1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a device stub function to a symbol for identifying kernel in host code. 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 73 llvm::FunctionCallee getSetupArgumentFn() const; 74 llvm::FunctionCallee getLaunchFn() const; 75 76 llvm::FunctionType *getRegisterGlobalsFnTy() const; 77 llvm::FunctionType *getCallbackFnTy() const; 78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 79 std::string addPrefixToName(StringRef FuncName) const; 80 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 81 82 /// Creates a function to register all kernel stubs generated in this module. 83 llvm::Function *makeRegisterGlobalsFn(); 84 85 /// Helper function that generates a constant string and returns a pointer to 86 /// the start of the string. The result of this function can be used anywhere 87 /// where the C code specifies const char*. 88 llvm::Constant *makeConstantString(const std::string &Str, 89 const std::string &Name = "", 90 const std::string &SectionName = "", 91 unsigned Alignment = 0) { 92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 93 llvm::ConstantInt::get(SizeTy, 0)}; 94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 95 llvm::GlobalVariable *GV = 96 cast<llvm::GlobalVariable>(ConstStr.getPointer()); 97 if (!SectionName.empty()) { 98 GV->setSection(SectionName); 99 // Mark the address as used which make sure that this section isn't 100 // merged and we will really have it in the object file. 101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 102 } 103 if (Alignment) 104 GV->setAlignment(llvm::Align(Alignment)); 105 106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 107 ConstStr.getPointer(), Zeros); 108 } 109 110 /// Helper function that generates an empty dummy function returning void. 111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 112 assert(FnTy->getReturnType()->isVoidTy() && 113 "Can only generate dummy functions returning void!"); 114 llvm::Function *DummyFunc = llvm::Function::Create( 115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 116 117 llvm::BasicBlock *DummyBlock = 118 llvm::BasicBlock::Create(Context, "", DummyFunc); 119 CGBuilderTy FuncBuilder(CGM, Context); 120 FuncBuilder.SetInsertPoint(DummyBlock); 121 FuncBuilder.CreateRetVoid(); 122 123 return DummyFunc; 124 } 125 126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 128 std::string getDeviceSideName(const NamedDecl *ND) override; 129 130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 131 bool Extern, bool Constant) { 132 DeviceVars.push_back({&Var, 133 VD, 134 {DeviceVarFlags::Variable, Extern, Constant, 135 VD->hasAttr<HIPManagedAttr>(), 136 /*Normalized*/ false, 0}}); 137 } 138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 139 bool Extern, int Type) { 140 DeviceVars.push_back({&Var, 141 VD, 142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 143 /*Managed*/ false, 144 /*Normalized*/ false, Type}}); 145 } 146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 147 bool Extern, int Type, bool Normalized) { 148 DeviceVars.push_back({&Var, 149 VD, 150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 151 /*Managed*/ false, Normalized, Type}}); 152 } 153 154 /// Creates module constructor function 155 llvm::Function *makeModuleCtorFunction(); 156 /// Creates module destructor function 157 llvm::Function *makeModuleDtorFunction(); 158 /// Transform managed variables for device compilation. 159 void transformManagedVars(); 160 /// Create offloading entries to register globals in RDC mode. 161 void createOffloadingEntries(); 162 163 public: 164 CGNVCUDARuntime(CodeGenModule &CGM); 165 166 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 167 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 168 auto Loc = KernelStubs.find(Handle); 169 assert(Loc != KernelStubs.end()); 170 return Loc->second; 171 } 172 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 173 void handleVarRegistration(const VarDecl *VD, 174 llvm::GlobalVariable &Var) override; 175 void 176 internalizeDeviceSideVar(const VarDecl *D, 177 llvm::GlobalValue::LinkageTypes &Linkage) override; 178 179 llvm::Function *finalizeModule() override; 180 }; 181 182 } // end anonymous namespace 183 184 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 185 if (CGM.getLangOpts().HIP) 186 return ((Twine("hip") + Twine(FuncName)).str()); 187 return ((Twine("cuda") + Twine(FuncName)).str()); 188 } 189 std::string 190 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 191 if (CGM.getLangOpts().HIP) 192 return ((Twine("__hip") + Twine(FuncName)).str()); 193 return ((Twine("__cuda") + Twine(FuncName)).str()); 194 } 195 196 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 197 // If the host and device have different C++ ABIs, mark it as the device 198 // mangle context so that the mangling needs to retrieve the additional 199 // device lambda mangling number instead of the regular host one. 200 if (CGM.getContext().getAuxTargetInfo() && 201 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 202 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 203 return std::unique_ptr<MangleContext>( 204 CGM.getContext().createDeviceMangleContext( 205 *CGM.getContext().getAuxTargetInfo())); 206 } 207 208 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 209 CGM.getContext().getAuxTargetInfo())); 210 } 211 212 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 213 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 214 TheModule(CGM.getModule()), 215 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode || 216 CGM.getLangOpts().OffloadingNewDriver), 217 DeviceMC(InitDeviceMC(CGM)) { 218 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 219 ASTContext &Ctx = CGM.getContext(); 220 221 IntTy = CGM.IntTy; 222 SizeTy = CGM.SizeTy; 223 VoidTy = CGM.VoidTy; 224 225 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 226 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 227 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 228 } 229 230 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 231 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 232 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 233 return CGM.CreateRuntimeFunction( 234 llvm::FunctionType::get(IntTy, Params, false), 235 addPrefixToName("SetupArgument")); 236 } 237 238 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 239 if (CGM.getLangOpts().HIP) { 240 // hipError_t hipLaunchByPtr(char *); 241 return CGM.CreateRuntimeFunction( 242 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 243 } 244 // cudaError_t cudaLaunch(char *); 245 return CGM.CreateRuntimeFunction( 246 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 247 } 248 249 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 250 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 251 } 252 253 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 254 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 255 } 256 257 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 258 auto *CallbackFnTy = getCallbackFnTy(); 259 auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 260 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 261 VoidPtrTy, CallbackFnTy->getPointerTo()}; 262 return llvm::FunctionType::get(VoidTy, Params, false); 263 } 264 265 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 266 GlobalDecl GD; 267 // D could be either a kernel or a variable. 268 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 269 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 270 else 271 GD = GlobalDecl(ND); 272 std::string DeviceSideName; 273 MangleContext *MC; 274 if (CGM.getLangOpts().CUDAIsDevice) 275 MC = &CGM.getCXXABI().getMangleContext(); 276 else 277 MC = DeviceMC.get(); 278 if (MC->shouldMangleDeclName(ND)) { 279 SmallString<256> Buffer; 280 llvm::raw_svector_ostream Out(Buffer); 281 MC->mangleName(GD, Out); 282 DeviceSideName = std::string(Out.str()); 283 } else 284 DeviceSideName = std::string(ND->getIdentifier()->getName()); 285 286 // Make unique name for device side static file-scope variable for HIP. 287 if (CGM.getContext().shouldExternalize(ND) && 288 CGM.getLangOpts().GPURelocatableDeviceCode && 289 !CGM.getLangOpts().CUID.empty()) { 290 SmallString<256> Buffer; 291 llvm::raw_svector_ostream Out(Buffer); 292 Out << DeviceSideName; 293 CGM.printPostfixForExternalizedDecl(Out, ND); 294 DeviceSideName = std::string(Out.str()); 295 } 296 return DeviceSideName; 297 } 298 299 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 300 FunctionArgList &Args) { 301 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 302 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { 303 GV->setLinkage(CGF.CurFn->getLinkage()); 304 GV->setInitializer(CGF.CurFn); 305 } 306 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 307 CudaFeature::CUDA_USES_NEW_LAUNCH) || 308 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 309 emitDeviceStubBodyNew(CGF, Args); 310 else 311 emitDeviceStubBodyLegacy(CGF, Args); 312 } 313 314 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 315 // array and kernels are launched using cudaLaunchKernel(). 316 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 317 FunctionArgList &Args) { 318 // Build the shadow stack entry at the very start of the function. 319 320 // Calculate amount of space we will need for all arguments. If we have no 321 // args, allocate a single pointer so we still have a valid pointer to the 322 // argument array that we can pass to runtime, even if it will be unused. 323 Address KernelArgs = CGF.CreateTempAlloca( 324 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 325 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 326 // Store pointers to the arguments in a locally allocated launch_args. 327 for (unsigned i = 0; i < Args.size(); ++i) { 328 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 329 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 330 CGF.Builder.CreateDefaultAlignedStore( 331 VoidVarPtr, 332 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); 333 } 334 335 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 336 337 // Lookup cudaLaunchKernel/hipLaunchKernel function. 338 // HIP kernel launching API name depends on -fgpu-default-stream option. For 339 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread', 340 // it is hipLaunchKernel_spt. 341 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 342 // void **args, size_t sharedMem, 343 // cudaStream_t stream); 344 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim, 345 // dim3 blockDim, void **args, 346 // size_t sharedMem, hipStream_t stream); 347 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 348 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 349 std::string KernelLaunchAPI = "LaunchKernel"; 350 if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream == 351 LangOptions::GPUDefaultStreamKind::PerThread) 352 KernelLaunchAPI = KernelLaunchAPI + "_spt"; 353 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI); 354 IdentifierInfo &cudaLaunchKernelII = 355 CGM.getContext().Idents.get(LaunchKernelName); 356 FunctionDecl *cudaLaunchKernelFD = nullptr; 357 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 358 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 359 cudaLaunchKernelFD = FD; 360 } 361 362 if (cudaLaunchKernelFD == nullptr) { 363 CGM.Error(CGF.CurFuncDecl->getLocation(), 364 "Can't find declaration for " + LaunchKernelName); 365 return; 366 } 367 // Create temporary dim3 grid_dim, block_dim. 368 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 369 QualType Dim3Ty = GridDimParam->getType(); 370 Address GridDim = 371 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 372 Address BlockDim = 373 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 374 Address ShmemSize = 375 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 376 Address Stream = 377 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 378 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 379 llvm::FunctionType::get(IntTy, 380 {/*gridDim=*/GridDim.getType(), 381 /*blockDim=*/BlockDim.getType(), 382 /*ShmemSize=*/ShmemSize.getType(), 383 /*Stream=*/Stream.getType()}, 384 /*isVarArg=*/false), 385 addUnderscoredPrefixToName("PopCallConfiguration")); 386 387 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 388 {GridDim.getPointer(), BlockDim.getPointer(), 389 ShmemSize.getPointer(), Stream.getPointer()}); 390 391 // Emit the call to cudaLaunch 392 llvm::Value *Kernel = 393 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); 394 CallArgList LaunchKernelArgs; 395 LaunchKernelArgs.add(RValue::get(Kernel), 396 cudaLaunchKernelFD->getParamDecl(0)->getType()); 397 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 398 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 399 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 400 cudaLaunchKernelFD->getParamDecl(3)->getType()); 401 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 402 cudaLaunchKernelFD->getParamDecl(4)->getType()); 403 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 404 cudaLaunchKernelFD->getParamDecl(5)->getType()); 405 406 QualType QT = cudaLaunchKernelFD->getType(); 407 QualType CQT = QT.getCanonicalType(); 408 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 409 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 410 411 const CGFunctionInfo &FI = 412 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 413 llvm::FunctionCallee cudaLaunchKernelFn = 414 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 415 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 416 LaunchKernelArgs); 417 CGF.EmitBranch(EndBlock); 418 419 CGF.EmitBlock(EndBlock); 420 } 421 422 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 423 FunctionArgList &Args) { 424 // Emit a call to cudaSetupArgument for each arg in Args. 425 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 426 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 427 CharUnits Offset = CharUnits::Zero(); 428 for (const VarDecl *A : Args) { 429 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 430 Offset = Offset.alignTo(TInfo.Align); 431 llvm::Value *Args[] = { 432 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 433 VoidPtrTy), 434 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 435 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 436 }; 437 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 438 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 439 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 440 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 441 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 442 CGF.EmitBlock(NextBlock); 443 Offset += TInfo.Width; 444 } 445 446 // Emit the call to cudaLaunch 447 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 448 llvm::Value *Arg = 449 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); 450 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 451 CGF.EmitBranch(EndBlock); 452 453 CGF.EmitBlock(EndBlock); 454 } 455 456 // Replace the original variable Var with the address loaded from variable 457 // ManagedVar populated by HIP runtime. 458 static void replaceManagedVar(llvm::GlobalVariable *Var, 459 llvm::GlobalVariable *ManagedVar) { 460 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 461 for (auto &&VarUse : Var->uses()) { 462 WorkList.push_back({VarUse.getUser()}); 463 } 464 while (!WorkList.empty()) { 465 auto &&WorkItem = WorkList.pop_back_val(); 466 auto *U = WorkItem.back(); 467 if (isa<llvm::ConstantExpr>(U)) { 468 for (auto &&UU : U->uses()) { 469 WorkItem.push_back(UU.getUser()); 470 WorkList.push_back(WorkItem); 471 WorkItem.pop_back(); 472 } 473 continue; 474 } 475 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 476 llvm::Value *OldV = Var; 477 llvm::Instruction *NewV = 478 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 479 llvm::Align(Var->getAlignment()), I); 480 WorkItem.pop_back(); 481 // Replace constant expressions directly or indirectly using the managed 482 // variable with instructions. 483 for (auto &&Op : WorkItem) { 484 auto *CE = cast<llvm::ConstantExpr>(Op); 485 auto *NewInst = CE->getAsInstruction(I); 486 NewInst->replaceUsesOfWith(OldV, NewV); 487 OldV = CE; 488 NewV = NewInst; 489 } 490 I->replaceUsesOfWith(OldV, NewV); 491 } else { 492 llvm_unreachable("Invalid use of managed variable"); 493 } 494 } 495 } 496 497 /// Creates a function that sets up state on the host side for CUDA objects that 498 /// have a presence on both the host and device sides. Specifically, registers 499 /// the host side of kernel functions and device global variables with the CUDA 500 /// runtime. 501 /// \code 502 /// void __cuda_register_globals(void** GpuBinaryHandle) { 503 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 504 /// ... 505 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 506 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 507 /// ... 508 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 509 /// } 510 /// \endcode 511 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 512 // No need to register anything 513 if (EmittedKernels.empty() && DeviceVars.empty()) 514 return nullptr; 515 516 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 517 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 518 addUnderscoredPrefixToName("_register_globals"), &TheModule); 519 llvm::BasicBlock *EntryBB = 520 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 521 CGBuilderTy Builder(CGM, Context); 522 Builder.SetInsertPoint(EntryBB); 523 524 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 525 // int, uint3*, uint3*, dim3*, dim3*, int*) 526 llvm::Type *RegisterFuncParams[] = { 527 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 528 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 529 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 530 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 531 addUnderscoredPrefixToName("RegisterFunction")); 532 533 // Extract GpuBinaryHandle passed as the first argument passed to 534 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 535 // each emitted kernel. 536 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 537 for (auto &&I : EmittedKernels) { 538 llvm::Constant *KernelName = 539 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 540 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 541 llvm::Value *Args[] = { 542 &GpuBinaryHandlePtr, 543 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), 544 KernelName, 545 KernelName, 546 llvm::ConstantInt::get(IntTy, -1), 547 NullPtr, 548 NullPtr, 549 NullPtr, 550 NullPtr, 551 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 552 Builder.CreateCall(RegisterFunc, Args); 553 } 554 555 llvm::Type *VarSizeTy = IntTy; 556 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 557 if (CGM.getLangOpts().HIP || 558 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 559 VarSizeTy = SizeTy; 560 561 // void __cudaRegisterVar(void **, char *, char *, const char *, 562 // int, int, int, int) 563 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 564 CharPtrTy, IntTy, VarSizeTy, 565 IntTy, IntTy}; 566 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 567 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 568 addUnderscoredPrefixToName("RegisterVar")); 569 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 570 // size_t, unsigned) 571 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 572 CharPtrTy, VarSizeTy, IntTy}; 573 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 574 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 575 addUnderscoredPrefixToName("RegisterManagedVar")); 576 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 577 // const void **, const char *, int, int); 578 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 579 llvm::FunctionType::get( 580 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 581 false), 582 addUnderscoredPrefixToName("RegisterSurface")); 583 // void __cudaRegisterTexture(void **, const struct textureReference *, 584 // const void **, const char *, int, int, int) 585 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 586 llvm::FunctionType::get( 587 VoidTy, 588 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 589 false), 590 addUnderscoredPrefixToName("RegisterTexture")); 591 for (auto &&Info : DeviceVars) { 592 llvm::GlobalVariable *Var = Info.Var; 593 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 594 "External variables should not show up here, except HIP managed " 595 "variables"); 596 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 597 switch (Info.Flags.getKind()) { 598 case DeviceVarFlags::Variable: { 599 uint64_t VarSize = 600 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 601 if (Info.Flags.isManaged()) { 602 auto *ManagedVar = new llvm::GlobalVariable( 603 CGM.getModule(), Var->getType(), 604 /*isConstant=*/false, Var->getLinkage(), 605 /*Init=*/Var->isDeclaration() 606 ? nullptr 607 : llvm::ConstantPointerNull::get(Var->getType()), 608 /*Name=*/"", /*InsertBefore=*/nullptr, 609 llvm::GlobalVariable::NotThreadLocal); 610 ManagedVar->setDSOLocal(Var->isDSOLocal()); 611 ManagedVar->setVisibility(Var->getVisibility()); 612 ManagedVar->setExternallyInitialized(true); 613 ManagedVar->takeName(Var); 614 Var->setName(Twine(ManagedVar->getName() + ".managed")); 615 replaceManagedVar(Var, ManagedVar); 616 llvm::Value *Args[] = { 617 &GpuBinaryHandlePtr, 618 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 619 Builder.CreateBitCast(Var, VoidPtrTy), 620 VarName, 621 llvm::ConstantInt::get(VarSizeTy, VarSize), 622 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 623 if (!Var->isDeclaration()) 624 Builder.CreateCall(RegisterManagedVar, Args); 625 } else { 626 llvm::Value *Args[] = { 627 &GpuBinaryHandlePtr, 628 Builder.CreateBitCast(Var, VoidPtrTy), 629 VarName, 630 VarName, 631 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 632 llvm::ConstantInt::get(VarSizeTy, VarSize), 633 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 634 llvm::ConstantInt::get(IntTy, 0)}; 635 Builder.CreateCall(RegisterVar, Args); 636 } 637 break; 638 } 639 case DeviceVarFlags::Surface: 640 Builder.CreateCall( 641 RegisterSurf, 642 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 643 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 644 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 645 break; 646 case DeviceVarFlags::Texture: 647 Builder.CreateCall( 648 RegisterTex, 649 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 650 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 651 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 652 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 653 break; 654 } 655 } 656 657 Builder.CreateRetVoid(); 658 return RegisterKernelsFunc; 659 } 660 661 /// Creates a global constructor function for the module: 662 /// 663 /// For CUDA: 664 /// \code 665 /// void __cuda_module_ctor() { 666 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 667 /// __cuda_register_globals(Handle); 668 /// } 669 /// \endcode 670 /// 671 /// For HIP: 672 /// \code 673 /// void __hip_module_ctor() { 674 /// if (__hip_gpubin_handle == 0) { 675 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 676 /// __hip_register_globals(__hip_gpubin_handle); 677 /// } 678 /// } 679 /// \endcode 680 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 681 bool IsHIP = CGM.getLangOpts().HIP; 682 bool IsCUDA = CGM.getLangOpts().CUDA; 683 // No need to generate ctors/dtors if there is no GPU binary. 684 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 685 if (CudaGpuBinaryFileName.empty() && !IsHIP) 686 return nullptr; 687 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 688 DeviceVars.empty()) 689 return nullptr; 690 691 // void __{cuda|hip}_register_globals(void* handle); 692 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 693 // We always need a function to pass in as callback. Create a dummy 694 // implementation if we don't need to register anything. 695 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 696 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 697 698 // void ** __{cuda|hip}RegisterFatBinary(void *); 699 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 700 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 701 addUnderscoredPrefixToName("RegisterFatBinary")); 702 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 703 llvm::StructType *FatbinWrapperTy = 704 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 705 706 // Register GPU binary with the CUDA runtime, store returned handle in a 707 // global variable and save a reference in GpuBinaryHandle to be cleaned up 708 // in destructor on exit. Then associate all known kernels with the GPU binary 709 // handle so CUDA runtime can figure out what to call on the GPU side. 710 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 711 if (!CudaGpuBinaryFileName.empty()) { 712 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 713 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 714 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 715 CGM.getDiags().Report(diag::err_cannot_open_file) 716 << CudaGpuBinaryFileName << EC.message(); 717 return nullptr; 718 } 719 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 720 } 721 722 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 723 llvm::FunctionType::get(VoidTy, false), 724 llvm::GlobalValue::InternalLinkage, 725 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 726 llvm::BasicBlock *CtorEntryBB = 727 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 728 CGBuilderTy CtorBuilder(CGM, Context); 729 730 CtorBuilder.SetInsertPoint(CtorEntryBB); 731 732 const char *FatbinConstantName; 733 const char *FatbinSectionName; 734 const char *ModuleIDSectionName; 735 StringRef ModuleIDPrefix; 736 llvm::Constant *FatBinStr; 737 unsigned FatMagic; 738 if (IsHIP) { 739 FatbinConstantName = ".hip_fatbin"; 740 FatbinSectionName = ".hipFatBinSegment"; 741 742 ModuleIDSectionName = "__hip_module_id"; 743 ModuleIDPrefix = "__hip_"; 744 745 if (CudaGpuBinary) { 746 // If fatbin is available from early finalization, create a string 747 // literal containing the fat binary loaded from the given file. 748 const unsigned HIPCodeObjectAlign = 4096; 749 FatBinStr = 750 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 751 FatbinConstantName, HIPCodeObjectAlign); 752 } else { 753 // If fatbin is not available, create an external symbol 754 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 755 // to contain the fat binary but will be populated somewhere else, 756 // e.g. by lld through link script. 757 FatBinStr = new llvm::GlobalVariable( 758 CGM.getModule(), CGM.Int8Ty, 759 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 760 "__hip_fatbin", nullptr, 761 llvm::GlobalVariable::NotThreadLocal); 762 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 763 } 764 765 FatMagic = HIPFatMagic; 766 } else { 767 if (RelocatableDeviceCode) 768 FatbinConstantName = CGM.getTriple().isMacOSX() 769 ? "__NV_CUDA,__nv_relfatbin" 770 : "__nv_relfatbin"; 771 else 772 FatbinConstantName = 773 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 774 // NVIDIA's cuobjdump looks for fatbins in this section. 775 FatbinSectionName = 776 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 777 778 ModuleIDSectionName = CGM.getTriple().isMacOSX() 779 ? "__NV_CUDA,__nv_module_id" 780 : "__nv_module_id"; 781 ModuleIDPrefix = "__nv_"; 782 783 // For CUDA, create a string literal containing the fat binary loaded from 784 // the given file. 785 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 786 FatbinConstantName, 8); 787 FatMagic = CudaFatMagic; 788 } 789 790 // Create initialized wrapper structure that points to the loaded GPU binary 791 ConstantInitBuilder Builder(CGM); 792 auto Values = Builder.beginStruct(FatbinWrapperTy); 793 // Fatbin wrapper magic. 794 Values.addInt(IntTy, FatMagic); 795 // Fatbin version. 796 Values.addInt(IntTy, 1); 797 // Data. 798 Values.add(FatBinStr); 799 // Unused in fatbin v1. 800 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 801 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 802 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 803 /*constant*/ true); 804 FatbinWrapper->setSection(FatbinSectionName); 805 806 // There is only one HIP fat binary per linked module, however there are 807 // multiple constructor functions. Make sure the fat binary is registered 808 // only once. The constructor functions are executed by the dynamic loader 809 // before the program gains control. The dynamic loader cannot execute the 810 // constructor functions concurrently since doing that would not guarantee 811 // thread safety of the loaded program. Therefore we can assume sequential 812 // execution of constructor functions here. 813 if (IsHIP) { 814 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 815 llvm::GlobalValue::LinkOnceAnyLinkage; 816 llvm::BasicBlock *IfBlock = 817 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 818 llvm::BasicBlock *ExitBlock = 819 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 820 // The name, size, and initialization pattern of this variable is part 821 // of HIP ABI. 822 GpuBinaryHandle = new llvm::GlobalVariable( 823 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 824 Linkage, 825 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 826 "__hip_gpubin_handle"); 827 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage) 828 GpuBinaryHandle->setComdat( 829 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName())); 830 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 831 // Prevent the weak symbol in different shared libraries being merged. 832 if (Linkage != llvm::GlobalValue::InternalLinkage) 833 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 834 Address GpuBinaryAddr( 835 GpuBinaryHandle, VoidPtrPtrTy, 836 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 837 { 838 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 839 llvm::Constant *Zero = 840 llvm::Constant::getNullValue(HandleValue->getType()); 841 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 842 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 843 } 844 { 845 CtorBuilder.SetInsertPoint(IfBlock); 846 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 847 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 848 RegisterFatbinFunc, 849 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 850 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 851 CtorBuilder.CreateBr(ExitBlock); 852 } 853 { 854 CtorBuilder.SetInsertPoint(ExitBlock); 855 // Call __hip_register_globals(GpuBinaryHandle); 856 if (RegisterGlobalsFunc) { 857 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 858 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 859 } 860 } 861 } else if (!RelocatableDeviceCode) { 862 // Register binary with CUDA runtime. This is substantially different in 863 // default mode vs. separate compilation! 864 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 865 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 866 RegisterFatbinFunc, 867 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 868 GpuBinaryHandle = new llvm::GlobalVariable( 869 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 870 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 871 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 872 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 873 CGM.getPointerAlign()); 874 875 // Call __cuda_register_globals(GpuBinaryHandle); 876 if (RegisterGlobalsFunc) 877 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 878 879 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 880 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 881 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 882 // void __cudaRegisterFatBinaryEnd(void **); 883 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 884 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 885 "__cudaRegisterFatBinaryEnd"); 886 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 887 } 888 } else { 889 // Generate a unique module ID. 890 SmallString<64> ModuleID; 891 llvm::raw_svector_ostream OS(ModuleID); 892 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 893 llvm::Constant *ModuleIDConstant = makeConstantString( 894 std::string(ModuleID.str()), "", ModuleIDSectionName, 32); 895 896 // Create an alias for the FatbinWrapper that nvcc will look for. 897 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 898 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 899 900 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 901 // void *, void (*)(void **)) 902 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 903 RegisterLinkedBinaryName += ModuleID; 904 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 905 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 906 907 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 908 llvm::Value *Args[] = {RegisterGlobalsFunc, 909 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 910 ModuleIDConstant, 911 makeDummyFunction(getCallbackFnTy())}; 912 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 913 } 914 915 // Create destructor and register it with atexit() the way NVCC does it. Doing 916 // it during regular destructor phase worked in CUDA before 9.2 but results in 917 // double-free in 9.2. 918 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 919 // extern "C" int atexit(void (*f)(void)); 920 llvm::FunctionType *AtExitTy = 921 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 922 llvm::FunctionCallee AtExitFunc = 923 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 924 /*Local=*/true); 925 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 926 } 927 928 CtorBuilder.CreateRetVoid(); 929 return ModuleCtorFunc; 930 } 931 932 /// Creates a global destructor function that unregisters the GPU code blob 933 /// registered by constructor. 934 /// 935 /// For CUDA: 936 /// \code 937 /// void __cuda_module_dtor() { 938 /// __cudaUnregisterFatBinary(Handle); 939 /// } 940 /// \endcode 941 /// 942 /// For HIP: 943 /// \code 944 /// void __hip_module_dtor() { 945 /// if (__hip_gpubin_handle) { 946 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 947 /// __hip_gpubin_handle = 0; 948 /// } 949 /// } 950 /// \endcode 951 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 952 // No need for destructor if we don't have a handle to unregister. 953 if (!GpuBinaryHandle) 954 return nullptr; 955 956 // void __cudaUnregisterFatBinary(void ** handle); 957 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 958 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 959 addUnderscoredPrefixToName("UnregisterFatBinary")); 960 961 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 962 llvm::FunctionType::get(VoidTy, false), 963 llvm::GlobalValue::InternalLinkage, 964 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 965 966 llvm::BasicBlock *DtorEntryBB = 967 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 968 CGBuilderTy DtorBuilder(CGM, Context); 969 DtorBuilder.SetInsertPoint(DtorEntryBB); 970 971 Address GpuBinaryAddr( 972 GpuBinaryHandle, GpuBinaryHandle->getValueType(), 973 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 974 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 975 // There is only one HIP fat binary per linked module, however there are 976 // multiple destructor functions. Make sure the fat binary is unregistered 977 // only once. 978 if (CGM.getLangOpts().HIP) { 979 llvm::BasicBlock *IfBlock = 980 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 981 llvm::BasicBlock *ExitBlock = 982 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 983 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 984 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 985 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 986 987 DtorBuilder.SetInsertPoint(IfBlock); 988 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 989 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 990 DtorBuilder.CreateBr(ExitBlock); 991 992 DtorBuilder.SetInsertPoint(ExitBlock); 993 } else { 994 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 995 } 996 DtorBuilder.CreateRetVoid(); 997 return ModuleDtorFunc; 998 } 999 1000 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 1001 return new CGNVCUDARuntime(CGM); 1002 } 1003 1004 void CGNVCUDARuntime::internalizeDeviceSideVar( 1005 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 1006 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 1007 // global variables become internal definitions. These have to be internal in 1008 // order to prevent name conflicts with global host variables with the same 1009 // name in a different TUs. 1010 // 1011 // For -fgpu-rdc, the shadow variables should not be internalized because 1012 // they may be accessed by different TU. 1013 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1014 return; 1015 1016 // __shared__ variables are odd. Shadows do get created, but 1017 // they are not registered with the CUDA runtime, so they 1018 // can't really be used to access their device-side 1019 // counterparts. It's not clear yet whether it's nvcc's bug or 1020 // a feature, but we've got to do the same for compatibility. 1021 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1022 D->hasAttr<CUDASharedAttr>() || 1023 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1024 D->getType()->isCUDADeviceBuiltinTextureType()) { 1025 Linkage = llvm::GlobalValue::InternalLinkage; 1026 } 1027 } 1028 1029 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1030 llvm::GlobalVariable &GV) { 1031 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1032 // Shadow variables and their properties must be registered with CUDA 1033 // runtime. Skip Extern global variables, which will be registered in 1034 // the TU where they are defined. 1035 // 1036 // Don't register a C++17 inline variable. The local symbol can be 1037 // discarded and referencing a discarded local symbol from outside the 1038 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1039 // 1040 // HIP managed variables need to be always recorded in device and host 1041 // compilations for transformation. 1042 // 1043 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1044 // added to llvm.compiler-used, therefore they are safe to be registered. 1045 if ((!D->hasExternalStorage() && !D->isInline()) || 1046 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1047 D->hasAttr<HIPManagedAttr>()) { 1048 registerDeviceVar(D, GV, !D->hasDefinition(), 1049 D->hasAttr<CUDAConstantAttr>()); 1050 } 1051 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1052 D->getType()->isCUDADeviceBuiltinTextureType()) { 1053 // Builtin surfaces and textures and their template arguments are 1054 // also registered with CUDA runtime. 1055 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1056 D->getType()->castAs<RecordType>()->getDecl()); 1057 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1058 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1059 assert(Args.size() == 2 && 1060 "Unexpected number of template arguments of CUDA device " 1061 "builtin surface type."); 1062 auto SurfType = Args[1].getAsIntegral(); 1063 if (!D->hasExternalStorage()) 1064 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1065 } else { 1066 assert(Args.size() == 3 && 1067 "Unexpected number of template arguments of CUDA device " 1068 "builtin texture type."); 1069 auto TexType = Args[1].getAsIntegral(); 1070 auto Normalized = Args[2].getAsIntegral(); 1071 if (!D->hasExternalStorage()) 1072 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1073 Normalized.getZExtValue()); 1074 } 1075 } 1076 } 1077 1078 // Transform managed variables to pointers to managed variables in device code. 1079 // Each use of the original managed variable is replaced by a load from the 1080 // transformed managed variable. The transformed managed variable contains 1081 // the address of managed memory which will be allocated by the runtime. 1082 void CGNVCUDARuntime::transformManagedVars() { 1083 for (auto &&Info : DeviceVars) { 1084 llvm::GlobalVariable *Var = Info.Var; 1085 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1086 Info.Flags.isManaged()) { 1087 auto *ManagedVar = new llvm::GlobalVariable( 1088 CGM.getModule(), Var->getType(), 1089 /*isConstant=*/false, Var->getLinkage(), 1090 /*Init=*/Var->isDeclaration() 1091 ? nullptr 1092 : llvm::ConstantPointerNull::get(Var->getType()), 1093 /*Name=*/"", /*InsertBefore=*/nullptr, 1094 llvm::GlobalVariable::NotThreadLocal, 1095 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1096 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1097 ManagedVar->setVisibility(Var->getVisibility()); 1098 ManagedVar->setExternallyInitialized(true); 1099 replaceManagedVar(Var, ManagedVar); 1100 ManagedVar->takeName(Var); 1101 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1102 // Keep managed variables even if they are not used in device code since 1103 // they need to be allocated by the runtime. 1104 if (!Var->isDeclaration()) { 1105 assert(!ManagedVar->isDeclaration()); 1106 CGM.addCompilerUsedGlobal(Var); 1107 CGM.addCompilerUsedGlobal(ManagedVar); 1108 } 1109 } 1110 } 1111 } 1112 1113 // Creates offloading entries for all the kernels and globals that must be 1114 // registered. The linker will provide a pointer to this section so we can 1115 // register the symbols with the linked device image. 1116 void CGNVCUDARuntime::createOffloadingEntries() { 1117 llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule()); 1118 OMPBuilder.initialize(); 1119 1120 StringRef Section = "cuda_offloading_entries"; 1121 for (KernelInfo &I : EmittedKernels) 1122 OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel], 1123 getDeviceSideName(cast<NamedDecl>(I.D)), 0, 1124 DeviceVarFlags::OffloadGlobalEntry, Section); 1125 1126 for (VarInfo &I : DeviceVars) { 1127 uint64_t VarSize = 1128 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType()); 1129 if (I.Flags.getKind() == DeviceVarFlags::Variable) { 1130 OMPBuilder.emitOffloadingEntry( 1131 I.Var, getDeviceSideName(I.D), VarSize, 1132 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry 1133 : DeviceVarFlags::OffloadGlobalEntry, 1134 Section); 1135 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) { 1136 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1137 DeviceVarFlags::OffloadGlobalSurfaceEntry, 1138 Section); 1139 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) { 1140 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1141 DeviceVarFlags::OffloadGlobalTextureEntry, 1142 Section); 1143 } 1144 } 1145 } 1146 1147 // Returns module constructor to be added. 1148 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1149 if (CGM.getLangOpts().CUDAIsDevice) { 1150 transformManagedVars(); 1151 1152 // Mark ODR-used device variables as compiler used to prevent it from being 1153 // eliminated by optimization. This is necessary for device variables 1154 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1155 // matter whether they are ODR-used by device or host functions. 1156 // 1157 // We do not need to do this if the variable has used attribute since it 1158 // has already been added. 1159 // 1160 // Static device variables have been externalized at this point, therefore 1161 // variables with LLVM private or internal linkage need not be added. 1162 for (auto &&Info : DeviceVars) { 1163 auto Kind = Info.Flags.getKind(); 1164 if (!Info.Var->isDeclaration() && 1165 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1166 (Kind == DeviceVarFlags::Variable || 1167 Kind == DeviceVarFlags::Surface || 1168 Kind == DeviceVarFlags::Texture) && 1169 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1170 CGM.addCompilerUsedGlobal(Info.Var); 1171 } 1172 } 1173 return nullptr; 1174 } 1175 if (!(CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)) 1176 return makeModuleCtorFunction(); 1177 1178 createOffloadingEntries(); 1179 return nullptr; 1180 } 1181 1182 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1183 GlobalDecl GD) { 1184 auto Loc = KernelHandles.find(F); 1185 if (Loc != KernelHandles.end()) 1186 return Loc->second; 1187 1188 if (!CGM.getLangOpts().HIP) { 1189 KernelHandles[F] = F; 1190 KernelStubs[F] = F; 1191 return F; 1192 } 1193 1194 auto *Var = new llvm::GlobalVariable( 1195 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1196 /*Initializer=*/nullptr, 1197 CGM.getMangledName( 1198 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1199 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1200 Var->setDSOLocal(F->isDSOLocal()); 1201 Var->setVisibility(F->getVisibility()); 1202 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); 1203 KernelHandles[F] = Var; 1204 KernelStubs[Var] = F; 1205 return Var; 1206 } 1207