, int Type) {
140     DeviceVars.push_back({&Var,
141                           VD,
142                           {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
143                            /*Managed*/ false,
144                            /*Normalized*/ false, Type}});
145   }
146   void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
147                          bool Extern, int Type, bool Normalized) {
148     DeviceVars.push_back({&Var,
149                           VD,
150                           {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
151                            /*Managed*/ false, Normalized, Type}});
152   }
153 
154   /// Creates module constructor function
155   llvm::Function *makeModuleCtorFunction();
156   /// Creates module destructor function
157   llvm::Function *makeModuleDtorFunction();
158   /// Transform managed variables for device compilation.
159   void transformManagedVars();
160 
161 public:
162   CGNVCUDARuntime(CodeGenModule &CGM);
163 
164   llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
165   llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
166     auto Loc = KernelStubs.find(Handle);
167     assert(Loc != KernelStubs.end());
168     return Loc->second;
169   }
170   void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
171   void handleVarRegistration(const VarDecl *VD,
172                              llvm::GlobalVariable &Var) override;
173   void
174   internalizeDeviceSideVar(const VarDecl *D,
175                            llvm::GlobalValue::LinkageTypes &Linkage) override;
176 
177   llvm::Function *finalizeModule() override;
178 };
179 
180 } // end anonymous namespace
181 
182 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
183   if (CGM.getLangOpts().HIP)
184     return ((Twine("hip") + Twine(FuncName)).str());
185   return ((Twine("cuda") + Twine(FuncName)).str());
186 }
187 std::string
188 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
189   if (CGM.getLangOpts().HIP)
190     return ((Twine("__hip") + Twine(FuncName)).str());
191   return ((Twine("__cuda") + Twine(FuncName)).str());
192 }
193 
194 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
195   // If the host and device have different C++ ABIs, mark it as the device
196   // mangle context so that the mangling needs to retrieve the additional
197   // device lambda mangling number instead of the regular host one.
198   if (CGM.getContext().getAuxTargetInfo() &&
199       CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
200       CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
201     return std::unique_ptr<MangleContext>(
202         CGM.getContext().createDeviceMangleContext(
203             *CGM.getContext().getAuxTargetInfo()));
204   }
205 
206   return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
207       CGM.getContext().getAuxTargetInfo()));
208 }
209 
210 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
211     : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
212       TheModule(CGM.getModule()),
213       RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
214       DeviceMC(InitDeviceMC(CGM)) {
215   CodeGen::CodeGenTypes &Types = CGM.getTypes();
216   ASTContext &Ctx = CGM.getContext();
217 
218   IntTy = CGM.IntTy;
219   SizeTy = CGM.SizeTy;
220   VoidTy = CGM.VoidTy;
221 
222   CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
223   VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
224   VoidPtrPtrTy = VoidPtrTy->getPointerTo();
225 }
226 
227 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
228   // cudaError_t cudaSetupArgument(void *, size_t, size_t)
229   llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
230   return CGM.CreateRuntimeFunction(
231       llvm::FunctionType::get(IntTy, Params, false),
232       addPrefixToName("SetupArgument"));
233 }
234 
235 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
236   if (CGM.getLangOpts().HIP) {
237     // hipError_t hipLaunchByPtr(char *);
238     return CGM.CreateRuntimeFunction(
239         llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
240   }
241   // cudaError_t cudaLaunch(char *);
242   return CGM.CreateRuntimeFunction(
243       llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
244 }
245 
246 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
247   return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
248 }
249 
250 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
251   return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
252 }
253 
254 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
255   auto *CallbackFnTy = getCallbackFnTy();
256   auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
257   llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
258                           VoidPtrTy, CallbackFnTy->getPointerTo()};
259   return llvm::FunctionType::get(VoidTy, Params, false);
260 }
261 
262 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
263   GlobalDecl GD;
264   // D could be either a kernel or a variable.
265   if (auto *FD = dyn_cast<FunctionDecl>(ND))
266     GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
267   else
268     GD = GlobalDecl(ND);
269   std::string DeviceSideName;
270   MangleContext *MC;
271   if (CGM.getLangOpts().CUDAIsDevice)
272     MC = &CGM.getCXXABI().getMangleContext();
273   else
274     MC = DeviceMC.get();
275   if (MC->shouldMangleDeclName(ND)) {
276     SmallString<256> Buffer;
277     llvm::raw_svector_ostream Out(Buffer);
278     MC->mangleName(GD, Out);
279     DeviceSideName = std::string(Out.str());
280   } else
281     DeviceSideName = std::string(ND->getIdentifier()->getName());
282 
283   // Make unique name for device side static file-scope variable for HIP.
284   if (CGM.getContext().shouldExternalize(ND) &&
285       CGM.getLangOpts().GPURelocatableDeviceCode &&
286       !CGM.getLangOpts().CUID.empty()) {
287     SmallString<256> Buffer;
288     llvm::raw_svector_ostream Out(Buffer);
289     Out << DeviceSideName;
290     CGM.printPostfixForExternalizedDecl(Out, ND);
291     DeviceSideName = std::string(Out.str());
292   }
293   return DeviceSideName;
294 }
295 
296 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
297                                      FunctionArgList &Args) {
298   EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
299   if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
300     GV->setLinkage(CGF.CurFn->getLinkage());
301     GV->setInitializer(CGF.CurFn);
302   }
303   if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
304                          CudaFeature::CUDA_USES_NEW_LAUNCH) ||
305       (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
306     emitDeviceStubBodyNew(CGF, Args);
307   else
308     emitDeviceStubBodyLegacy(CGF, Args);
309 }
310 
311 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
312 // array and kernels are launched using cudaLaunchKernel().
313 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
314                                             FunctionArgList &Args) {
315   // Build the shadow stack entry at the very start of the function.
316 
317   // Calculate amount of space we will need for all arguments.  If we have no
318   // args, allocate a single pointer so we still have a valid pointer to the
319   // argument array that we can pass to runtime, even if it will be unused.
320   Address KernelArgs = CGF.CreateTempAlloca(
321       VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
322       llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
323   // Store pointers to the arguments in a locally allocated launch_args.
324   for (unsigned i = 0; i < Args.size(); ++i) {
325     llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
326     llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
327     CGF.Builder.CreateDefaultAlignedStore(
328         VoidVarPtr,
329         CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
330   }
331 
332   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
333 
334   // Lookup cudaLaunchKernel/hipLaunchKernel function.
335   // HIP kernel launching API name depends on -fgpu-default-stream option. For
336   // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
337   // it is hipLaunchKernel_spt.
338   // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
339   //                              void **args, size_t sharedMem,
340   //                              cudaStream_t stream);
341   // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
342   //                                  dim3 blockDim, void **args,
343   //                                  size_t sharedMem, hipStream_t stream);
344   TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
345   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
346   std::string KernelLaunchAPI = "LaunchKernel";
347   if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream ==
348                                    LangOptions::GPUDefaultStreamKind::PerThread)
349     KernelLaunchAPI = KernelLaunchAPI + "_spt";
350   auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
351   IdentifierInfo &cudaLaunchKernelII =
352       CGM.getContext().Idents.get(LaunchKernelName);
353   FunctionDecl *cudaLaunchKernelFD = nullptr;
354   for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
355     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
356       cudaLaunchKernelFD = FD;
357   }
358 
359   if (cudaLaunchKernelFD == nullptr) {
360     CGM.Error(CGF.CurFuncDecl->getLocation(),
361               "Can't find declaration for " + LaunchKernelName);
362     return;
363   }
364   // Create temporary dim3 grid_dim, block_dim.
365   ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
366   QualType Dim3Ty = GridDimParam->getType();
367   Address GridDim =
368       CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
369   Address BlockDim =
370       CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
371   Address ShmemSize =
372       CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
373   Address Stream =
374       CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
375   llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
376       llvm::FunctionType::get(IntTy,
377                               {/*gridDim=*/GridDim.getType(),
378                                /*blockDim=*/BlockDim.getType(),
379                                /*ShmemSize=*/ShmemSize.getType(),
380                                /*Stream=*/Stream.getType()},
381                               /*isVarArg=*/false),
382       addUnderscoredPrefixToName("PopCallConfiguration"));
383 
384   CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
385                               {GridDim.getPointer(), BlockDim.getPointer(),
386                                ShmemSize.getPointer(), Stream.getPointer()});
387 
388   // Emit the call to cudaLaunch
389   llvm::Value *Kernel =
390       CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
391   CallArgList LaunchKernelArgs;
392   LaunchKernelArgs.add(RValue::get(Kernel),
393                        cudaLaunchKernelFD->getParamDecl(0)->getType());
394   LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
395   LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
396   LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
397                        cudaLaunchKernelFD->getParamDecl(3)->getType());
398   LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
399                        cudaLaunchKernelFD->getParamDecl(4)->getType());
400   LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
401                        cudaLaunchKernelFD->getParamDecl(5)->getType());
402 
403   QualType QT = cudaLaunchKernelFD->getType();
404   QualType CQT = QT.getCanonicalType();
405   llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
406   llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
407 
408   const CGFunctionInfo &FI =
409       CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
410   llvm::FunctionCallee cudaLaunchKernelFn =
411       CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
412   CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
413                LaunchKernelArgs);
414   CGF.EmitBranch(EndBlock);
415 
416   CGF.EmitBlock(EndBlock);
417 }
418 
419 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
420                                                FunctionArgList &Args) {
421   // Emit a call to cudaSetupArgument for each arg in Args.
422   llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
423   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
424   CharUnits Offset = CharUnits::Zero();
425   for (const VarDecl *A : Args) {
426     auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
427     Offset = Offset.alignTo(TInfo.Align);
428     llvm::Value *Args[] = {
429         CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
430                                       VoidPtrTy),
431         llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
432         llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
433     };
434     llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
435     llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
436     llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
437     llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
438     CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
439     CGF.EmitBlock(NextBlock);
440     Offset += TInfo.Width;
441   }
442 
443   // Emit the call to cudaLaunch
444   llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
445   llvm::Value *Arg =
446       CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
447   CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
448   CGF.EmitBranch(EndBlock);
449 
450   CGF.EmitBlock(EndBlock);
451 }
452 
453 // Replace the original variable Var with the address loaded from variable
454 // ManagedVar populated by HIP runtime.
455 static void replaceManagedVar(llvm::GlobalVariable *Var,
456                               llvm::GlobalVariable *ManagedVar) {
457   SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
458   for (auto &&VarUse : Var->uses()) {
459     WorkList.push_back({VarUse.getUser()});
460   }
461   while (!WorkList.empty()) {
462     auto &&WorkItem = WorkList.pop_back_val();
463     auto *U = WorkItem.back();
464     if (isa<llvm::ConstantExpr>(U)) {
465       for (auto &&UU : U->uses()) {
466         WorkItem.push_back(UU.getUser());
467         WorkList.push_back(WorkItem);
468         WorkItem.pop_back();
469       }
470       continue;
471     }
472     if (auto *I = dyn_cast<llvm::Instruction>(U)) {
473       llvm::Value *OldV = Var;
474       llvm::Instruction *NewV =
475           new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
476                              llvm::Align(Var->getAlignment()), I);
477       WorkItem.pop_back();
478       // Replace constant expressions directly or indirectly using the managed
479       // variable with instructions.
480       for (auto &&Op : WorkItem) {
481         auto *CE = cast<llvm::ConstantExpr>(Op);
482         auto *NewInst = CE->getAsInstruction(I);
483         NewInst->replaceUsesOfWith(OldV, NewV);
484         OldV = CE;
485         NewV = NewInst;
486       }
487       I->replaceUsesOfWith(OldV, NewV);
488     } else {
489       llvm_unreachable("Invalid use of managed variable");
490     }
491   }
492 }
493 
494 /// Creates a function that sets up state on the host side for CUDA objects that
495 /// have a presence on both the host and device sides. Specifically, registers
496 /// the host side of kernel functions and device global variables with the CUDA
497 /// runtime.
498 /// \code
499 /// void __cuda_register_globals(void** GpuBinaryHandle) {
500 ///    __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
501 ///    ...
502 ///    __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
503 ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
504 ///    ...
505 ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
506 /// }
507 /// \endcode
508 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
509   // No need to register anything
510   if (EmittedKernels.empty() && DeviceVars.empty())
511     return nullptr;
512 
513   llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
514       getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
515       addUnderscoredPrefixToName("_register_globals"), &TheModule);
516   llvm::BasicBlock *EntryBB =
517       llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
518   CGBuilderTy Builder(CGM, Context);
519   Builder.SetInsertPoint(EntryBB);
520 
521   // void __cudaRegisterFunction(void **, const char *, char *, const char *,
522   //                             int, uint3*, uint3*, dim3*, dim3*, int*)
523   llvm::Type *RegisterFuncParams[] = {
524       VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
525       VoidPtrTy,    VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
526   llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
527       llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
528       addUnderscoredPrefixToName("RegisterFunction"));
529 
530   // Extract GpuBinaryHandle passed as the first argument passed to
531   // __cuda_register_globals() and generate __cudaRegisterFunction() call for
532   // each emitted kernel.
533   llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
534   for (auto &&I : EmittedKernels) {
535     llvm::Constant *KernelName =
536         makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
537     llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
538     llvm::Value *Args[] = {
539         &GpuBinaryHandlePtr,
540         Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
541         KernelName,
542         KernelName,
543         llvm::ConstantInt::get(IntTy, -1),
544         NullPtr,
545         NullPtr,
546         NullPtr,
547         NullPtr,
548         llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
549     Builder.CreateCall(RegisterFunc, Args);
550   }
551 
552   llvm::Type *VarSizeTy = IntTy;
553   // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
554   if (CGM.getLangOpts().HIP ||
555       ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
556     VarSizeTy = SizeTy;
557 
558   // void __cudaRegisterVar(void **, char *, char *, const char *,
559   //                        int, int, int, int)
560   llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
561                                      CharPtrTy,    IntTy,     VarSizeTy,
562                                      IntTy,        IntTy};
563   llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
564       llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
565       addUnderscoredPrefixToName("RegisterVar"));
566   // void __hipRegisterManagedVar(void **, char *, char *, const char *,
567   //                              size_t, unsigned)
568   llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
569                                             CharPtrTy,    VarSizeTy, IntTy};
570   llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
571       llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
572       addUnderscoredPrefixToName("RegisterManagedVar"));
573   // void __cudaRegisterSurface(void **, const struct surfaceReference *,
574   //                            const void **, const char *, int, int);
575   llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
576       llvm::FunctionType::get(
577           VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
578           false),
579       addUnderscoredPrefixToName("RegisterSurface"));
580   // void __cudaRegisterTexture(void **, const struct textureReference *,
581   //                            const void **, const char *, int, int, int)
582   llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
583       llvm::FunctionType::get(
584           VoidTy,
585           {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
586           false),
587       addUnderscoredPrefixToName("RegisterTexture"));
588   for (auto &&Info : DeviceVars) {
589     llvm::GlobalVariable *Var = Info.Var;
590     assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
591            "External variables should not show up here, except HIP managed "
592            "variables");
593     llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
594     switch (Info.Flags.getKind()) {
595     case DeviceVarFlags::Variable: {
596       uint64_t VarSize =
597           CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
598       if (Info.Flags.isManaged()) {
599         auto *ManagedVar = new llvm::GlobalVariable(
600             CGM.getModule(), Var->getType(),
601             /*isConstant=*/false, Var->getLinkage(),
602             /*Init=*/Var->isDeclaration()
603                 ? nullptr
604                 : llvm::ConstantPointerNull::get(Var->getType()),
605             /*Name=*/"", /*InsertBefore=*/nullptr,
606             llvm::GlobalVariable::NotThreadLocal);
607         ManagedVar->setDSOLocal(Var->isDSOLocal());
608         ManagedVar->setVisibility(Var->getVisibility());
609         ManagedVar->setExternallyInitialized(true);
610         ManagedVar->takeName(Var);
611         Var->setName(Twine(ManagedVar->getName() + ".managed"));
612         replaceManagedVar(Var, ManagedVar);
613         llvm::Value *Args[] = {
614             &GpuBinaryHandlePtr,
615             Builder.CreateBitCast(ManagedVar, VoidPtrTy),
616             Builder.CreateBitCast(Var, VoidPtrTy),
617             VarName,
618             llvm::ConstantInt::get(VarSizeTy, VarSize),
619             llvm::ConstantInt::get(IntTy, Var->getAlignment())};
620         if (!Var->isDeclaration())
621           Builder.CreateCall(RegisterManagedVar, Args);
622       } else {
623         llvm::Value *Args[] = {
624             &GpuBinaryHandlePtr,
625             Builder.CreateBitCast(Var, VoidPtrTy),
626             VarName,
627             VarName,
628             llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
629             llvm::ConstantInt::get(VarSizeTy, VarSize),
630             llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
631             llvm::ConstantInt::get(IntTy, 0)};
632         Builder.CreateCall(RegisterVar, Args);
633       }
634       break;
635     }
636     case DeviceVarFlags::Surface:
637       Builder.CreateCall(
638           RegisterSurf,
639           {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
640            VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
641            llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
642       break;
643     case DeviceVarFlags::Texture:
644       Builder.CreateCall(
645           RegisterTex,
646           {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
647            VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
648            llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
649            llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
650       break;
651     }
652   }
653 
654   Builder.CreateRetVoid();
655   return RegisterKernelsFunc;
656 }
657 
658 /// Creates a global constructor function for the module:
659 ///
660 /// For CUDA:
661 /// \code
662 /// void __cuda_module_ctor() {
663 ///     Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
664 ///     __cuda_register_globals(Handle);
665 /// }
666 /// \endcode
667 ///
668 /// For HIP:
669 /// \code
670 /// void __hip_module_ctor() {
671 ///     if (__hip_gpubin_handle == 0) {
672 ///         __hip_gpubin_handle  = __hipRegisterFatBinary(GpuBinaryBlob);
673 ///         __hip_register_globals(__hip_gpubin_handle);
674 ///     }
675 /// }
676 /// \endcode
677 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
678   bool IsHIP = CGM.getLangOpts().HIP;
679   bool IsCUDA = CGM.getLangOpts().CUDA;
680   // No need to generate ctors/dtors if there is no GPU binary.
681   StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
682   if (CudaGpuBinaryFileName.empty() && !IsHIP)
683     return nullptr;
684   if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
685       DeviceVars.empty())
686     return nullptr;
687 
688   // void __{cuda|hip}_register_globals(void* handle);
689   llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
690   // We always need a function to pass in as callback. Create a dummy
691   // implementation if we don't need to register anything.
692   if (RelocatableDeviceCode && !RegisterGlobalsFunc)
693     RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
694 
695   // void ** __{cuda|hip}RegisterFatBinary(void *);
696   llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
697       llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
698       addUnderscoredPrefixToName("RegisterFatBinary"));
699   // struct { int magic, int version, void * gpu_binary, void * dont_care };
700   llvm::StructType *FatbinWrapperTy =
701       llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
702 
703   // Register GPU binary with the CUDA runtime, store returned handle in a
704   // global variable and save a reference in GpuBinaryHandle to be cleaned up
705   // in destructor on exit. Then associate all known kernels with the GPU binary
706   // handle so CUDA runtime can figure out what to call on the GPU side.
707   std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
708   if (!CudaGpuBinaryFileName.empty()) {
709     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
710         llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
711     if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
712       CGM.getDiags().Report(diag::err_cannot_open_file)
713           << CudaGpuBinaryFileName << EC.message();
714       return nullptr;
715     }
716     CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
717   }
718 
719   llvm::Function *ModuleCtorFunc = llvm::Function::Create(
720       llvm::FunctionType::get(VoidTy, false),
721       llvm::GlobalValue::InternalLinkage,
722       addUnderscoredPrefixToName("_module_ctor"), &TheModule);
723   llvm::BasicBlock *CtorEntryBB =
724       llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
725   CGBuilderTy CtorBuilder(CGM, Context);
726 
727   CtorBuilder.SetInsertPoint(CtorEntryBB);
728 
729   const char *FatbinConstantName;
730   const char *FatbinSectionName;
731   const char *ModuleIDSectionName;
732   StringRef ModuleIDPrefix;
733   llvm::Constant *FatBinStr;
734   unsigned FatMagic;
735   if (IsHIP) {
736     FatbinConstantName = ".hip_fatbin";
737     FatbinSectionName = ".hipFatBinSegment";
738 
739     ModuleIDSectionName = "__hip_module_id";
740     ModuleIDPrefix = "__hip_";
741 
742     if (CudaGpuBinary) {
743       // If fatbin is available from early finalization, create a string
744       // literal containing the fat binary loaded from the given file.
745       const unsigned HIPCodeObjectAlign = 4096;
746       FatBinStr =
747           makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
748                              FatbinConstantName, HIPCodeObjectAlign);
749     } else {
750       // If fatbin is not available, create an external symbol
751       // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
752       // to contain the fat binary but will be populated somewhere else,
753       // e.g. by lld through link script.
754       FatBinStr = new llvm::GlobalVariable(
755         CGM.getModule(), CGM.Int8Ty,
756         /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
757         "__hip_fatbin", nullptr,
758         llvm::GlobalVariable::NotThreadLocal);
759       cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
760     }
761 
762     FatMagic = HIPFatMagic;
763   } else {
764     if (RelocatableDeviceCode)
765       FatbinConstantName = CGM.getTriple().isMacOSX()
766                                ? "__NV_CUDA,__nv_relfatbin"
767                                : "__nv_relfatbin";
768     else
769       FatbinConstantName =
770           CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
771     // NVIDIA's cuobjdump looks for fatbins in this section.
772     FatbinSectionName =
773         CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
774 
775     ModuleIDSectionName = CGM.getTriple().isMacOSX()
776                               ? "__NV_CUDA,__nv_module_id"
777                               : "__nv_module_id";
778     ModuleIDPrefix = "__nv_";
779 
780     // For CUDA, create a string literal containing the fat binary loaded from
781     // the given file.
782     FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
783                                    FatbinConstantName, 8);
784     FatMagic = CudaFatMagic;
785   }
786 
787   // Create initialized wrapper structure that points to the loaded GPU binary
788   ConstantInitBuilder Builder(CGM);
789   auto Values = Builder.beginStruct(FatbinWrapperTy);
790   // Fatbin wrapper magic.
791   Values.addInt(IntTy, FatMagic);
792   // Fatbin version.
793   Values.addInt(IntTy, 1);
794   // Data.
795   Values.add(FatBinStr);
796   // Unused in fatbin v1.
797   Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
798   llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
799       addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
800       /*constant*/ true);
801   FatbinWrapper->setSection(FatbinSectionName);
802 
803   // There is only one HIP fat binary per linked module, however there are
804   // multiple constructor functions. Make sure the fat binary is registered
805   // only once. The constructor functions are executed by the dynamic loader
806   // before the program gains control. The dynamic loader cannot execute the
807   // constructor functions concurrently since doing that would not guarantee
808   // thread safety of the loaded program. Therefore we can assume sequential
809   // execution of constructor functions here.
810   if (IsHIP) {
811     auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
812         llvm::GlobalValue::LinkOnceAnyLinkage;
813     llvm::BasicBlock *IfBlock =
814         llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
815     llvm::BasicBlock *ExitBlock =
816         llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
817     // The name, size, and initialization pattern of this variable is part
818     // of HIP ABI.
819     GpuBinaryHandle = new llvm::GlobalVariable(
820         TheModule, VoidPtrPtrTy, /*isConstant=*/false,
821         Linkage,
822         /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
823         "__hip_gpubin_handle");
824     if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
825       GpuBinaryHandle->setComdat(
826           CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
827     GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
828     // Prevent the weak symbol in different shared libraries being merged.
829     if (Linkage != llvm::GlobalValue::InternalLinkage)
830       GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
831     Address GpuBinaryAddr(
832         GpuBinaryHandle, VoidPtrPtrTy,
833         CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
834     {
835       auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
836       llvm::Constant *Zero =
837           llvm::Constant::getNullValue(HandleValue->getType());
838       llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
839       CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
840     }
841     {
842       CtorBuilder.SetInsertPoint(IfBlock);
843       // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
844       llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
845           RegisterFatbinFunc,
846           CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
847       CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
848       CtorBuilder.CreateBr(ExitBlock);
849     }
850     {
851       CtorBuilder.SetInsertPoint(ExitBlock);
852       // Call __hip_register_globals(GpuBinaryHandle);
853       if (RegisterGlobalsFunc) {
854         auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
855         CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
856       }
857     }
858   } else if (!RelocatableDeviceCode) {
859     // Register binary with CUDA runtime. This is substantially different in
860     // default mode vs. separate compilation!
861     // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
862     llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
863         RegisterFatbinFunc,
864         CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
865     GpuBinaryHandle = new llvm::GlobalVariable(
866         TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
867         llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
868     GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
869     CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
870                                    CGM.getPointerAlign());
871 
872     // Call __cuda_register_globals(GpuBinaryHandle);
873     if (RegisterGlobalsFunc)
874       CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
875 
876     // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
877     if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
878                            CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
879       // void __cudaRegisterFatBinaryEnd(void **);
880       llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
881           llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
882           "__cudaRegisterFatBinaryEnd");
883       CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
884     }
885   } else {
886     // Generate a unique module ID.
887     SmallString<64> ModuleID;
888     llvm::raw_svector_ostream OS(ModuleID);
889     OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
890     llvm::Constant *ModuleIDConstant = makeConstantString(
891         std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
892 
893     // Create an alias for the FatbinWrapper that nvcc will look for.
894     llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
895                               Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
896 
897     // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
898     // void *, void (*)(void **))
899     SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
900     RegisterLinkedBinaryName += ModuleID;
901     llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
902         getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
903 
904     assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
905     llvm::Value *Args[] = {RegisterGlobalsFunc,
906                            CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
907                            ModuleIDConstant,
908                            makeDummyFunction(getCallbackFnTy())};
909     CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
910   }
911 
912   // Create destructor and register it with atexit() the way NVCC does it. Doing
913   // it during regular destructor phase worked in CUDA before 9.2 but results in
914   // double-free in 9.2.
915   if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
916     // extern "C" int atexit(void (*f)(void));
917     llvm::FunctionType *AtExitTy =
918         llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
919     llvm::FunctionCallee AtExitFunc =
920         CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
921                                   /*Local=*/true);
922     CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
923   }
924 
925   CtorBuilder.CreateRetVoid();
926   return ModuleCtorFunc;
927 }
928 
929 /// Creates a global destructor function that unregisters the GPU code blob
930 /// registered by constructor.
931 ///
932 /// For CUDA:
933 /// \code
934 /// void __cuda_module_dtor() {
935 ///     __cudaUnregisterFatBinary(Handle);
936 /// }
937 /// \endcode
938 ///
939 /// For HIP:
940 /// \code
941 /// void __hip_module_dtor() {
942 ///     if (__hip_gpubin_handle) {
943 ///         __hipUnregisterFatBinary(__hip_gpubin_handle);
944 ///         __hip_gpubin_handle = 0;
945 ///     }
946 /// }
947 /// \endcode
948 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
949   // No need for destructor if we don't have a handle to unregister.
950   if (!GpuBinaryHandle)
951     return nullptr;
952 
953   // void __cudaUnregisterFatBinary(void ** handle);
954   llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
955       llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
956       addUnderscoredPrefixToName("UnregisterFatBinary"));
957 
958   llvm::Function *ModuleDtorFunc = llvm::Function::Create(
959       llvm::FunctionType::get(VoidTy, false),
960       llvm::GlobalValue::InternalLinkage,
961       addUnderscoredPrefixToName("_module_dtor"), &TheModule);
962 
963   llvm::BasicBlock *DtorEntryBB =
964       llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
965   CGBuilderTy DtorBuilder(CGM, Context);
966   DtorBuilder.SetInsertPoint(DtorEntryBB);
967 
968   Address GpuBinaryAddr(
969       GpuBinaryHandle, GpuBinaryHandle->getValueType(),
970       CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
971   auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
972   // There is only one HIP fat binary per linked module, however there are
973   // multiple destructor functions. Make sure the fat binary is unregistered
974   // only once.
975   if (CGM.getLangOpts().HIP) {
976     llvm::BasicBlock *IfBlock =
977         llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
978     llvm::BasicBlock *ExitBlock =
979         llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
980     llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
981     llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
982     DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
983 
984     DtorBuilder.SetInsertPoint(IfBlock);
985     DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
986     DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
987     DtorBuilder.CreateBr(ExitBlock);
988 
989     DtorBuilder.SetInsertPoint(ExitBlock);
990   } else {
991     DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
992   }
993   DtorBuilder.CreateRetVoid();
994   return ModuleDtorFunc;
995 }
996 
997 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
998   return new CGNVCUDARuntime(CGM);
999 }
1000 
1001 void CGNVCUDARuntime::internalizeDeviceSideVar(
1002     const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
1003   // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1004   // global variables become internal definitions. These have to be internal in
1005   // order to prevent name conflicts with global host variables with the same
1006   // name in a different TUs.
1007   //
1008   // For -fgpu-rdc, the shadow variables should not be internalized because
1009   // they may be accessed by different TU.
1010   if (CGM.getLangOpts().GPURelocatableDeviceCode)
1011     return;
1012 
1013   // __shared__ variables are odd. Shadows do get created, but
1014   // they are not registered with the CUDA runtime, so they
1015   // can't really be used to access their device-side
1016   // counterparts. It's not clear yet whether it's nvcc's bug or
1017   // a feature, but we've got to do the same for compatibility.
1018   if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1019       D->hasAttr<CUDASharedAttr>() ||
1020       D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1021       D->getType()->isCUDADeviceBuiltinTextureType()) {
1022     Linkage = llvm::GlobalValue::InternalLinkage;
1023   }
1024 }
1025 
1026 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1027                                             llvm::GlobalVariable &GV) {
1028   if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1029     // Shadow variables and their properties must be registered with CUDA
1030     // runtime. Skip Extern global variables, which will be registered in
1031     // the TU where they are defined.
1032     //
1033     // Don't register a C++17 inline variable. The local symbol can be
1034     // discarded and referencing a discarded local symbol from outside the
1035     // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1036     //
1037     // HIP managed variables need to be always recorded in device and host
1038     // compilations for transformation.
1039     //
1040     // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1041     // added to llvm.compiler-used, therefore they are safe to be registered.
1042     if ((!D->hasExternalStorage() && !D->isInline()) ||
1043         CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
1044         D->hasAttr<HIPManagedAttr>()) {
1045       registerDeviceVar(D, GV, !D->hasDefinition(),
1046                         D->hasAttr<CUDAConstantAttr>());
1047     }
1048   } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1049              D->getType()->isCUDADeviceBuiltinTextureType()) {
1050     // Builtin surfaces and textures and their template arguments are
1051     // also registered with CUDA runtime.
1052     const auto *TD = cast<ClassTemplateSpecializationDecl>(
1053         D->getType()->castAs<RecordType>()->getDecl());
1054     const TemplateArgumentList &Args = TD->getTemplateArgs();
1055     if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1056       assert(Args.size() == 2 &&
1057              "Unexpected number of template arguments of CUDA device "
1058              "builtin surface type.");
1059       auto SurfType = Args[1].getAsIntegral();
1060       if (!D->hasExternalStorage())
1061         registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1062     } else {
1063       assert(Args.size() == 3 &&
1064              "Unexpected number of template arguments of CUDA device "
1065              "builtin texture type.");
1066       auto TexType = Args[1].getAsIntegral();
1067       auto Normalized = Args[2].getAsIntegral();
1068       if (!D->hasExternalStorage())
1069         registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1070                           Normalized.getZExtValue());
1071     }
1072   }
1073 }
1074 
1075 // Transform managed variables to pointers to managed variables in device code.
1076 // Each use of the original managed variable is replaced by a load from the
1077 // transformed managed variable. The transformed managed variable contains
1078 // the address of managed memory which will be allocated by the runtime.
1079 void CGNVCUDARuntime::transformManagedVars() {
1080   for (auto &&Info : DeviceVars) {
1081     llvm::GlobalVariable *Var = Info.Var;
1082     if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1083         Info.Flags.isManaged()) {
1084       auto *ManagedVar = new llvm::GlobalVariable(
1085           CGM.getModule(), Var->getType(),
1086           /*isConstant=*/false, Var->getLinkage(),
1087           /*Init=*/Var->isDeclaration()
1088               ? nullptr
1089               : llvm::ConstantPointerNull::get(Var->getType()),
1090           /*Name=*/"", /*InsertBefore=*/nullptr,
1091           llvm::GlobalVariable::NotThreadLocal,
1092           CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1093       ManagedVar->setDSOLocal(Var->isDSOLocal());
1094       ManagedVar->setVisibility(Var->getVisibility());
1095       ManagedVar->setExternallyInitialized(true);
1096       replaceManagedVar(Var, ManagedVar);
1097       ManagedVar->takeName(Var);
1098       Var->setName(Twine(ManagedVar->getName()) + ".managed");
1099       // Keep managed variables even if they are not used in device code since
1100       // they need to be allocated by the runtime.
1101       if (!Var->isDeclaration()) {
1102         assert(!ManagedVar->isDeclaration());
1103         CGM.addCompilerUsedGlobal(Var);
1104         CGM.addCompilerUsedGlobal(ManagedVar);
1105       }
1106     }
1107   }
1108 }
1109 
1110 // Returns module constructor to be added.
1111 llvm::Function *CGNVCUDARuntime::finalizeModule() {
1112   if (CGM.getLangOpts().CUDAIsDevice) {
1113     transformManagedVars();
1114 
1115     // Mark ODR-used device variables as compiler used to prevent it from being
1116     // eliminated by optimization. This is necessary for device variables
1117     // ODR-used by host functions. Sema correctly marks them as ODR-used no
1118     // matter whether they are ODR-used by device or host functions.
1119     //
1120     // We do not need to do this if the variable has used attribute since it
1121     // has already been added.
1122     //
1123     // Static device variables have been externalized at this point, therefore
1124     // variables with LLVM private or internal linkage need not be added.
1125     for (auto &&Info : DeviceVars) {
1126       auto Kind = Info.Flags.getKind();
1127       if (!Info.Var->isDeclaration() &&
1128           !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
1129           (Kind == DeviceVarFlags::Variable ||
1130            Kind == DeviceVarFlags::Surface ||
1131            Kind == DeviceVarFlags::Texture) &&
1132           Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
1133         CGM.addCompilerUsedGlobal(Info.Var);
1134       }
1135     }
1136     return nullptr;
1137   }
1138   return makeModuleCtorFunction();
1139 }
1140 
1141 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1142                                                     GlobalDecl GD) {
1143   auto Loc = KernelHandles.find(F);
1144   if (Loc != KernelHandles.end())
1145     return Loc->second;
1146 
1147   if (!CGM.getLangOpts().HIP) {
1148     KernelHandles[F] = F;
1149     KernelStubs[F] = F;
1150     return F;
1151   }
1152 
1153   auto *Var = new llvm::GlobalVariable(
1154       TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1155       /*Initializer=*/nullptr,
1156       CGM.getMangledName(
1157           GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1158   Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1159   Var->setDSOLocal(F->isDSOLocal());
1160   Var->setVisibility(F->getVisibility());
1161   CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
1162   KernelHandles[F] = Var;
1163   KernelStubs[Var] = F;
1164   return Var;
1165 }
1166