1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a device stub function to a symbol for identifying kernel in host code. 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 73 llvm::FunctionCallee getSetupArgumentFn() const; 74 llvm::FunctionCallee getLaunchFn() const; 75 76 llvm::FunctionType *getRegisterGlobalsFnTy() const; 77 llvm::FunctionType *getCallbackFnTy() const; 78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 79 std::string addPrefixToName(StringRef FuncName) const; 80 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 81 82 /// Creates a function to register all kernel stubs generated in this module. 83 llvm::Function *makeRegisterGlobalsFn(); 84 85 /// Helper function that generates a constant string and returns a pointer to 86 /// the start of the string. The result of this function can be used anywhere 87 /// where the C code specifies const char*. 88 llvm::Constant *makeConstantString(const std::string &Str, 89 const std::string &Name = "", 90 const std::string &SectionName = "", 91 unsigned Alignment = 0) { 92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 93 llvm::ConstantInt::get(SizeTy, 0)}; 94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 95 llvm::GlobalVariable *GV = 96 cast<llvm::GlobalVariable>(ConstStr.getPointer()); 97 if (!SectionName.empty()) { 98 GV->setSection(SectionName); 99 // Mark the address as used which make sure that this section isn't 100 // merged and we will really have it in the object file. 101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 102 } 103 if (Alignment) 104 GV->setAlignment(llvm::Align(Alignment)); 105 106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 107 ConstStr.getPointer(), Zeros); 108 } 109 110 /// Helper function that generates an empty dummy function returning void. 111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 112 assert(FnTy->getReturnType()->isVoidTy() && 113 "Can only generate dummy functions returning void!"); 114 llvm::Function *DummyFunc = llvm::Function::Create( 115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 116 117 llvm::BasicBlock *DummyBlock = 118 llvm::BasicBlock::Create(Context, "", DummyFunc); 119 CGBuilderTy FuncBuilder(CGM, Context); 120 FuncBuilder.SetInsertPoint(DummyBlock); 121 FuncBuilder.CreateRetVoid(); 122 123 return DummyFunc; 124 } 125 126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 128 std::string getDeviceSideName(const NamedDecl *ND) override; 129 130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 131 bool Extern, bool Constant) { 132 DeviceVars.push_back({&Var, 133 VD, 134 {DeviceVarFlags::Variable, Extern, Constant, 135 VD->hasAttr<HIPManagedAttr>(), 136 /*Normalized*/ false, 0}}); 137 } 138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 139 bool Extern, int Type) { 140 DeviceVars.push_back({&Var, 141 VD, 142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 143 /*Managed*/ false, 144 /*Normalized*/ false, Type}}); 145 } 146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 147 bool Extern, int Type, bool Normalized) { 148 DeviceVars.push_back({&Var, 149 VD, 150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 151 /*Managed*/ false, Normalized, Type}}); 152 } 153 154 /// Creates module constructor function 155 llvm::Function *makeModuleCtorFunction(); 156 /// Creates module destructor function 157 llvm::Function *makeModuleDtorFunction(); 158 /// Transform managed variables for device compilation. 159 void transformManagedVars(); 160 /// Create offloading entries to register globals in RDC mode. 161 void createOffloadingEntries(); 162 163 public: 164 CGNVCUDARuntime(CodeGenModule &CGM); 165 166 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 167 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 168 auto Loc = KernelStubs.find(Handle); 169 assert(Loc != KernelStubs.end()); 170 return Loc->second; 171 } 172 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 173 void handleVarRegistration(const VarDecl *VD, 174 llvm::GlobalVariable &Var) override; 175 void 176 internalizeDeviceSideVar(const VarDecl *D, 177 llvm::GlobalValue::LinkageTypes &Linkage) override; 178 179 llvm::Function *finalizeModule() override; 180 }; 181 182 } // end anonymous namespace 183 184 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 185 if (CGM.getLangOpts().HIP) 186 return ((Twine("hip") + Twine(FuncName)).str()); 187 return ((Twine("cuda") + Twine(FuncName)).str()); 188 } 189 std::string 190 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 191 if (CGM.getLangOpts().HIP) 192 return ((Twine("__hip") + Twine(FuncName)).str()); 193 return ((Twine("__cuda") + Twine(FuncName)).str()); 194 } 195 196 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 197 // If the host and device have different C++ ABIs, mark it as the device 198 // mangle context so that the mangling needs to retrieve the additional 199 // device lambda mangling number instead of the regular host one. 200 if (CGM.getContext().getAuxTargetInfo() && 201 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 202 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 203 return std::unique_ptr<MangleContext>( 204 CGM.getContext().createDeviceMangleContext( 205 *CGM.getContext().getAuxTargetInfo())); 206 } 207 208 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 209 CGM.getContext().getAuxTargetInfo())); 210 } 211 212 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 213 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 214 TheModule(CGM.getModule()), 215 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode || 216 CGM.getLangOpts().OffloadingNewDriver), 217 DeviceMC(InitDeviceMC(CGM)) { 218 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 219 ASTContext &Ctx = CGM.getContext(); 220 221 IntTy = CGM.IntTy; 222 SizeTy = CGM.SizeTy; 223 VoidTy = CGM.VoidTy; 224 225 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 226 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 227 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 228 } 229 230 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 231 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 232 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 233 return CGM.CreateRuntimeFunction( 234 llvm::FunctionType::get(IntTy, Params, false), 235 addPrefixToName("SetupArgument")); 236 } 237 238 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 239 if (CGM.getLangOpts().HIP) { 240 // hipError_t hipLaunchByPtr(char *); 241 return CGM.CreateRuntimeFunction( 242 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 243 } 244 // cudaError_t cudaLaunch(char *); 245 return CGM.CreateRuntimeFunction( 246 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 247 } 248 249 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 250 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 251 } 252 253 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 254 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 255 } 256 257 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 258 auto *CallbackFnTy = getCallbackFnTy(); 259 auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 260 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 261 VoidPtrTy, CallbackFnTy->getPointerTo()}; 262 return llvm::FunctionType::get(VoidTy, Params, false); 263 } 264 265 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 266 GlobalDecl GD; 267 // D could be either a kernel or a variable. 268 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 269 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 270 else 271 GD = GlobalDecl(ND); 272 std::string DeviceSideName; 273 MangleContext *MC; 274 if (CGM.getLangOpts().CUDAIsDevice) 275 MC = &CGM.getCXXABI().getMangleContext(); 276 else 277 MC = DeviceMC.get(); 278 if (MC->shouldMangleDeclName(ND)) { 279 SmallString<256> Buffer; 280 llvm::raw_svector_ostream Out(Buffer); 281 MC->mangleName(GD, Out); 282 DeviceSideName = std::string(Out.str()); 283 } else 284 DeviceSideName = std::string(ND->getIdentifier()->getName()); 285 286 // Make unique name for device side static file-scope variable for HIP. 287 if (CGM.getContext().shouldExternalize(ND) && 288 CGM.getLangOpts().GPURelocatableDeviceCode) { 289 SmallString<256> Buffer; 290 llvm::raw_svector_ostream Out(Buffer); 291 Out << DeviceSideName; 292 CGM.printPostfixForExternalizedDecl(Out, ND); 293 DeviceSideName = std::string(Out.str()); 294 } 295 return DeviceSideName; 296 } 297 298 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 299 FunctionArgList &Args) { 300 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 301 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { 302 GV->setLinkage(CGF.CurFn->getLinkage()); 303 GV->setInitializer(CGF.CurFn); 304 } 305 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 306 CudaFeature::CUDA_USES_NEW_LAUNCH) || 307 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 308 emitDeviceStubBodyNew(CGF, Args); 309 else 310 emitDeviceStubBodyLegacy(CGF, Args); 311 } 312 313 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 314 // array and kernels are launched using cudaLaunchKernel(). 315 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 316 FunctionArgList &Args) { 317 // Build the shadow stack entry at the very start of the function. 318 319 // Calculate amount of space we will need for all arguments. If we have no 320 // args, allocate a single pointer so we still have a valid pointer to the 321 // argument array that we can pass to runtime, even if it will be unused. 322 Address KernelArgs = CGF.CreateTempAlloca( 323 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 324 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 325 // Store pointers to the arguments in a locally allocated launch_args. 326 for (unsigned i = 0; i < Args.size(); ++i) { 327 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 328 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 329 CGF.Builder.CreateDefaultAlignedStore( 330 VoidVarPtr, 331 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); 332 } 333 334 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 335 336 // Lookup cudaLaunchKernel/hipLaunchKernel function. 337 // HIP kernel launching API name depends on -fgpu-default-stream option. For 338 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread', 339 // it is hipLaunchKernel_spt. 340 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 341 // void **args, size_t sharedMem, 342 // cudaStream_t stream); 343 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim, 344 // dim3 blockDim, void **args, 345 // size_t sharedMem, hipStream_t stream); 346 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 347 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 348 std::string KernelLaunchAPI = "LaunchKernel"; 349 if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream == 350 LangOptions::GPUDefaultStreamKind::PerThread) 351 KernelLaunchAPI = KernelLaunchAPI + "_spt"; 352 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI); 353 IdentifierInfo &cudaLaunchKernelII = 354 CGM.getContext().Idents.get(LaunchKernelName); 355 FunctionDecl *cudaLaunchKernelFD = nullptr; 356 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 357 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 358 cudaLaunchKernelFD = FD; 359 } 360 361 if (cudaLaunchKernelFD == nullptr) { 362 CGM.Error(CGF.CurFuncDecl->getLocation(), 363 "Can't find declaration for " + LaunchKernelName); 364 return; 365 } 366 // Create temporary dim3 grid_dim, block_dim. 367 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 368 QualType Dim3Ty = GridDimParam->getType(); 369 Address GridDim = 370 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 371 Address BlockDim = 372 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 373 Address ShmemSize = 374 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 375 Address Stream = 376 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 377 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 378 llvm::FunctionType::get(IntTy, 379 {/*gridDim=*/GridDim.getType(), 380 /*blockDim=*/BlockDim.getType(), 381 /*ShmemSize=*/ShmemSize.getType(), 382 /*Stream=*/Stream.getType()}, 383 /*isVarArg=*/false), 384 addUnderscoredPrefixToName("PopCallConfiguration")); 385 386 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 387 {GridDim.getPointer(), BlockDim.getPointer(), 388 ShmemSize.getPointer(), Stream.getPointer()}); 389 390 // Emit the call to cudaLaunch 391 llvm::Value *Kernel = 392 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); 393 CallArgList LaunchKernelArgs; 394 LaunchKernelArgs.add(RValue::get(Kernel), 395 cudaLaunchKernelFD->getParamDecl(0)->getType()); 396 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 397 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 398 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 399 cudaLaunchKernelFD->getParamDecl(3)->getType()); 400 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 401 cudaLaunchKernelFD->getParamDecl(4)->getType()); 402 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 403 cudaLaunchKernelFD->getParamDecl(5)->getType()); 404 405 QualType QT = cudaLaunchKernelFD->getType(); 406 QualType CQT = QT.getCanonicalType(); 407 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 408 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 409 410 const CGFunctionInfo &FI = 411 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 412 llvm::FunctionCallee cudaLaunchKernelFn = 413 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 414 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 415 LaunchKernelArgs); 416 CGF.EmitBranch(EndBlock); 417 418 CGF.EmitBlock(EndBlock); 419 } 420 421 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 422 FunctionArgList &Args) { 423 // Emit a call to cudaSetupArgument for each arg in Args. 424 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 425 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 426 CharUnits Offset = CharUnits::Zero(); 427 for (const VarDecl *A : Args) { 428 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 429 Offset = Offset.alignTo(TInfo.Align); 430 llvm::Value *Args[] = { 431 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 432 VoidPtrTy), 433 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 434 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 435 }; 436 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 437 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 438 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 439 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 440 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 441 CGF.EmitBlock(NextBlock); 442 Offset += TInfo.Width; 443 } 444 445 // Emit the call to cudaLaunch 446 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 447 llvm::Value *Arg = 448 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); 449 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 450 CGF.EmitBranch(EndBlock); 451 452 CGF.EmitBlock(EndBlock); 453 } 454 455 // Replace the original variable Var with the address loaded from variable 456 // ManagedVar populated by HIP runtime. 457 static void replaceManagedVar(llvm::GlobalVariable *Var, 458 llvm::GlobalVariable *ManagedVar) { 459 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 460 for (auto &&VarUse : Var->uses()) { 461 WorkList.push_back({VarUse.getUser()}); 462 } 463 while (!WorkList.empty()) { 464 auto &&WorkItem = WorkList.pop_back_val(); 465 auto *U = WorkItem.back(); 466 if (isa<llvm::ConstantExpr>(U)) { 467 for (auto &&UU : U->uses()) { 468 WorkItem.push_back(UU.getUser()); 469 WorkList.push_back(WorkItem); 470 WorkItem.pop_back(); 471 } 472 continue; 473 } 474 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 475 llvm::Value *OldV = Var; 476 llvm::Instruction *NewV = 477 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 478 llvm::Align(Var->getAlignment()), I); 479 WorkItem.pop_back(); 480 // Replace constant expressions directly or indirectly using the managed 481 // variable with instructions. 482 for (auto &&Op : WorkItem) { 483 auto *CE = cast<llvm::ConstantExpr>(Op); 484 auto *NewInst = CE->getAsInstruction(I); 485 NewInst->replaceUsesOfWith(OldV, NewV); 486 OldV = CE; 487 NewV = NewInst; 488 } 489 I->replaceUsesOfWith(OldV, NewV); 490 } else { 491 llvm_unreachable("Invalid use of managed variable"); 492 } 493 } 494 } 495 496 /// Creates a function that sets up state on the host side for CUDA objects that 497 /// have a presence on both the host and device sides. Specifically, registers 498 /// the host side of kernel functions and device global variables with the CUDA 499 /// runtime. 500 /// \code 501 /// void __cuda_register_globals(void** GpuBinaryHandle) { 502 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 503 /// ... 504 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 505 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 506 /// ... 507 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 508 /// } 509 /// \endcode 510 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 511 // No need to register anything 512 if (EmittedKernels.empty() && DeviceVars.empty()) 513 return nullptr; 514 515 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 516 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 517 addUnderscoredPrefixToName("_register_globals"), &TheModule); 518 llvm::BasicBlock *EntryBB = 519 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 520 CGBuilderTy Builder(CGM, Context); 521 Builder.SetInsertPoint(EntryBB); 522 523 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 524 // int, uint3*, uint3*, dim3*, dim3*, int*) 525 llvm::Type *RegisterFuncParams[] = { 526 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 527 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 528 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 529 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 530 addUnderscoredPrefixToName("RegisterFunction")); 531 532 // Extract GpuBinaryHandle passed as the first argument passed to 533 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 534 // each emitted kernel. 535 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 536 for (auto &&I : EmittedKernels) { 537 llvm::Constant *KernelName = 538 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 539 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 540 llvm::Value *Args[] = { 541 &GpuBinaryHandlePtr, 542 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), 543 KernelName, 544 KernelName, 545 llvm::ConstantInt::get(IntTy, -1), 546 NullPtr, 547 NullPtr, 548 NullPtr, 549 NullPtr, 550 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 551 Builder.CreateCall(RegisterFunc, Args); 552 } 553 554 llvm::Type *VarSizeTy = IntTy; 555 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 556 if (CGM.getLangOpts().HIP || 557 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 558 VarSizeTy = SizeTy; 559 560 // void __cudaRegisterVar(void **, char *, char *, const char *, 561 // int, int, int, int) 562 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 563 CharPtrTy, IntTy, VarSizeTy, 564 IntTy, IntTy}; 565 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 567 addUnderscoredPrefixToName("RegisterVar")); 568 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 569 // size_t, unsigned) 570 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 571 CharPtrTy, VarSizeTy, IntTy}; 572 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 573 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 574 addUnderscoredPrefixToName("RegisterManagedVar")); 575 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 576 // const void **, const char *, int, int); 577 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 578 llvm::FunctionType::get( 579 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 580 false), 581 addUnderscoredPrefixToName("RegisterSurface")); 582 // void __cudaRegisterTexture(void **, const struct textureReference *, 583 // const void **, const char *, int, int, int) 584 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 585 llvm::FunctionType::get( 586 VoidTy, 587 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 588 false), 589 addUnderscoredPrefixToName("RegisterTexture")); 590 for (auto &&Info : DeviceVars) { 591 llvm::GlobalVariable *Var = Info.Var; 592 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 593 "External variables should not show up here, except HIP managed " 594 "variables"); 595 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 596 switch (Info.Flags.getKind()) { 597 case DeviceVarFlags::Variable: { 598 uint64_t VarSize = 599 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 600 if (Info.Flags.isManaged()) { 601 auto *ManagedVar = new llvm::GlobalVariable( 602 CGM.getModule(), Var->getType(), 603 /*isConstant=*/false, Var->getLinkage(), 604 /*Init=*/Var->isDeclaration() 605 ? nullptr 606 : llvm::ConstantPointerNull::get(Var->getType()), 607 /*Name=*/"", /*InsertBefore=*/nullptr, 608 llvm::GlobalVariable::NotThreadLocal); 609 ManagedVar->setDSOLocal(Var->isDSOLocal()); 610 ManagedVar->setVisibility(Var->getVisibility()); 611 ManagedVar->setExternallyInitialized(true); 612 ManagedVar->takeName(Var); 613 Var->setName(Twine(ManagedVar->getName() + ".managed")); 614 replaceManagedVar(Var, ManagedVar); 615 llvm::Value *Args[] = { 616 &GpuBinaryHandlePtr, 617 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 618 Builder.CreateBitCast(Var, VoidPtrTy), 619 VarName, 620 llvm::ConstantInt::get(VarSizeTy, VarSize), 621 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 622 if (!Var->isDeclaration()) 623 Builder.CreateCall(RegisterManagedVar, Args); 624 } else { 625 llvm::Value *Args[] = { 626 &GpuBinaryHandlePtr, 627 Builder.CreateBitCast(Var, VoidPtrTy), 628 VarName, 629 VarName, 630 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 631 llvm::ConstantInt::get(VarSizeTy, VarSize), 632 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 633 llvm::ConstantInt::get(IntTy, 0)}; 634 Builder.CreateCall(RegisterVar, Args); 635 } 636 break; 637 } 638 case DeviceVarFlags::Surface: 639 Builder.CreateCall( 640 RegisterSurf, 641 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 642 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 643 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 644 break; 645 case DeviceVarFlags::Texture: 646 Builder.CreateCall( 647 RegisterTex, 648 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 649 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 650 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 651 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 652 break; 653 } 654 } 655 656 Builder.CreateRetVoid(); 657 return RegisterKernelsFunc; 658 } 659 660 /// Creates a global constructor function for the module: 661 /// 662 /// For CUDA: 663 /// \code 664 /// void __cuda_module_ctor() { 665 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 666 /// __cuda_register_globals(Handle); 667 /// } 668 /// \endcode 669 /// 670 /// For HIP: 671 /// \code 672 /// void __hip_module_ctor() { 673 /// if (__hip_gpubin_handle == 0) { 674 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 675 /// __hip_register_globals(__hip_gpubin_handle); 676 /// } 677 /// } 678 /// \endcode 679 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 680 bool IsHIP = CGM.getLangOpts().HIP; 681 bool IsCUDA = CGM.getLangOpts().CUDA; 682 // No need to generate ctors/dtors if there is no GPU binary. 683 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 684 if (CudaGpuBinaryFileName.empty() && !IsHIP) 685 return nullptr; 686 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 687 DeviceVars.empty()) 688 return nullptr; 689 690 // void __{cuda|hip}_register_globals(void* handle); 691 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 692 // We always need a function to pass in as callback. Create a dummy 693 // implementation if we don't need to register anything. 694 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 695 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 696 697 // void ** __{cuda|hip}RegisterFatBinary(void *); 698 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 699 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 700 addUnderscoredPrefixToName("RegisterFatBinary")); 701 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 702 llvm::StructType *FatbinWrapperTy = 703 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 704 705 // Register GPU binary with the CUDA runtime, store returned handle in a 706 // global variable and save a reference in GpuBinaryHandle to be cleaned up 707 // in destructor on exit. Then associate all known kernels with the GPU binary 708 // handle so CUDA runtime can figure out what to call on the GPU side. 709 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 710 if (!CudaGpuBinaryFileName.empty()) { 711 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 712 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 713 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 714 CGM.getDiags().Report(diag::err_cannot_open_file) 715 << CudaGpuBinaryFileName << EC.message(); 716 return nullptr; 717 } 718 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 719 } 720 721 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 722 llvm::FunctionType::get(VoidTy, false), 723 llvm::GlobalValue::InternalLinkage, 724 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 725 llvm::BasicBlock *CtorEntryBB = 726 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 727 CGBuilderTy CtorBuilder(CGM, Context); 728 729 CtorBuilder.SetInsertPoint(CtorEntryBB); 730 731 const char *FatbinConstantName; 732 const char *FatbinSectionName; 733 const char *ModuleIDSectionName; 734 StringRef ModuleIDPrefix; 735 llvm::Constant *FatBinStr; 736 unsigned FatMagic; 737 if (IsHIP) { 738 FatbinConstantName = ".hip_fatbin"; 739 FatbinSectionName = ".hipFatBinSegment"; 740 741 ModuleIDSectionName = "__hip_module_id"; 742 ModuleIDPrefix = "__hip_"; 743 744 if (CudaGpuBinary) { 745 // If fatbin is available from early finalization, create a string 746 // literal containing the fat binary loaded from the given file. 747 const unsigned HIPCodeObjectAlign = 4096; 748 FatBinStr = 749 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 750 FatbinConstantName, HIPCodeObjectAlign); 751 } else { 752 // If fatbin is not available, create an external symbol 753 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 754 // to contain the fat binary but will be populated somewhere else, 755 // e.g. by lld through link script. 756 FatBinStr = new llvm::GlobalVariable( 757 CGM.getModule(), CGM.Int8Ty, 758 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 759 "__hip_fatbin", nullptr, 760 llvm::GlobalVariable::NotThreadLocal); 761 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 762 } 763 764 FatMagic = HIPFatMagic; 765 } else { 766 if (RelocatableDeviceCode) 767 FatbinConstantName = CGM.getTriple().isMacOSX() 768 ? "__NV_CUDA,__nv_relfatbin" 769 : "__nv_relfatbin"; 770 else 771 FatbinConstantName = 772 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 773 // NVIDIA's cuobjdump looks for fatbins in this section. 774 FatbinSectionName = 775 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 776 777 ModuleIDSectionName = CGM.getTriple().isMacOSX() 778 ? "__NV_CUDA,__nv_module_id" 779 : "__nv_module_id"; 780 ModuleIDPrefix = "__nv_"; 781 782 // For CUDA, create a string literal containing the fat binary loaded from 783 // the given file. 784 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 785 FatbinConstantName, 8); 786 FatMagic = CudaFatMagic; 787 } 788 789 // Create initialized wrapper structure that points to the loaded GPU binary 790 ConstantInitBuilder Builder(CGM); 791 auto Values = Builder.beginStruct(FatbinWrapperTy); 792 // Fatbin wrapper magic. 793 Values.addInt(IntTy, FatMagic); 794 // Fatbin version. 795 Values.addInt(IntTy, 1); 796 // Data. 797 Values.add(FatBinStr); 798 // Unused in fatbin v1. 799 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 800 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 801 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 802 /*constant*/ true); 803 FatbinWrapper->setSection(FatbinSectionName); 804 805 // There is only one HIP fat binary per linked module, however there are 806 // multiple constructor functions. Make sure the fat binary is registered 807 // only once. The constructor functions are executed by the dynamic loader 808 // before the program gains control. The dynamic loader cannot execute the 809 // constructor functions concurrently since doing that would not guarantee 810 // thread safety of the loaded program. Therefore we can assume sequential 811 // execution of constructor functions here. 812 if (IsHIP) { 813 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 814 llvm::GlobalValue::LinkOnceAnyLinkage; 815 llvm::BasicBlock *IfBlock = 816 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 817 llvm::BasicBlock *ExitBlock = 818 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 819 // The name, size, and initialization pattern of this variable is part 820 // of HIP ABI. 821 GpuBinaryHandle = new llvm::GlobalVariable( 822 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 823 Linkage, 824 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 825 "__hip_gpubin_handle"); 826 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage) 827 GpuBinaryHandle->setComdat( 828 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName())); 829 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 830 // Prevent the weak symbol in different shared libraries being merged. 831 if (Linkage != llvm::GlobalValue::InternalLinkage) 832 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 833 Address GpuBinaryAddr( 834 GpuBinaryHandle, VoidPtrPtrTy, 835 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 836 { 837 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 838 llvm::Constant *Zero = 839 llvm::Constant::getNullValue(HandleValue->getType()); 840 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 841 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 842 } 843 { 844 CtorBuilder.SetInsertPoint(IfBlock); 845 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 846 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 847 RegisterFatbinFunc, 848 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 849 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 850 CtorBuilder.CreateBr(ExitBlock); 851 } 852 { 853 CtorBuilder.SetInsertPoint(ExitBlock); 854 // Call __hip_register_globals(GpuBinaryHandle); 855 if (RegisterGlobalsFunc) { 856 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 857 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 858 } 859 } 860 } else if (!RelocatableDeviceCode) { 861 // Register binary with CUDA runtime. This is substantially different in 862 // default mode vs. separate compilation! 863 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 864 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 865 RegisterFatbinFunc, 866 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 867 GpuBinaryHandle = new llvm::GlobalVariable( 868 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 869 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 870 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 871 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 872 CGM.getPointerAlign()); 873 874 // Call __cuda_register_globals(GpuBinaryHandle); 875 if (RegisterGlobalsFunc) 876 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 877 878 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 879 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 880 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 881 // void __cudaRegisterFatBinaryEnd(void **); 882 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 883 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 884 "__cudaRegisterFatBinaryEnd"); 885 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 886 } 887 } else { 888 // Generate a unique module ID. 889 SmallString<64> ModuleID; 890 llvm::raw_svector_ostream OS(ModuleID); 891 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 892 llvm::Constant *ModuleIDConstant = makeConstantString( 893 std::string(ModuleID.str()), "", ModuleIDSectionName, 32); 894 895 // Create an alias for the FatbinWrapper that nvcc will look for. 896 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 897 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 898 899 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 900 // void *, void (*)(void **)) 901 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 902 RegisterLinkedBinaryName += ModuleID; 903 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 904 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 905 906 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 907 llvm::Value *Args[] = {RegisterGlobalsFunc, 908 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 909 ModuleIDConstant, 910 makeDummyFunction(getCallbackFnTy())}; 911 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 912 } 913 914 // Create destructor and register it with atexit() the way NVCC does it. Doing 915 // it during regular destructor phase worked in CUDA before 9.2 but results in 916 // double-free in 9.2. 917 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 918 // extern "C" int atexit(void (*f)(void)); 919 llvm::FunctionType *AtExitTy = 920 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 921 llvm::FunctionCallee AtExitFunc = 922 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 923 /*Local=*/true); 924 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 925 } 926 927 CtorBuilder.CreateRetVoid(); 928 return ModuleCtorFunc; 929 } 930 931 /// Creates a global destructor function that unregisters the GPU code blob 932 /// registered by constructor. 933 /// 934 /// For CUDA: 935 /// \code 936 /// void __cuda_module_dtor() { 937 /// __cudaUnregisterFatBinary(Handle); 938 /// } 939 /// \endcode 940 /// 941 /// For HIP: 942 /// \code 943 /// void __hip_module_dtor() { 944 /// if (__hip_gpubin_handle) { 945 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 946 /// __hip_gpubin_handle = 0; 947 /// } 948 /// } 949 /// \endcode 950 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 951 // No need for destructor if we don't have a handle to unregister. 952 if (!GpuBinaryHandle) 953 return nullptr; 954 955 // void __cudaUnregisterFatBinary(void ** handle); 956 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 957 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 958 addUnderscoredPrefixToName("UnregisterFatBinary")); 959 960 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 961 llvm::FunctionType::get(VoidTy, false), 962 llvm::GlobalValue::InternalLinkage, 963 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 964 965 llvm::BasicBlock *DtorEntryBB = 966 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 967 CGBuilderTy DtorBuilder(CGM, Context); 968 DtorBuilder.SetInsertPoint(DtorEntryBB); 969 970 Address GpuBinaryAddr( 971 GpuBinaryHandle, GpuBinaryHandle->getValueType(), 972 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 973 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 974 // There is only one HIP fat binary per linked module, however there are 975 // multiple destructor functions. Make sure the fat binary is unregistered 976 // only once. 977 if (CGM.getLangOpts().HIP) { 978 llvm::BasicBlock *IfBlock = 979 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 980 llvm::BasicBlock *ExitBlock = 981 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 982 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 983 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 984 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 985 986 DtorBuilder.SetInsertPoint(IfBlock); 987 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 988 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 989 DtorBuilder.CreateBr(ExitBlock); 990 991 DtorBuilder.SetInsertPoint(ExitBlock); 992 } else { 993 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 994 } 995 DtorBuilder.CreateRetVoid(); 996 return ModuleDtorFunc; 997 } 998 999 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 1000 return new CGNVCUDARuntime(CGM); 1001 } 1002 1003 void CGNVCUDARuntime::internalizeDeviceSideVar( 1004 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 1005 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 1006 // global variables become internal definitions. These have to be internal in 1007 // order to prevent name conflicts with global host variables with the same 1008 // name in a different TUs. 1009 // 1010 // For -fgpu-rdc, the shadow variables should not be internalized because 1011 // they may be accessed by different TU. 1012 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1013 return; 1014 1015 // __shared__ variables are odd. Shadows do get created, but 1016 // they are not registered with the CUDA runtime, so they 1017 // can't really be used to access their device-side 1018 // counterparts. It's not clear yet whether it's nvcc's bug or 1019 // a feature, but we've got to do the same for compatibility. 1020 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1021 D->hasAttr<CUDASharedAttr>() || 1022 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1023 D->getType()->isCUDADeviceBuiltinTextureType()) { 1024 Linkage = llvm::GlobalValue::InternalLinkage; 1025 } 1026 } 1027 1028 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1029 llvm::GlobalVariable &GV) { 1030 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1031 // Shadow variables and their properties must be registered with CUDA 1032 // runtime. Skip Extern global variables, which will be registered in 1033 // the TU where they are defined. 1034 // 1035 // Don't register a C++17 inline variable. The local symbol can be 1036 // discarded and referencing a discarded local symbol from outside the 1037 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1038 // 1039 // HIP managed variables need to be always recorded in device and host 1040 // compilations for transformation. 1041 // 1042 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1043 // added to llvm.compiler-used, therefore they are safe to be registered. 1044 if ((!D->hasExternalStorage() && !D->isInline()) || 1045 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1046 D->hasAttr<HIPManagedAttr>()) { 1047 registerDeviceVar(D, GV, !D->hasDefinition(), 1048 D->hasAttr<CUDAConstantAttr>()); 1049 } 1050 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1051 D->getType()->isCUDADeviceBuiltinTextureType()) { 1052 // Builtin surfaces and textures and their template arguments are 1053 // also registered with CUDA runtime. 1054 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1055 D->getType()->castAs<RecordType>()->getDecl()); 1056 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1057 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1058 assert(Args.size() == 2 && 1059 "Unexpected number of template arguments of CUDA device " 1060 "builtin surface type."); 1061 auto SurfType = Args[1].getAsIntegral(); 1062 if (!D->hasExternalStorage()) 1063 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1064 } else { 1065 assert(Args.size() == 3 && 1066 "Unexpected number of template arguments of CUDA device " 1067 "builtin texture type."); 1068 auto TexType = Args[1].getAsIntegral(); 1069 auto Normalized = Args[2].getAsIntegral(); 1070 if (!D->hasExternalStorage()) 1071 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1072 Normalized.getZExtValue()); 1073 } 1074 } 1075 } 1076 1077 // Transform managed variables to pointers to managed variables in device code. 1078 // Each use of the original managed variable is replaced by a load from the 1079 // transformed managed variable. The transformed managed variable contains 1080 // the address of managed memory which will be allocated by the runtime. 1081 void CGNVCUDARuntime::transformManagedVars() { 1082 for (auto &&Info : DeviceVars) { 1083 llvm::GlobalVariable *Var = Info.Var; 1084 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1085 Info.Flags.isManaged()) { 1086 auto *ManagedVar = new llvm::GlobalVariable( 1087 CGM.getModule(), Var->getType(), 1088 /*isConstant=*/false, Var->getLinkage(), 1089 /*Init=*/Var->isDeclaration() 1090 ? nullptr 1091 : llvm::ConstantPointerNull::get(Var->getType()), 1092 /*Name=*/"", /*InsertBefore=*/nullptr, 1093 llvm::GlobalVariable::NotThreadLocal, 1094 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1095 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1096 ManagedVar->setVisibility(Var->getVisibility()); 1097 ManagedVar->setExternallyInitialized(true); 1098 replaceManagedVar(Var, ManagedVar); 1099 ManagedVar->takeName(Var); 1100 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1101 // Keep managed variables even if they are not used in device code since 1102 // they need to be allocated by the runtime. 1103 if (!Var->isDeclaration()) { 1104 assert(!ManagedVar->isDeclaration()); 1105 CGM.addCompilerUsedGlobal(Var); 1106 CGM.addCompilerUsedGlobal(ManagedVar); 1107 } 1108 } 1109 } 1110 } 1111 1112 // Creates offloading entries for all the kernels and globals that must be 1113 // registered. The linker will provide a pointer to this section so we can 1114 // register the symbols with the linked device image. 1115 void CGNVCUDARuntime::createOffloadingEntries() { 1116 llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule()); 1117 OMPBuilder.initialize(); 1118 1119 StringRef Section = "cuda_offloading_entries"; 1120 for (KernelInfo &I : EmittedKernels) 1121 OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel], 1122 getDeviceSideName(cast<NamedDecl>(I.D)), 0, 1123 DeviceVarFlags::OffloadGlobalEntry, Section); 1124 1125 for (VarInfo &I : DeviceVars) { 1126 uint64_t VarSize = 1127 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType()); 1128 if (I.Flags.getKind() == DeviceVarFlags::Variable) { 1129 OMPBuilder.emitOffloadingEntry( 1130 I.Var, getDeviceSideName(I.D), VarSize, 1131 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry 1132 : DeviceVarFlags::OffloadGlobalEntry, 1133 Section); 1134 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) { 1135 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1136 DeviceVarFlags::OffloadGlobalSurfaceEntry, 1137 Section); 1138 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) { 1139 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1140 DeviceVarFlags::OffloadGlobalTextureEntry, 1141 Section); 1142 } 1143 } 1144 } 1145 1146 // Returns module constructor to be added. 1147 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1148 if (CGM.getLangOpts().CUDAIsDevice) { 1149 transformManagedVars(); 1150 1151 // Mark ODR-used device variables as compiler used to prevent it from being 1152 // eliminated by optimization. This is necessary for device variables 1153 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1154 // matter whether they are ODR-used by device or host functions. 1155 // 1156 // We do not need to do this if the variable has used attribute since it 1157 // has already been added. 1158 // 1159 // Static device variables have been externalized at this point, therefore 1160 // variables with LLVM private or internal linkage need not be added. 1161 for (auto &&Info : DeviceVars) { 1162 auto Kind = Info.Flags.getKind(); 1163 if (!Info.Var->isDeclaration() && 1164 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1165 (Kind == DeviceVarFlags::Variable || 1166 Kind == DeviceVarFlags::Surface || 1167 Kind == DeviceVarFlags::Texture) && 1168 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1169 CGM.addCompilerUsedGlobal(Info.Var); 1170 } 1171 } 1172 return nullptr; 1173 } 1174 if (!(CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)) 1175 return makeModuleCtorFunction(); 1176 1177 createOffloadingEntries(); 1178 return nullptr; 1179 } 1180 1181 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1182 GlobalDecl GD) { 1183 auto Loc = KernelHandles.find(F); 1184 if (Loc != KernelHandles.end()) 1185 return Loc->second; 1186 1187 if (!CGM.getLangOpts().HIP) { 1188 KernelHandles[F] = F; 1189 KernelStubs[F] = F; 1190 return F; 1191 } 1192 1193 auto *Var = new llvm::GlobalVariable( 1194 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1195 /*Initializer=*/nullptr, 1196 CGM.getMangledName( 1197 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1198 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1199 Var->setDSOLocal(F->isDSOLocal()); 1200 Var->setVisibility(F->getVisibility()); 1201 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); 1202 KernelHandles[F] = Var; 1203 KernelStubs[Var] = F; 1204 return Var; 1205 } 1206