1 //===--- CGBlocks.cpp - Emit LLVM Code for declarations ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Module.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name) 31 : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false), 32 HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false), 33 LocalAddress(Address::invalid()), StructureType(nullptr), Block(block), 34 DominatingIP(nullptr) { 35 36 // Skip asm prefix, if any. 'name' is usually taken directly from 37 // the mangled name of the enclosing function. 38 if (!name.empty() && name[0] == '\01') 39 name = name.substr(1); 40 } 41 42 // Anchor the vtable to this translation unit. 43 BlockByrefHelpers::~BlockByrefHelpers() {} 44 45 /// Build the given block as a global block. 46 static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, 47 const CGBlockInfo &blockInfo, 48 llvm::Constant *blockFn); 49 50 /// Build the helper function to copy a block. 51 static llvm::Constant *buildCopyHelper(CodeGenModule &CGM, 52 const CGBlockInfo &blockInfo) { 53 return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo); 54 } 55 56 /// Build the helper function to dispose of a block. 57 static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM, 58 const CGBlockInfo &blockInfo) { 59 return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo); 60 } 61 62 /// buildBlockDescriptor - Build the block descriptor meta-data for a block. 63 /// buildBlockDescriptor is accessed from 5th field of the Block_literal 64 /// meta-data and contains stationary information about the block literal. 65 /// Its definition will have 4 (or optinally 6) words. 66 /// \code 67 /// struct Block_descriptor { 68 /// unsigned long reserved; 69 /// unsigned long size; // size of Block_literal metadata in bytes. 70 /// void *copy_func_helper_decl; // optional copy helper. 71 /// void *destroy_func_decl; // optioanl destructor helper. 72 /// void *block_method_encoding_address; // @encode for block literal signature. 73 /// void *block_layout_info; // encoding of captured block variables. 74 /// }; 75 /// \endcode 76 static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM, 77 const CGBlockInfo &blockInfo) { 78 ASTContext &C = CGM.getContext(); 79 80 llvm::Type *ulong = CGM.getTypes().ConvertType(C.UnsignedLongTy); 81 llvm::Type *i8p = nullptr; 82 if (CGM.getLangOpts().OpenCL) 83 i8p = 84 llvm::Type::getInt8PtrTy( 85 CGM.getLLVMContext(), C.getTargetAddressSpace(LangAS::opencl_constant)); 86 else 87 i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); 88 89 SmallVector<llvm::Constant*, 6> elements; 90 91 // reserved 92 elements.push_back(llvm::ConstantInt::get(ulong, 0)); 93 94 // Size 95 // FIXME: What is the right way to say this doesn't fit? We should give 96 // a user diagnostic in that case. Better fix would be to change the 97 // API to size_t. 98 elements.push_back(llvm::ConstantInt::get(ulong, 99 blockInfo.BlockSize.getQuantity())); 100 101 // Optional copy/dispose helpers. 102 if (blockInfo.NeedsCopyDispose) { 103 // copy_func_helper_decl 104 elements.push_back(buildCopyHelper(CGM, blockInfo)); 105 106 // destroy_func_decl 107 elements.push_back(buildDisposeHelper(CGM, blockInfo)); 108 } 109 110 // Signature. Mandatory ObjC-style method descriptor @encode sequence. 111 std::string typeAtEncoding = 112 CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr()); 113 elements.push_back(llvm::ConstantExpr::getBitCast( 114 CGM.GetAddrOfConstantCString(typeAtEncoding).getPointer(), i8p)); 115 116 // GC layout. 117 if (C.getLangOpts().ObjC1) { 118 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 119 elements.push_back(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo)); 120 else 121 elements.push_back(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo)); 122 } 123 else 124 elements.push_back(llvm::Constant::getNullValue(i8p)); 125 126 llvm::Constant *init = llvm::ConstantStruct::getAnon(elements); 127 128 llvm::GlobalVariable *global = 129 new llvm::GlobalVariable(CGM.getModule(), init->getType(), true, 130 llvm::GlobalValue::InternalLinkage, 131 init, "__block_descriptor_tmp"); 132 133 return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType()); 134 } 135 136 /* 137 Purely notional variadic template describing the layout of a block. 138 139 template <class _ResultType, class... _ParamTypes, class... _CaptureTypes> 140 struct Block_literal { 141 /// Initialized to one of: 142 /// extern void *_NSConcreteStackBlock[]; 143 /// extern void *_NSConcreteGlobalBlock[]; 144 /// 145 /// In theory, we could start one off malloc'ed by setting 146 /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using 147 /// this isa: 148 /// extern void *_NSConcreteMallocBlock[]; 149 struct objc_class *isa; 150 151 /// These are the flags (with corresponding bit number) that the 152 /// compiler is actually supposed to know about. 153 /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block 154 /// descriptor provides copy and dispose helper functions 155 /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured 156 /// object with a nontrivial destructor or copy constructor 157 /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated 158 /// as global memory 159 /// 29. BLOCK_USE_STRET - indicates that the block function 160 /// uses stret, which objc_msgSend needs to know about 161 /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an 162 /// @encoded signature string 163 /// And we're not supposed to manipulate these: 164 /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved 165 /// to malloc'ed memory 166 /// 27. BLOCK_IS_GC - indicates that the block has been moved to 167 /// to GC-allocated memory 168 /// Additionally, the bottom 16 bits are a reference count which 169 /// should be zero on the stack. 170 int flags; 171 172 /// Reserved; should be zero-initialized. 173 int reserved; 174 175 /// Function pointer generated from block literal. 176 _ResultType (*invoke)(Block_literal *, _ParamTypes...); 177 178 /// Block description metadata generated from block literal. 179 struct Block_descriptor *block_descriptor; 180 181 /// Captured values follow. 182 _CapturesTypes captures...; 183 }; 184 */ 185 186 /// The number of fields in a block header. 187 const unsigned BlockHeaderSize = 5; 188 189 namespace { 190 /// A chunk of data that we actually have to capture in the block. 191 struct BlockLayoutChunk { 192 CharUnits Alignment; 193 CharUnits Size; 194 Qualifiers::ObjCLifetime Lifetime; 195 const BlockDecl::Capture *Capture; // null for 'this' 196 llvm::Type *Type; 197 198 BlockLayoutChunk(CharUnits align, CharUnits size, 199 Qualifiers::ObjCLifetime lifetime, 200 const BlockDecl::Capture *capture, 201 llvm::Type *type) 202 : Alignment(align), Size(size), Lifetime(lifetime), 203 Capture(capture), Type(type) {} 204 205 /// Tell the block info that this chunk has the given field index. 206 void setIndex(CGBlockInfo &info, unsigned index, CharUnits offset) { 207 if (!Capture) { 208 info.CXXThisIndex = index; 209 info.CXXThisOffset = offset; 210 } else { 211 info.Captures.insert({Capture->getVariable(), 212 CGBlockInfo::Capture::makeIndex(index, offset)}); 213 } 214 } 215 }; 216 217 /// Order by 1) all __strong together 2) next, all byfref together 3) next, 218 /// all __weak together. Preserve descending alignment in all situations. 219 bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) { 220 if (left.Alignment != right.Alignment) 221 return left.Alignment > right.Alignment; 222 223 auto getPrefOrder = [](const BlockLayoutChunk &chunk) { 224 if (chunk.Capture && chunk.Capture->isByRef()) 225 return 1; 226 if (chunk.Lifetime == Qualifiers::OCL_Strong) 227 return 0; 228 if (chunk.Lifetime == Qualifiers::OCL_Weak) 229 return 2; 230 return 3; 231 }; 232 233 return getPrefOrder(left) < getPrefOrder(right); 234 } 235 } // end anonymous namespace 236 237 /// Determines if the given type is safe for constant capture in C++. 238 static bool isSafeForCXXConstantCapture(QualType type) { 239 const RecordType *recordType = 240 type->getBaseElementTypeUnsafe()->getAs<RecordType>(); 241 242 // Only records can be unsafe. 243 if (!recordType) return true; 244 245 const auto *record = cast<CXXRecordDecl>(recordType->getDecl()); 246 247 // Maintain semantics for classes with non-trivial dtors or copy ctors. 248 if (!record->hasTrivialDestructor()) return false; 249 if (record->hasNonTrivialCopyConstructor()) return false; 250 251 // Otherwise, we just have to make sure there aren't any mutable 252 // fields that might have changed since initialization. 253 return !record->hasMutableFields(); 254 } 255 256 /// It is illegal to modify a const object after initialization. 257 /// Therefore, if a const object has a constant initializer, we don't 258 /// actually need to keep storage for it in the block; we'll just 259 /// rematerialize it at the start of the block function. This is 260 /// acceptable because we make no promises about address stability of 261 /// captured variables. 262 static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM, 263 CodeGenFunction *CGF, 264 const VarDecl *var) { 265 // Return if this is a function paramter. We shouldn't try to 266 // rematerialize default arguments of function parameters. 267 if (isa<ParmVarDecl>(var)) 268 return nullptr; 269 270 QualType type = var->getType(); 271 272 // We can only do this if the variable is const. 273 if (!type.isConstQualified()) return nullptr; 274 275 // Furthermore, in C++ we have to worry about mutable fields: 276 // C++ [dcl.type.cv]p4: 277 // Except that any class member declared mutable can be 278 // modified, any attempt to modify a const object during its 279 // lifetime results in undefined behavior. 280 if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type)) 281 return nullptr; 282 283 // If the variable doesn't have any initializer (shouldn't this be 284 // invalid?), it's not clear what we should do. Maybe capture as 285 // zero? 286 const Expr *init = var->getInit(); 287 if (!init) return nullptr; 288 289 return CGM.EmitConstantInit(*var, CGF); 290 } 291 292 /// Get the low bit of a nonzero character count. This is the 293 /// alignment of the nth byte if the 0th byte is universally aligned. 294 static CharUnits getLowBit(CharUnits v) { 295 return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1)); 296 } 297 298 static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info, 299 SmallVectorImpl<llvm::Type*> &elementTypes) { 300 // The header is basically 'struct { void *; int; int; void *; void *; }'. 301 // Assert that that struct is packed. 302 assert(CGM.getIntSize() <= CGM.getPointerSize()); 303 assert(CGM.getIntAlign() <= CGM.getPointerAlign()); 304 assert((2 * CGM.getIntSize()).isMultipleOf(CGM.getPointerAlign())); 305 306 info.BlockAlign = CGM.getPointerAlign(); 307 info.BlockSize = 3 * CGM.getPointerSize() + 2 * CGM.getIntSize(); 308 309 assert(elementTypes.empty()); 310 elementTypes.push_back(CGM.VoidPtrTy); 311 elementTypes.push_back(CGM.IntTy); 312 elementTypes.push_back(CGM.IntTy); 313 elementTypes.push_back(CGM.VoidPtrTy); 314 elementTypes.push_back(CGM.getBlockDescriptorType()); 315 316 assert(elementTypes.size() == BlockHeaderSize); 317 } 318 319 /// Compute the layout of the given block. Attempts to lay the block 320 /// out with minimal space requirements. 321 static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF, 322 CGBlockInfo &info) { 323 ASTContext &C = CGM.getContext(); 324 const BlockDecl *block = info.getBlockDecl(); 325 326 SmallVector<llvm::Type*, 8> elementTypes; 327 initializeForBlockHeader(CGM, info, elementTypes); 328 329 if (!block->hasCaptures()) { 330 info.StructureType = 331 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 332 info.CanBeGlobal = true; 333 return; 334 } 335 else if (C.getLangOpts().ObjC1 && 336 CGM.getLangOpts().getGC() == LangOptions::NonGC) 337 info.HasCapturedVariableLayout = true; 338 339 // Collect the layout chunks. 340 SmallVector<BlockLayoutChunk, 16> layout; 341 layout.reserve(block->capturesCXXThis() + 342 (block->capture_end() - block->capture_begin())); 343 344 CharUnits maxFieldAlign; 345 346 // First, 'this'. 347 if (block->capturesCXXThis()) { 348 assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) && 349 "Can't capture 'this' outside a method"); 350 QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType(C); 351 352 // Theoretically, this could be in a different address space, so 353 // don't assume standard pointer size/align. 354 llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType); 355 std::pair<CharUnits,CharUnits> tinfo 356 = CGM.getContext().getTypeInfoInChars(thisType); 357 maxFieldAlign = std::max(maxFieldAlign, tinfo.second); 358 359 layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, 360 Qualifiers::OCL_None, 361 nullptr, llvmType)); 362 } 363 364 // Next, all the block captures. 365 for (const auto &CI : block->captures()) { 366 const VarDecl *variable = CI.getVariable(); 367 368 if (CI.isByRef()) { 369 // We have to copy/dispose of the __block reference. 370 info.NeedsCopyDispose = true; 371 372 // Just use void* instead of a pointer to the byref type. 373 CharUnits align = CGM.getPointerAlign(); 374 maxFieldAlign = std::max(maxFieldAlign, align); 375 376 layout.push_back(BlockLayoutChunk(align, CGM.getPointerSize(), 377 Qualifiers::OCL_None, &CI, 378 CGM.VoidPtrTy)); 379 continue; 380 } 381 382 // Otherwise, build a layout chunk with the size and alignment of 383 // the declaration. 384 if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) { 385 info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant); 386 continue; 387 } 388 389 // If we have a lifetime qualifier, honor it for capture purposes. 390 // That includes *not* copying it if it's __unsafe_unretained. 391 Qualifiers::ObjCLifetime lifetime = 392 variable->getType().getObjCLifetime(); 393 if (lifetime) { 394 switch (lifetime) { 395 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 396 case Qualifiers::OCL_ExplicitNone: 397 case Qualifiers::OCL_Autoreleasing: 398 break; 399 400 case Qualifiers::OCL_Strong: 401 case Qualifiers::OCL_Weak: 402 info.NeedsCopyDispose = true; 403 } 404 405 // Block pointers require copy/dispose. So do Objective-C pointers. 406 } else if (variable->getType()->isObjCRetainableType()) { 407 // But honor the inert __unsafe_unretained qualifier, which doesn't 408 // actually make it into the type system. 409 if (variable->getType()->isObjCInertUnsafeUnretainedType()) { 410 lifetime = Qualifiers::OCL_ExplicitNone; 411 } else { 412 info.NeedsCopyDispose = true; 413 // used for mrr below. 414 lifetime = Qualifiers::OCL_Strong; 415 } 416 417 // So do types that require non-trivial copy construction. 418 } else if (CI.hasCopyExpr()) { 419 info.NeedsCopyDispose = true; 420 info.HasCXXObject = true; 421 422 // And so do types with destructors. 423 } else if (CGM.getLangOpts().CPlusPlus) { 424 if (const CXXRecordDecl *record = 425 variable->getType()->getAsCXXRecordDecl()) { 426 if (!record->hasTrivialDestructor()) { 427 info.HasCXXObject = true; 428 info.NeedsCopyDispose = true; 429 } 430 } 431 } 432 433 QualType VT = variable->getType(); 434 CharUnits size = C.getTypeSizeInChars(VT); 435 CharUnits align = C.getDeclAlign(variable); 436 437 maxFieldAlign = std::max(maxFieldAlign, align); 438 439 llvm::Type *llvmType = 440 CGM.getTypes().ConvertTypeForMem(VT); 441 442 layout.push_back(BlockLayoutChunk(align, size, lifetime, &CI, llvmType)); 443 } 444 445 // If that was everything, we're done here. 446 if (layout.empty()) { 447 info.StructureType = 448 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 449 info.CanBeGlobal = true; 450 return; 451 } 452 453 // Sort the layout by alignment. We have to use a stable sort here 454 // to get reproducible results. There should probably be an 455 // llvm::array_pod_stable_sort. 456 std::stable_sort(layout.begin(), layout.end()); 457 458 // Needed for blocks layout info. 459 info.BlockHeaderForcedGapOffset = info.BlockSize; 460 info.BlockHeaderForcedGapSize = CharUnits::Zero(); 461 462 CharUnits &blockSize = info.BlockSize; 463 info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign); 464 465 // Assuming that the first byte in the header is maximally aligned, 466 // get the alignment of the first byte following the header. 467 CharUnits endAlign = getLowBit(blockSize); 468 469 // If the end of the header isn't satisfactorily aligned for the 470 // maximum thing, look for things that are okay with the header-end 471 // alignment, and keep appending them until we get something that's 472 // aligned right. This algorithm is only guaranteed optimal if 473 // that condition is satisfied at some point; otherwise we can get 474 // things like: 475 // header // next byte has alignment 4 476 // something_with_size_5; // next byte has alignment 1 477 // something_with_alignment_8; 478 // which has 7 bytes of padding, as opposed to the naive solution 479 // which might have less (?). 480 if (endAlign < maxFieldAlign) { 481 SmallVectorImpl<BlockLayoutChunk>::iterator 482 li = layout.begin() + 1, le = layout.end(); 483 484 // Look for something that the header end is already 485 // satisfactorily aligned for. 486 for (; li != le && endAlign < li->Alignment; ++li) 487 ; 488 489 // If we found something that's naturally aligned for the end of 490 // the header, keep adding things... 491 if (li != le) { 492 SmallVectorImpl<BlockLayoutChunk>::iterator first = li; 493 for (; li != le; ++li) { 494 assert(endAlign >= li->Alignment); 495 496 li->setIndex(info, elementTypes.size(), blockSize); 497 elementTypes.push_back(li->Type); 498 blockSize += li->Size; 499 endAlign = getLowBit(blockSize); 500 501 // ...until we get to the alignment of the maximum field. 502 if (endAlign >= maxFieldAlign) { 503 break; 504 } 505 } 506 // Don't re-append everything we just appended. 507 layout.erase(first, li); 508 } 509 } 510 511 assert(endAlign == getLowBit(blockSize)); 512 513 // At this point, we just have to add padding if the end align still 514 // isn't aligned right. 515 if (endAlign < maxFieldAlign) { 516 CharUnits newBlockSize = blockSize.alignTo(maxFieldAlign); 517 CharUnits padding = newBlockSize - blockSize; 518 519 // If we haven't yet added any fields, remember that there was an 520 // initial gap; this need to go into the block layout bit map. 521 if (blockSize == info.BlockHeaderForcedGapOffset) { 522 info.BlockHeaderForcedGapSize = padding; 523 } 524 525 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, 526 padding.getQuantity())); 527 blockSize = newBlockSize; 528 endAlign = getLowBit(blockSize); // might be > maxFieldAlign 529 } 530 531 assert(endAlign >= maxFieldAlign); 532 assert(endAlign == getLowBit(blockSize)); 533 // Slam everything else on now. This works because they have 534 // strictly decreasing alignment and we expect that size is always a 535 // multiple of alignment. 536 for (SmallVectorImpl<BlockLayoutChunk>::iterator 537 li = layout.begin(), le = layout.end(); li != le; ++li) { 538 if (endAlign < li->Alignment) { 539 // size may not be multiple of alignment. This can only happen with 540 // an over-aligned variable. We will be adding a padding field to 541 // make the size be multiple of alignment. 542 CharUnits padding = li->Alignment - endAlign; 543 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, 544 padding.getQuantity())); 545 blockSize += padding; 546 endAlign = getLowBit(blockSize); 547 } 548 assert(endAlign >= li->Alignment); 549 li->setIndex(info, elementTypes.size(), blockSize); 550 elementTypes.push_back(li->Type); 551 blockSize += li->Size; 552 endAlign = getLowBit(blockSize); 553 } 554 555 info.StructureType = 556 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 557 } 558 559 /// Enter the scope of a block. This should be run at the entrance to 560 /// a full-expression so that the block's cleanups are pushed at the 561 /// right place in the stack. 562 static void enterBlockScope(CodeGenFunction &CGF, BlockDecl *block) { 563 assert(CGF.HaveInsertPoint()); 564 565 // Allocate the block info and place it at the head of the list. 566 CGBlockInfo &blockInfo = 567 *new CGBlockInfo(block, CGF.CurFn->getName()); 568 blockInfo.NextBlockInfo = CGF.FirstBlockInfo; 569 CGF.FirstBlockInfo = &blockInfo; 570 571 // Compute information about the layout, etc., of this block, 572 // pushing cleanups as necessary. 573 computeBlockInfo(CGF.CGM, &CGF, blockInfo); 574 575 // Nothing else to do if it can be global. 576 if (blockInfo.CanBeGlobal) return; 577 578 // Make the allocation for the block. 579 blockInfo.LocalAddress = CGF.CreateTempAlloca(blockInfo.StructureType, 580 blockInfo.BlockAlign, "block"); 581 582 // If there are cleanups to emit, enter them (but inactive). 583 if (!blockInfo.NeedsCopyDispose) return; 584 585 // Walk through the captures (in order) and find the ones not 586 // captured by constant. 587 for (const auto &CI : block->captures()) { 588 // Ignore __block captures; there's nothing special in the 589 // on-stack block that we need to do for them. 590 if (CI.isByRef()) continue; 591 592 // Ignore variables that are constant-captured. 593 const VarDecl *variable = CI.getVariable(); 594 CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 595 if (capture.isConstant()) continue; 596 597 // Ignore objects that aren't destructed. 598 QualType::DestructionKind dtorKind = 599 variable->getType().isDestructedType(); 600 if (dtorKind == QualType::DK_none) continue; 601 602 CodeGenFunction::Destroyer *destroyer; 603 604 // Block captures count as local values and have imprecise semantics. 605 // They also can't be arrays, so need to worry about that. 606 if (dtorKind == QualType::DK_objc_strong_lifetime) { 607 destroyer = CodeGenFunction::destroyARCStrongImprecise; 608 } else { 609 destroyer = CGF.getDestroyer(dtorKind); 610 } 611 612 // GEP down to the address. 613 Address addr = CGF.Builder.CreateStructGEP(blockInfo.LocalAddress, 614 capture.getIndex(), 615 capture.getOffset()); 616 617 // We can use that GEP as the dominating IP. 618 if (!blockInfo.DominatingIP) 619 blockInfo.DominatingIP = cast<llvm::Instruction>(addr.getPointer()); 620 621 CleanupKind cleanupKind = InactiveNormalCleanup; 622 bool useArrayEHCleanup = CGF.needsEHCleanup(dtorKind); 623 if (useArrayEHCleanup) 624 cleanupKind = InactiveNormalAndEHCleanup; 625 626 CGF.pushDestroy(cleanupKind, addr, variable->getType(), 627 destroyer, useArrayEHCleanup); 628 629 // Remember where that cleanup was. 630 capture.setCleanup(CGF.EHStack.stable_begin()); 631 } 632 } 633 634 /// Enter a full-expression with a non-trivial number of objects to 635 /// clean up. This is in this file because, at the moment, the only 636 /// kind of cleanup object is a BlockDecl*. 637 void CodeGenFunction::enterNonTrivialFullExpression(const ExprWithCleanups *E) { 638 assert(E->getNumObjects() != 0); 639 ArrayRef<ExprWithCleanups::CleanupObject> cleanups = E->getObjects(); 640 for (ArrayRef<ExprWithCleanups::CleanupObject>::iterator 641 i = cleanups.begin(), e = cleanups.end(); i != e; ++i) { 642 enterBlockScope(*this, *i); 643 } 644 } 645 646 /// Find the layout for the given block in a linked list and remove it. 647 static CGBlockInfo *findAndRemoveBlockInfo(CGBlockInfo **head, 648 const BlockDecl *block) { 649 while (true) { 650 assert(head && *head); 651 CGBlockInfo *cur = *head; 652 653 // If this is the block we're looking for, splice it out of the list. 654 if (cur->getBlockDecl() == block) { 655 *head = cur->NextBlockInfo; 656 return cur; 657 } 658 659 head = &cur->NextBlockInfo; 660 } 661 } 662 663 /// Destroy a chain of block layouts. 664 void CodeGenFunction::destroyBlockInfos(CGBlockInfo *head) { 665 assert(head && "destroying an empty chain"); 666 do { 667 CGBlockInfo *cur = head; 668 head = cur->NextBlockInfo; 669 delete cur; 670 } while (head != nullptr); 671 } 672 673 /// Emit a block literal expression in the current function. 674 llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) { 675 // If the block has no captures, we won't have a pre-computed 676 // layout for it. 677 if (!blockExpr->getBlockDecl()->hasCaptures()) { 678 CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName()); 679 computeBlockInfo(CGM, this, blockInfo); 680 blockInfo.BlockExpression = blockExpr; 681 return EmitBlockLiteral(blockInfo); 682 } 683 684 // Find the block info for this block and take ownership of it. 685 std::unique_ptr<CGBlockInfo> blockInfo; 686 blockInfo.reset(findAndRemoveBlockInfo(&FirstBlockInfo, 687 blockExpr->getBlockDecl())); 688 689 blockInfo->BlockExpression = blockExpr; 690 return EmitBlockLiteral(*blockInfo); 691 } 692 693 llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) { 694 // Using the computed layout, generate the actual block function. 695 bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda(); 696 llvm::Constant *blockFn 697 = CodeGenFunction(CGM, true).GenerateBlockFunction(CurGD, blockInfo, 698 LocalDeclMap, 699 isLambdaConv); 700 blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); 701 702 // If there is nothing to capture, we can emit this as a global block. 703 if (blockInfo.CanBeGlobal) 704 return buildGlobalBlock(CGM, blockInfo, blockFn); 705 706 // Otherwise, we have to emit this as a local block. 707 708 llvm::Constant *isa = CGM.getNSConcreteStackBlock(); 709 isa = llvm::ConstantExpr::getBitCast(isa, VoidPtrTy); 710 711 // Build the block descriptor. 712 llvm::Constant *descriptor = buildBlockDescriptor(CGM, blockInfo); 713 714 Address blockAddr = blockInfo.LocalAddress; 715 assert(blockAddr.isValid() && "block has no address!"); 716 717 // Compute the initial on-stack block flags. 718 BlockFlags flags = BLOCK_HAS_SIGNATURE; 719 if (blockInfo.HasCapturedVariableLayout) flags |= BLOCK_HAS_EXTENDED_LAYOUT; 720 if (blockInfo.NeedsCopyDispose) flags |= BLOCK_HAS_COPY_DISPOSE; 721 if (blockInfo.HasCXXObject) flags |= BLOCK_HAS_CXX_OBJ; 722 if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; 723 724 auto projectField = 725 [&](unsigned index, CharUnits offset, const Twine &name) -> Address { 726 return Builder.CreateStructGEP(blockAddr, index, offset, name); 727 }; 728 auto storeField = 729 [&](llvm::Value *value, unsigned index, CharUnits offset, 730 const Twine &name) { 731 Builder.CreateStore(value, projectField(index, offset, name)); 732 }; 733 734 // Initialize the block header. 735 { 736 // We assume all the header fields are densely packed. 737 unsigned index = 0; 738 CharUnits offset; 739 auto addHeaderField = 740 [&](llvm::Value *value, CharUnits size, const Twine &name) { 741 storeField(value, index, offset, name); 742 offset += size; 743 index++; 744 }; 745 746 addHeaderField(isa, getPointerSize(), "block.isa"); 747 addHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 748 getIntSize(), "block.flags"); 749 addHeaderField(llvm::ConstantInt::get(IntTy, 0), 750 getIntSize(), "block.reserved"); 751 addHeaderField(blockFn, getPointerSize(), "block.invoke"); 752 addHeaderField(descriptor, getPointerSize(), "block.descriptor"); 753 } 754 755 // Finally, capture all the values into the block. 756 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 757 758 // First, 'this'. 759 if (blockDecl->capturesCXXThis()) { 760 Address addr = projectField(blockInfo.CXXThisIndex, blockInfo.CXXThisOffset, 761 "block.captured-this.addr"); 762 Builder.CreateStore(LoadCXXThis(), addr); 763 } 764 765 // Next, captured variables. 766 for (const auto &CI : blockDecl->captures()) { 767 const VarDecl *variable = CI.getVariable(); 768 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 769 770 // Ignore constant captures. 771 if (capture.isConstant()) continue; 772 773 QualType type = variable->getType(); 774 775 // This will be a [[type]]*, except that a byref entry will just be 776 // an i8**. 777 Address blockField = 778 projectField(capture.getIndex(), capture.getOffset(), "block.captured"); 779 780 // Compute the address of the thing we're going to move into the 781 // block literal. 782 Address src = Address::invalid(); 783 if (BlockInfo && CI.isNested()) { 784 // We need to use the capture from the enclosing block. 785 const CGBlockInfo::Capture &enclosingCapture = 786 BlockInfo->getCapture(variable); 787 788 // This is a [[type]]*, except that a byref entry wil just be an i8**. 789 src = Builder.CreateStructGEP(LoadBlockStruct(), 790 enclosingCapture.getIndex(), 791 enclosingCapture.getOffset(), 792 "block.capture.addr"); 793 } else if (blockDecl->isConversionFromLambda()) { 794 // The lambda capture in a lambda's conversion-to-block-pointer is 795 // special; we'll simply emit it directly. 796 src = Address::invalid(); 797 } else { 798 // Just look it up in the locals map, which will give us back a 799 // [[type]]*. If that doesn't work, do the more elaborate DRE 800 // emission. 801 auto it = LocalDeclMap.find(variable); 802 if (it != LocalDeclMap.end()) { 803 src = it->second; 804 } else { 805 DeclRefExpr declRef( 806 const_cast<VarDecl *>(variable), 807 /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), type, 808 VK_LValue, SourceLocation()); 809 src = EmitDeclRefLValue(&declRef).getAddress(); 810 } 811 } 812 813 // For byrefs, we just write the pointer to the byref struct into 814 // the block field. There's no need to chase the forwarding 815 // pointer at this point, since we're building something that will 816 // live a shorter life than the stack byref anyway. 817 if (CI.isByRef()) { 818 // Get a void* that points to the byref struct. 819 llvm::Value *byrefPointer; 820 if (CI.isNested()) 821 byrefPointer = Builder.CreateLoad(src, "byref.capture"); 822 else 823 byrefPointer = Builder.CreateBitCast(src.getPointer(), VoidPtrTy); 824 825 // Write that void* into the capture field. 826 Builder.CreateStore(byrefPointer, blockField); 827 828 // If we have a copy constructor, evaluate that into the block field. 829 } else if (const Expr *copyExpr = CI.getCopyExpr()) { 830 if (blockDecl->isConversionFromLambda()) { 831 // If we have a lambda conversion, emit the expression 832 // directly into the block instead. 833 AggValueSlot Slot = 834 AggValueSlot::forAddr(blockField, Qualifiers(), 835 AggValueSlot::IsDestructed, 836 AggValueSlot::DoesNotNeedGCBarriers, 837 AggValueSlot::IsNotAliased); 838 EmitAggExpr(copyExpr, Slot); 839 } else { 840 EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr); 841 } 842 843 // If it's a reference variable, copy the reference into the block field. 844 } else if (type->isReferenceType()) { 845 llvm::Value *ref = Builder.CreateLoad(src, "ref.val"); 846 Builder.CreateStore(ref, blockField); 847 848 // If this is an ARC __strong block-pointer variable, don't do a 849 // block copy. 850 // 851 // TODO: this can be generalized into the normal initialization logic: 852 // we should never need to do a block-copy when initializing a local 853 // variable, because the local variable's lifetime should be strictly 854 // contained within the stack block's. 855 } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong && 856 type->isBlockPointerType()) { 857 // Load the block and do a simple retain. 858 llvm::Value *value = Builder.CreateLoad(src, "block.captured_block"); 859 value = EmitARCRetainNonBlock(value); 860 861 // Do a primitive store to the block field. 862 Builder.CreateStore(value, blockField); 863 864 // Otherwise, fake up a POD copy into the block field. 865 } else { 866 // Fake up a new variable so that EmitScalarInit doesn't think 867 // we're referring to the variable in its own initializer. 868 ImplicitParamDecl blockFieldPseudoVar(getContext(), /*DC*/ nullptr, 869 SourceLocation(), /*name*/ nullptr, 870 type); 871 872 // We use one of these or the other depending on whether the 873 // reference is nested. 874 DeclRefExpr declRef(const_cast<VarDecl *>(variable), 875 /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), 876 type, VK_LValue, SourceLocation()); 877 878 ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue, 879 &declRef, VK_RValue); 880 // FIXME: Pass a specific location for the expr init so that the store is 881 // attributed to a reasonable location - otherwise it may be attributed to 882 // locations of subexpressions in the initialization. 883 EmitExprAsInit(&l2r, &blockFieldPseudoVar, 884 MakeAddrLValue(blockField, type, AlignmentSource::Decl), 885 /*captured by init*/ false); 886 } 887 888 // Activate the cleanup if layout pushed one. 889 if (!CI.isByRef()) { 890 EHScopeStack::stable_iterator cleanup = capture.getCleanup(); 891 if (cleanup.isValid()) 892 ActivateCleanupBlock(cleanup, blockInfo.DominatingIP); 893 } 894 } 895 896 // Cast to the converted block-pointer type, which happens (somewhat 897 // unfortunately) to be a pointer to function type. 898 llvm::Value *result = 899 Builder.CreateBitCast(blockAddr.getPointer(), 900 ConvertType(blockInfo.getBlockExpr()->getType())); 901 902 return result; 903 } 904 905 906 llvm::Type *CodeGenModule::getBlockDescriptorType() { 907 if (BlockDescriptorType) 908 return BlockDescriptorType; 909 910 llvm::Type *UnsignedLongTy = 911 getTypes().ConvertType(getContext().UnsignedLongTy); 912 913 // struct __block_descriptor { 914 // unsigned long reserved; 915 // unsigned long block_size; 916 // 917 // // later, the following will be added 918 // 919 // struct { 920 // void (*copyHelper)(); 921 // void (*copyHelper)(); 922 // } helpers; // !!! optional 923 // 924 // const char *signature; // the block signature 925 // const char *layout; // reserved 926 // }; 927 BlockDescriptorType = 928 llvm::StructType::create("struct.__block_descriptor", 929 UnsignedLongTy, UnsignedLongTy, nullptr); 930 931 // Now form a pointer to that. 932 BlockDescriptorType = llvm::PointerType::getUnqual(BlockDescriptorType); 933 return BlockDescriptorType; 934 } 935 936 llvm::Type *CodeGenModule::getGenericBlockLiteralType() { 937 if (GenericBlockLiteralType) 938 return GenericBlockLiteralType; 939 940 llvm::Type *BlockDescPtrTy = getBlockDescriptorType(); 941 942 // struct __block_literal_generic { 943 // void *__isa; 944 // int __flags; 945 // int __reserved; 946 // void (*__invoke)(void *); 947 // struct __block_descriptor *__descriptor; 948 // }; 949 GenericBlockLiteralType = 950 llvm::StructType::create("struct.__block_literal_generic", 951 VoidPtrTy, IntTy, IntTy, VoidPtrTy, 952 BlockDescPtrTy, nullptr); 953 954 return GenericBlockLiteralType; 955 } 956 957 RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E, 958 ReturnValueSlot ReturnValue) { 959 const BlockPointerType *BPT = 960 E->getCallee()->getType()->getAs<BlockPointerType>(); 961 962 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 963 964 // Get a pointer to the generic block literal. 965 llvm::Type *BlockLiteralTy = 966 llvm::PointerType::getUnqual(CGM.getGenericBlockLiteralType()); 967 968 // Bitcast the callee to a block literal. 969 llvm::Value *BlockLiteral = 970 Builder.CreateBitCast(Callee, BlockLiteralTy, "block.literal"); 971 972 // Get the function pointer from the literal. 973 llvm::Value *FuncPtr = 974 Builder.CreateStructGEP(CGM.getGenericBlockLiteralType(), BlockLiteral, 3); 975 976 BlockLiteral = Builder.CreateBitCast(BlockLiteral, VoidPtrTy); 977 978 // Add the block literal. 979 CallArgList Args; 980 Args.add(RValue::get(BlockLiteral), getContext().VoidPtrTy); 981 982 QualType FnType = BPT->getPointeeType(); 983 984 // And the rest of the arguments. 985 EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), E->arguments()); 986 987 // Load the function. 988 llvm::Value *Func = Builder.CreateAlignedLoad(FuncPtr, getPointerAlign()); 989 990 const FunctionType *FuncTy = FnType->castAs<FunctionType>(); 991 const CGFunctionInfo &FnInfo = 992 CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy); 993 994 // Cast the function pointer to the right type. 995 llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo); 996 997 llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy); 998 Func = Builder.CreateBitCast(Func, BlockFTyPtr); 999 1000 // And call the block. 1001 return EmitCall(FnInfo, Func, ReturnValue, Args); 1002 } 1003 1004 Address CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable, 1005 bool isByRef) { 1006 assert(BlockInfo && "evaluating block ref without block information?"); 1007 const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable); 1008 1009 // Handle constant captures. 1010 if (capture.isConstant()) return LocalDeclMap.find(variable)->second; 1011 1012 Address addr = 1013 Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(), 1014 capture.getOffset(), "block.capture.addr"); 1015 1016 if (isByRef) { 1017 // addr should be a void** right now. Load, then cast the result 1018 // to byref*. 1019 1020 auto &byrefInfo = getBlockByrefInfo(variable); 1021 addr = Address(Builder.CreateLoad(addr), byrefInfo.ByrefAlignment); 1022 1023 auto byrefPointerType = llvm::PointerType::get(byrefInfo.Type, 0); 1024 addr = Builder.CreateBitCast(addr, byrefPointerType, "byref.addr"); 1025 1026 addr = emitBlockByrefAddress(addr, byrefInfo, /*follow*/ true, 1027 variable->getName()); 1028 } 1029 1030 if (auto refType = variable->getType()->getAs<ReferenceType>()) { 1031 addr = EmitLoadOfReference(addr, refType); 1032 } 1033 1034 return addr; 1035 } 1036 1037 llvm::Constant * 1038 CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *blockExpr, 1039 const char *name) { 1040 CGBlockInfo blockInfo(blockExpr->getBlockDecl(), name); 1041 blockInfo.BlockExpression = blockExpr; 1042 1043 // Compute information about the layout, etc., of this block. 1044 computeBlockInfo(*this, nullptr, blockInfo); 1045 1046 // Using that metadata, generate the actual block function. 1047 llvm::Constant *blockFn; 1048 { 1049 CodeGenFunction::DeclMapTy LocalDeclMap; 1050 blockFn = CodeGenFunction(*this).GenerateBlockFunction(GlobalDecl(), 1051 blockInfo, 1052 LocalDeclMap, 1053 false); 1054 } 1055 blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); 1056 1057 return buildGlobalBlock(*this, blockInfo, blockFn); 1058 } 1059 1060 static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, 1061 const CGBlockInfo &blockInfo, 1062 llvm::Constant *blockFn) { 1063 assert(blockInfo.CanBeGlobal); 1064 1065 // Generate the constants for the block literal initializer. 1066 llvm::Constant *fields[BlockHeaderSize]; 1067 1068 // isa 1069 fields[0] = CGM.getNSConcreteGlobalBlock(); 1070 1071 // __flags 1072 BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE; 1073 if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; 1074 1075 fields[1] = llvm::ConstantInt::get(CGM.IntTy, flags.getBitMask()); 1076 1077 // Reserved 1078 fields[2] = llvm::Constant::getNullValue(CGM.IntTy); 1079 1080 // Function 1081 fields[3] = blockFn; 1082 1083 // Descriptor 1084 fields[4] = buildBlockDescriptor(CGM, blockInfo); 1085 1086 llvm::Constant *init = llvm::ConstantStruct::getAnon(fields); 1087 1088 llvm::GlobalVariable *literal = 1089 new llvm::GlobalVariable(CGM.getModule(), 1090 init->getType(), 1091 /*constant*/ true, 1092 llvm::GlobalVariable::InternalLinkage, 1093 init, 1094 "__block_literal_global"); 1095 literal->setAlignment(blockInfo.BlockAlign.getQuantity()); 1096 1097 // Return a constant of the appropriately-casted type. 1098 llvm::Type *requiredType = 1099 CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType()); 1100 return llvm::ConstantExpr::getBitCast(literal, requiredType); 1101 } 1102 1103 void CodeGenFunction::setBlockContextParameter(const ImplicitParamDecl *D, 1104 unsigned argNum, 1105 llvm::Value *arg) { 1106 assert(BlockInfo && "not emitting prologue of block invocation function?!"); 1107 1108 llvm::Value *localAddr = nullptr; 1109 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1110 // Allocate a stack slot to let the debug info survive the RA. 1111 Address alloc = CreateMemTemp(D->getType(), D->getName() + ".addr"); 1112 Builder.CreateStore(arg, alloc); 1113 localAddr = Builder.CreateLoad(alloc); 1114 } 1115 1116 if (CGDebugInfo *DI = getDebugInfo()) { 1117 if (CGM.getCodeGenOpts().getDebugInfo() >= 1118 codegenoptions::LimitedDebugInfo) { 1119 DI->setLocation(D->getLocation()); 1120 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, arg, argNum, 1121 localAddr, Builder); 1122 } 1123 } 1124 1125 SourceLocation StartLoc = BlockInfo->getBlockExpr()->getBody()->getLocStart(); 1126 ApplyDebugLocation Scope(*this, StartLoc); 1127 1128 // Instead of messing around with LocalDeclMap, just set the value 1129 // directly as BlockPointer. 1130 BlockPointer = Builder.CreateBitCast(arg, 1131 BlockInfo->StructureType->getPointerTo(), 1132 "block"); 1133 } 1134 1135 Address CodeGenFunction::LoadBlockStruct() { 1136 assert(BlockInfo && "not in a block invocation function!"); 1137 assert(BlockPointer && "no block pointer set!"); 1138 return Address(BlockPointer, BlockInfo->BlockAlign); 1139 } 1140 1141 llvm::Function * 1142 CodeGenFunction::GenerateBlockFunction(GlobalDecl GD, 1143 const CGBlockInfo &blockInfo, 1144 const DeclMapTy &ldm, 1145 bool IsLambdaConversionToBlock) { 1146 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1147 1148 CurGD = GD; 1149 1150 CurEHLocation = blockInfo.getBlockExpr()->getLocEnd(); 1151 1152 BlockInfo = &blockInfo; 1153 1154 // Arrange for local static and local extern declarations to appear 1155 // to be local to this function as well, in case they're directly 1156 // referenced in a block. 1157 for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) { 1158 const auto *var = dyn_cast<VarDecl>(i->first); 1159 if (var && !var->hasLocalStorage()) 1160 setAddrOfLocalVar(var, i->second); 1161 } 1162 1163 // Begin building the function declaration. 1164 1165 // Build the argument list. 1166 FunctionArgList args; 1167 1168 // The first argument is the block pointer. Just take it as a void* 1169 // and cast it later. 1170 QualType selfTy = getContext().VoidPtrTy; 1171 IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor"); 1172 1173 ImplicitParamDecl selfDecl(getContext(), const_cast<BlockDecl*>(blockDecl), 1174 SourceLocation(), II, selfTy); 1175 args.push_back(&selfDecl); 1176 1177 // Now add the rest of the parameters. 1178 args.append(blockDecl->param_begin(), blockDecl->param_end()); 1179 1180 // Create the function declaration. 1181 const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType(); 1182 const CGFunctionInfo &fnInfo = 1183 CGM.getTypes().arrangeBlockFunctionDeclaration(fnType, args); 1184 if (CGM.ReturnSlotInterferesWithArgs(fnInfo)) 1185 blockInfo.UsesStret = true; 1186 1187 llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo); 1188 1189 StringRef name = CGM.getBlockMangledName(GD, blockDecl); 1190 llvm::Function *fn = llvm::Function::Create( 1191 fnLLVMType, llvm::GlobalValue::InternalLinkage, name, &CGM.getModule()); 1192 CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo); 1193 1194 // Begin generating the function. 1195 StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args, 1196 blockDecl->getLocation(), 1197 blockInfo.getBlockExpr()->getBody()->getLocStart()); 1198 1199 // Okay. Undo some of what StartFunction did. 1200 1201 // At -O0 we generate an explicit alloca for the BlockPointer, so the RA 1202 // won't delete the dbg.declare intrinsics for captured variables. 1203 llvm::Value *BlockPointerDbgLoc = BlockPointer; 1204 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1205 // Allocate a stack slot for it, so we can point the debugger to it 1206 Address Alloca = CreateTempAlloca(BlockPointer->getType(), 1207 getPointerAlign(), 1208 "block.addr"); 1209 // Set the DebugLocation to empty, so the store is recognized as a 1210 // frame setup instruction by llvm::DwarfDebug::beginFunction(). 1211 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1212 Builder.CreateStore(BlockPointer, Alloca); 1213 BlockPointerDbgLoc = Alloca.getPointer(); 1214 } 1215 1216 // If we have a C++ 'this' reference, go ahead and force it into 1217 // existence now. 1218 if (blockDecl->capturesCXXThis()) { 1219 Address addr = 1220 Builder.CreateStructGEP(LoadBlockStruct(), blockInfo.CXXThisIndex, 1221 blockInfo.CXXThisOffset, "block.captured-this"); 1222 CXXThisValue = Builder.CreateLoad(addr, "this"); 1223 } 1224 1225 // Also force all the constant captures. 1226 for (const auto &CI : blockDecl->captures()) { 1227 const VarDecl *variable = CI.getVariable(); 1228 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1229 if (!capture.isConstant()) continue; 1230 1231 CharUnits align = getContext().getDeclAlign(variable); 1232 Address alloca = 1233 CreateMemTemp(variable->getType(), align, "block.captured-const"); 1234 1235 Builder.CreateStore(capture.getConstant(), alloca); 1236 1237 setAddrOfLocalVar(variable, alloca); 1238 } 1239 1240 // Save a spot to insert the debug information for all the DeclRefExprs. 1241 llvm::BasicBlock *entry = Builder.GetInsertBlock(); 1242 llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint(); 1243 --entry_ptr; 1244 1245 if (IsLambdaConversionToBlock) 1246 EmitLambdaBlockInvokeBody(); 1247 else { 1248 PGO.assignRegionCounters(GlobalDecl(blockDecl), fn); 1249 incrementProfileCounter(blockDecl->getBody()); 1250 EmitStmt(blockDecl->getBody()); 1251 } 1252 1253 // Remember where we were... 1254 llvm::BasicBlock *resume = Builder.GetInsertBlock(); 1255 1256 // Go back to the entry. 1257 ++entry_ptr; 1258 Builder.SetInsertPoint(entry, entry_ptr); 1259 1260 // Emit debug information for all the DeclRefExprs. 1261 // FIXME: also for 'this' 1262 if (CGDebugInfo *DI = getDebugInfo()) { 1263 for (const auto &CI : blockDecl->captures()) { 1264 const VarDecl *variable = CI.getVariable(); 1265 DI->EmitLocation(Builder, variable->getLocation()); 1266 1267 if (CGM.getCodeGenOpts().getDebugInfo() >= 1268 codegenoptions::LimitedDebugInfo) { 1269 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1270 if (capture.isConstant()) { 1271 auto addr = LocalDeclMap.find(variable)->second; 1272 DI->EmitDeclareOfAutoVariable(variable, addr.getPointer(), 1273 Builder); 1274 continue; 1275 } 1276 1277 DI->EmitDeclareOfBlockDeclRefVariable( 1278 variable, BlockPointerDbgLoc, Builder, blockInfo, 1279 entry_ptr == entry->end() ? nullptr : &*entry_ptr); 1280 } 1281 } 1282 // Recover location if it was changed in the above loop. 1283 DI->EmitLocation(Builder, 1284 cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); 1285 } 1286 1287 // And resume where we left off. 1288 if (resume == nullptr) 1289 Builder.ClearInsertionPoint(); 1290 else 1291 Builder.SetInsertPoint(resume); 1292 1293 FinishFunction(cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); 1294 1295 return fn; 1296 } 1297 1298 /* 1299 notes.push_back(HelperInfo()); 1300 HelperInfo ¬e = notes.back(); 1301 note.index = capture.getIndex(); 1302 note.RequiresCopying = (ci->hasCopyExpr() || BlockRequiresCopying(type)); 1303 note.cxxbar_import = ci->getCopyExpr(); 1304 1305 if (ci->isByRef()) { 1306 note.flag = BLOCK_FIELD_IS_BYREF; 1307 if (type.isObjCGCWeak()) 1308 note.flag |= BLOCK_FIELD_IS_WEAK; 1309 } else if (type->isBlockPointerType()) { 1310 note.flag = BLOCK_FIELD_IS_BLOCK; 1311 } else { 1312 note.flag = BLOCK_FIELD_IS_OBJECT; 1313 } 1314 */ 1315 1316 /// Generate the copy-helper function for a block closure object: 1317 /// static void block_copy_helper(block_t *dst, block_t *src); 1318 /// The runtime will have previously initialized 'dst' by doing a 1319 /// bit-copy of 'src'. 1320 /// 1321 /// Note that this copies an entire block closure object to the heap; 1322 /// it should not be confused with a 'byref copy helper', which moves 1323 /// the contents of an individual __block variable to the heap. 1324 llvm::Constant * 1325 CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) { 1326 ASTContext &C = getContext(); 1327 1328 FunctionArgList args; 1329 ImplicitParamDecl dstDecl(getContext(), nullptr, SourceLocation(), nullptr, 1330 C.VoidPtrTy); 1331 args.push_back(&dstDecl); 1332 ImplicitParamDecl srcDecl(getContext(), nullptr, SourceLocation(), nullptr, 1333 C.VoidPtrTy); 1334 args.push_back(&srcDecl); 1335 1336 const CGFunctionInfo &FI = 1337 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 1338 1339 // FIXME: it would be nice if these were mergeable with things with 1340 // identical semantics. 1341 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 1342 1343 llvm::Function *Fn = 1344 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1345 "__copy_helper_block_", &CGM.getModule()); 1346 1347 IdentifierInfo *II 1348 = &CGM.getContext().Idents.get("__copy_helper_block_"); 1349 1350 FunctionDecl *FD = FunctionDecl::Create(C, 1351 C.getTranslationUnitDecl(), 1352 SourceLocation(), 1353 SourceLocation(), II, C.VoidTy, 1354 nullptr, SC_Static, 1355 false, 1356 false); 1357 1358 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 1359 1360 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1361 StartFunction(FD, C.VoidTy, Fn, FI, args); 1362 // Create a scope with an artificial location for the body of this function. 1363 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1364 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); 1365 1366 Address src = GetAddrOfLocalVar(&srcDecl); 1367 src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign); 1368 src = Builder.CreateBitCast(src, structPtrTy, "block.source"); 1369 1370 Address dst = GetAddrOfLocalVar(&dstDecl); 1371 dst = Address(Builder.CreateLoad(dst), blockInfo.BlockAlign); 1372 dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest"); 1373 1374 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1375 1376 for (const auto &CI : blockDecl->captures()) { 1377 const VarDecl *variable = CI.getVariable(); 1378 QualType type = variable->getType(); 1379 1380 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1381 if (capture.isConstant()) continue; 1382 1383 const Expr *copyExpr = CI.getCopyExpr(); 1384 BlockFieldFlags flags; 1385 1386 bool useARCWeakCopy = false; 1387 bool useARCStrongCopy = false; 1388 1389 if (copyExpr) { 1390 assert(!CI.isByRef()); 1391 // don't bother computing flags 1392 1393 } else if (CI.isByRef()) { 1394 flags = BLOCK_FIELD_IS_BYREF; 1395 if (type.isObjCGCWeak()) 1396 flags |= BLOCK_FIELD_IS_WEAK; 1397 1398 } else if (type->isObjCRetainableType()) { 1399 flags = BLOCK_FIELD_IS_OBJECT; 1400 bool isBlockPointer = type->isBlockPointerType(); 1401 if (isBlockPointer) 1402 flags = BLOCK_FIELD_IS_BLOCK; 1403 1404 // Special rules for ARC captures: 1405 Qualifiers qs = type.getQualifiers(); 1406 1407 // We need to register __weak direct captures with the runtime. 1408 if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) { 1409 useARCWeakCopy = true; 1410 1411 // We need to retain the copied value for __strong direct captures. 1412 } else if (qs.getObjCLifetime() == Qualifiers::OCL_Strong) { 1413 // If it's a block pointer, we have to copy the block and 1414 // assign that to the destination pointer, so we might as 1415 // well use _Block_object_assign. Otherwise we can avoid that. 1416 if (!isBlockPointer) 1417 useARCStrongCopy = true; 1418 1419 // Non-ARC captures of retainable pointers are strong and 1420 // therefore require a call to _Block_object_assign. 1421 } else if (!qs.getObjCLifetime() && !getLangOpts().ObjCAutoRefCount) { 1422 // fall through 1423 1424 // Otherwise the memcpy is fine. 1425 } else { 1426 continue; 1427 } 1428 1429 // For all other types, the memcpy is fine. 1430 } else { 1431 continue; 1432 } 1433 1434 unsigned index = capture.getIndex(); 1435 Address srcField = Builder.CreateStructGEP(src, index, capture.getOffset()); 1436 Address dstField = Builder.CreateStructGEP(dst, index, capture.getOffset()); 1437 1438 // If there's an explicit copy expression, we do that. 1439 if (copyExpr) { 1440 EmitSynthesizedCXXCopyCtor(dstField, srcField, copyExpr); 1441 } else if (useARCWeakCopy) { 1442 EmitARCCopyWeak(dstField, srcField); 1443 } else { 1444 llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); 1445 if (useARCStrongCopy) { 1446 // At -O0, store null into the destination field (so that the 1447 // storeStrong doesn't over-release) and then call storeStrong. 1448 // This is a workaround to not having an initStrong call. 1449 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1450 auto *ty = cast<llvm::PointerType>(srcValue->getType()); 1451 llvm::Value *null = llvm::ConstantPointerNull::get(ty); 1452 Builder.CreateStore(null, dstField); 1453 EmitARCStoreStrongCall(dstField, srcValue, true); 1454 1455 // With optimization enabled, take advantage of the fact that 1456 // the blocks runtime guarantees a memcpy of the block data, and 1457 // just emit a retain of the src field. 1458 } else { 1459 EmitARCRetainNonBlock(srcValue); 1460 1461 // We don't need this anymore, so kill it. It's not quite 1462 // worth the annoyance to avoid creating it in the first place. 1463 cast<llvm::Instruction>(dstField.getPointer())->eraseFromParent(); 1464 } 1465 } else { 1466 srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy); 1467 llvm::Value *dstAddr = 1468 Builder.CreateBitCast(dstField.getPointer(), VoidPtrTy); 1469 llvm::Value *args[] = { 1470 dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) 1471 }; 1472 1473 bool copyCanThrow = false; 1474 if (CI.isByRef() && variable->getType()->getAsCXXRecordDecl()) { 1475 const Expr *copyExpr = 1476 CGM.getContext().getBlockVarCopyInits(variable); 1477 if (copyExpr) { 1478 copyCanThrow = true; // FIXME: reuse the noexcept logic 1479 } 1480 } 1481 1482 if (copyCanThrow) { 1483 EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args); 1484 } else { 1485 EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args); 1486 } 1487 } 1488 } 1489 } 1490 1491 FinishFunction(); 1492 1493 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 1494 } 1495 1496 /// Generate the destroy-helper function for a block closure object: 1497 /// static void block_destroy_helper(block_t *theBlock); 1498 /// 1499 /// Note that this destroys a heap-allocated block closure object; 1500 /// it should not be confused with a 'byref destroy helper', which 1501 /// destroys the heap-allocated contents of an individual __block 1502 /// variable. 1503 llvm::Constant * 1504 CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) { 1505 ASTContext &C = getContext(); 1506 1507 FunctionArgList args; 1508 ImplicitParamDecl srcDecl(getContext(), nullptr, SourceLocation(), nullptr, 1509 C.VoidPtrTy); 1510 args.push_back(&srcDecl); 1511 1512 const CGFunctionInfo &FI = 1513 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 1514 1515 // FIXME: We'd like to put these into a mergable by content, with 1516 // internal linkage. 1517 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 1518 1519 llvm::Function *Fn = 1520 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1521 "__destroy_helper_block_", &CGM.getModule()); 1522 1523 IdentifierInfo *II 1524 = &CGM.getContext().Idents.get("__destroy_helper_block_"); 1525 1526 FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), 1527 SourceLocation(), 1528 SourceLocation(), II, C.VoidTy, 1529 nullptr, SC_Static, 1530 false, false); 1531 1532 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 1533 1534 // Create a scope with an artificial location for the body of this function. 1535 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1536 StartFunction(FD, C.VoidTy, Fn, FI, args); 1537 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1538 1539 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); 1540 1541 Address src = GetAddrOfLocalVar(&srcDecl); 1542 src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign); 1543 src = Builder.CreateBitCast(src, structPtrTy, "block"); 1544 1545 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1546 1547 CodeGenFunction::RunCleanupsScope cleanups(*this); 1548 1549 for (const auto &CI : blockDecl->captures()) { 1550 const VarDecl *variable = CI.getVariable(); 1551 QualType type = variable->getType(); 1552 1553 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1554 if (capture.isConstant()) continue; 1555 1556 BlockFieldFlags flags; 1557 const CXXDestructorDecl *dtor = nullptr; 1558 1559 bool useARCWeakDestroy = false; 1560 bool useARCStrongDestroy = false; 1561 1562 if (CI.isByRef()) { 1563 flags = BLOCK_FIELD_IS_BYREF; 1564 if (type.isObjCGCWeak()) 1565 flags |= BLOCK_FIELD_IS_WEAK; 1566 } else if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { 1567 if (record->hasTrivialDestructor()) 1568 continue; 1569 dtor = record->getDestructor(); 1570 } else if (type->isObjCRetainableType()) { 1571 flags = BLOCK_FIELD_IS_OBJECT; 1572 if (type->isBlockPointerType()) 1573 flags = BLOCK_FIELD_IS_BLOCK; 1574 1575 // Special rules for ARC captures. 1576 Qualifiers qs = type.getQualifiers(); 1577 1578 // Use objc_storeStrong for __strong direct captures; the 1579 // dynamic tools really like it when we do this. 1580 if (qs.getObjCLifetime() == Qualifiers::OCL_Strong) { 1581 useARCStrongDestroy = true; 1582 1583 // Support __weak direct captures. 1584 } else if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) { 1585 useARCWeakDestroy = true; 1586 1587 // Non-ARC captures are strong, and we need to use _Block_object_dispose. 1588 } else if (!qs.hasObjCLifetime() && !getLangOpts().ObjCAutoRefCount) { 1589 // fall through 1590 1591 // Otherwise, we have nothing to do. 1592 } else { 1593 continue; 1594 } 1595 } else { 1596 continue; 1597 } 1598 1599 Address srcField = 1600 Builder.CreateStructGEP(src, capture.getIndex(), capture.getOffset()); 1601 1602 // If there's an explicit copy expression, we do that. 1603 if (dtor) { 1604 PushDestructorCleanup(dtor, srcField); 1605 1606 // If this is a __weak capture, emit the release directly. 1607 } else if (useARCWeakDestroy) { 1608 EmitARCDestroyWeak(srcField); 1609 1610 // Destroy strong objects with a call if requested. 1611 } else if (useARCStrongDestroy) { 1612 EmitARCDestroyStrong(srcField, ARCImpreciseLifetime); 1613 1614 // Otherwise we call _Block_object_dispose. It wouldn't be too 1615 // hard to just emit this as a cleanup if we wanted to make sure 1616 // that things were done in reverse. 1617 } else { 1618 llvm::Value *value = Builder.CreateLoad(srcField); 1619 value = Builder.CreateBitCast(value, VoidPtrTy); 1620 BuildBlockRelease(value, flags); 1621 } 1622 } 1623 1624 cleanups.ForceCleanup(); 1625 1626 FinishFunction(); 1627 1628 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 1629 } 1630 1631 namespace { 1632 1633 /// Emits the copy/dispose helper functions for a __block object of id type. 1634 class ObjectByrefHelpers final : public BlockByrefHelpers { 1635 BlockFieldFlags Flags; 1636 1637 public: 1638 ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags) 1639 : BlockByrefHelpers(alignment), Flags(flags) {} 1640 1641 void emitCopy(CodeGenFunction &CGF, Address destField, 1642 Address srcField) override { 1643 destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy); 1644 1645 srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy); 1646 llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField); 1647 1648 unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask(); 1649 1650 llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags); 1651 llvm::Value *fn = CGF.CGM.getBlockObjectAssign(); 1652 1653 llvm::Value *args[] = { destField.getPointer(), srcValue, flagsVal }; 1654 CGF.EmitNounwindRuntimeCall(fn, args); 1655 } 1656 1657 void emitDispose(CodeGenFunction &CGF, Address field) override { 1658 field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0)); 1659 llvm::Value *value = CGF.Builder.CreateLoad(field); 1660 1661 CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER); 1662 } 1663 1664 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1665 id.AddInteger(Flags.getBitMask()); 1666 } 1667 }; 1668 1669 /// Emits the copy/dispose helpers for an ARC __block __weak variable. 1670 class ARCWeakByrefHelpers final : public BlockByrefHelpers { 1671 public: 1672 ARCWeakByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} 1673 1674 void emitCopy(CodeGenFunction &CGF, Address destField, 1675 Address srcField) override { 1676 CGF.EmitARCMoveWeak(destField, srcField); 1677 } 1678 1679 void emitDispose(CodeGenFunction &CGF, Address field) override { 1680 CGF.EmitARCDestroyWeak(field); 1681 } 1682 1683 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1684 // 0 is distinguishable from all pointers and byref flags 1685 id.AddInteger(0); 1686 } 1687 }; 1688 1689 /// Emits the copy/dispose helpers for an ARC __block __strong variable 1690 /// that's not of block-pointer type. 1691 class ARCStrongByrefHelpers final : public BlockByrefHelpers { 1692 public: 1693 ARCStrongByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} 1694 1695 void emitCopy(CodeGenFunction &CGF, Address destField, 1696 Address srcField) override { 1697 // Do a "move" by copying the value and then zeroing out the old 1698 // variable. 1699 1700 llvm::Value *value = CGF.Builder.CreateLoad(srcField); 1701 1702 llvm::Value *null = 1703 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(value->getType())); 1704 1705 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 1706 CGF.Builder.CreateStore(null, destField); 1707 CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true); 1708 CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true); 1709 return; 1710 } 1711 CGF.Builder.CreateStore(value, destField); 1712 CGF.Builder.CreateStore(null, srcField); 1713 } 1714 1715 void emitDispose(CodeGenFunction &CGF, Address field) override { 1716 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); 1717 } 1718 1719 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1720 // 1 is distinguishable from all pointers and byref flags 1721 id.AddInteger(1); 1722 } 1723 }; 1724 1725 /// Emits the copy/dispose helpers for an ARC __block __strong 1726 /// variable that's of block-pointer type. 1727 class ARCStrongBlockByrefHelpers final : public BlockByrefHelpers { 1728 public: 1729 ARCStrongBlockByrefHelpers(CharUnits alignment) 1730 : BlockByrefHelpers(alignment) {} 1731 1732 void emitCopy(CodeGenFunction &CGF, Address destField, 1733 Address srcField) override { 1734 // Do the copy with objc_retainBlock; that's all that 1735 // _Block_object_assign would do anyway, and we'd have to pass the 1736 // right arguments to make sure it doesn't get no-op'ed. 1737 llvm::Value *oldValue = CGF.Builder.CreateLoad(srcField); 1738 llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true); 1739 CGF.Builder.CreateStore(copy, destField); 1740 } 1741 1742 void emitDispose(CodeGenFunction &CGF, Address field) override { 1743 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); 1744 } 1745 1746 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1747 // 2 is distinguishable from all pointers and byref flags 1748 id.AddInteger(2); 1749 } 1750 }; 1751 1752 /// Emits the copy/dispose helpers for a __block variable with a 1753 /// nontrivial copy constructor or destructor. 1754 class CXXByrefHelpers final : public BlockByrefHelpers { 1755 QualType VarType; 1756 const Expr *CopyExpr; 1757 1758 public: 1759 CXXByrefHelpers(CharUnits alignment, QualType type, 1760 const Expr *copyExpr) 1761 : BlockByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {} 1762 1763 bool needsCopy() const override { return CopyExpr != nullptr; } 1764 void emitCopy(CodeGenFunction &CGF, Address destField, 1765 Address srcField) override { 1766 if (!CopyExpr) return; 1767 CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr); 1768 } 1769 1770 void emitDispose(CodeGenFunction &CGF, Address field) override { 1771 EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin(); 1772 CGF.PushDestructorCleanup(VarType, field); 1773 CGF.PopCleanupBlocks(cleanupDepth); 1774 } 1775 1776 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1777 id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr()); 1778 } 1779 }; 1780 } // end anonymous namespace 1781 1782 static llvm::Constant * 1783 generateByrefCopyHelper(CodeGenFunction &CGF, const BlockByrefInfo &byrefInfo, 1784 BlockByrefHelpers &generator) { 1785 ASTContext &Context = CGF.getContext(); 1786 1787 QualType R = Context.VoidTy; 1788 1789 FunctionArgList args; 1790 ImplicitParamDecl dst(CGF.getContext(), nullptr, SourceLocation(), nullptr, 1791 Context.VoidPtrTy); 1792 args.push_back(&dst); 1793 1794 ImplicitParamDecl src(CGF.getContext(), nullptr, SourceLocation(), nullptr, 1795 Context.VoidPtrTy); 1796 args.push_back(&src); 1797 1798 const CGFunctionInfo &FI = 1799 CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(R, args); 1800 1801 llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI); 1802 1803 // FIXME: We'd like to put these into a mergable by content, with 1804 // internal linkage. 1805 llvm::Function *Fn = 1806 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1807 "__Block_byref_object_copy_", &CGF.CGM.getModule()); 1808 1809 IdentifierInfo *II 1810 = &Context.Idents.get("__Block_byref_object_copy_"); 1811 1812 FunctionDecl *FD = FunctionDecl::Create(Context, 1813 Context.getTranslationUnitDecl(), 1814 SourceLocation(), 1815 SourceLocation(), II, R, nullptr, 1816 SC_Static, 1817 false, false); 1818 1819 CGF.CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 1820 1821 CGF.StartFunction(FD, R, Fn, FI, args); 1822 1823 if (generator.needsCopy()) { 1824 llvm::Type *byrefPtrType = byrefInfo.Type->getPointerTo(0); 1825 1826 // dst->x 1827 Address destField = CGF.GetAddrOfLocalVar(&dst); 1828 destField = Address(CGF.Builder.CreateLoad(destField), 1829 byrefInfo.ByrefAlignment); 1830 destField = CGF.Builder.CreateBitCast(destField, byrefPtrType); 1831 destField = CGF.emitBlockByrefAddress(destField, byrefInfo, false, 1832 "dest-object"); 1833 1834 // src->x 1835 Address srcField = CGF.GetAddrOfLocalVar(&src); 1836 srcField = Address(CGF.Builder.CreateLoad(srcField), 1837 byrefInfo.ByrefAlignment); 1838 srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType); 1839 srcField = CGF.emitBlockByrefAddress(srcField, byrefInfo, false, 1840 "src-object"); 1841 1842 generator.emitCopy(CGF, destField, srcField); 1843 } 1844 1845 CGF.FinishFunction(); 1846 1847 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); 1848 } 1849 1850 /// Build the copy helper for a __block variable. 1851 static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM, 1852 const BlockByrefInfo &byrefInfo, 1853 BlockByrefHelpers &generator) { 1854 CodeGenFunction CGF(CGM); 1855 return generateByrefCopyHelper(CGF, byrefInfo, generator); 1856 } 1857 1858 /// Generate code for a __block variable's dispose helper. 1859 static llvm::Constant * 1860 generateByrefDisposeHelper(CodeGenFunction &CGF, 1861 const BlockByrefInfo &byrefInfo, 1862 BlockByrefHelpers &generator) { 1863 ASTContext &Context = CGF.getContext(); 1864 QualType R = Context.VoidTy; 1865 1866 FunctionArgList args; 1867 ImplicitParamDecl src(CGF.getContext(), nullptr, SourceLocation(), nullptr, 1868 Context.VoidPtrTy); 1869 args.push_back(&src); 1870 1871 const CGFunctionInfo &FI = 1872 CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(R, args); 1873 1874 llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI); 1875 1876 // FIXME: We'd like to put these into a mergable by content, with 1877 // internal linkage. 1878 llvm::Function *Fn = 1879 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1880 "__Block_byref_object_dispose_", 1881 &CGF.CGM.getModule()); 1882 1883 IdentifierInfo *II 1884 = &Context.Idents.get("__Block_byref_object_dispose_"); 1885 1886 FunctionDecl *FD = FunctionDecl::Create(Context, 1887 Context.getTranslationUnitDecl(), 1888 SourceLocation(), 1889 SourceLocation(), II, R, nullptr, 1890 SC_Static, 1891 false, false); 1892 1893 CGF.CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 1894 1895 CGF.StartFunction(FD, R, Fn, FI, args); 1896 1897 if (generator.needsDispose()) { 1898 Address addr = CGF.GetAddrOfLocalVar(&src); 1899 addr = Address(CGF.Builder.CreateLoad(addr), byrefInfo.ByrefAlignment); 1900 auto byrefPtrType = byrefInfo.Type->getPointerTo(0); 1901 addr = CGF.Builder.CreateBitCast(addr, byrefPtrType); 1902 addr = CGF.emitBlockByrefAddress(addr, byrefInfo, false, "object"); 1903 1904 generator.emitDispose(CGF, addr); 1905 } 1906 1907 CGF.FinishFunction(); 1908 1909 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); 1910 } 1911 1912 /// Build the dispose helper for a __block variable. 1913 static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM, 1914 const BlockByrefInfo &byrefInfo, 1915 BlockByrefHelpers &generator) { 1916 CodeGenFunction CGF(CGM); 1917 return generateByrefDisposeHelper(CGF, byrefInfo, generator); 1918 } 1919 1920 /// Lazily build the copy and dispose helpers for a __block variable 1921 /// with the given information. 1922 template <class T> 1923 static T *buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, 1924 T &&generator) { 1925 llvm::FoldingSetNodeID id; 1926 generator.Profile(id); 1927 1928 void *insertPos; 1929 BlockByrefHelpers *node 1930 = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos); 1931 if (node) return static_cast<T*>(node); 1932 1933 generator.CopyHelper = buildByrefCopyHelper(CGM, byrefInfo, generator); 1934 generator.DisposeHelper = buildByrefDisposeHelper(CGM, byrefInfo, generator); 1935 1936 T *copy = new (CGM.getContext()) T(std::move(generator)); 1937 CGM.ByrefHelpersCache.InsertNode(copy, insertPos); 1938 return copy; 1939 } 1940 1941 /// Build the copy and dispose helpers for the given __block variable 1942 /// emission. Places the helpers in the global cache. Returns null 1943 /// if no helpers are required. 1944 BlockByrefHelpers * 1945 CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType, 1946 const AutoVarEmission &emission) { 1947 const VarDecl &var = *emission.Variable; 1948 QualType type = var.getType(); 1949 1950 auto &byrefInfo = getBlockByrefInfo(&var); 1951 1952 // The alignment we care about for the purposes of uniquing byref 1953 // helpers is the alignment of the actual byref value field. 1954 CharUnits valueAlignment = 1955 byrefInfo.ByrefAlignment.alignmentAtOffset(byrefInfo.FieldOffset); 1956 1957 if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { 1958 const Expr *copyExpr = CGM.getContext().getBlockVarCopyInits(&var); 1959 if (!copyExpr && record->hasTrivialDestructor()) return nullptr; 1960 1961 return ::buildByrefHelpers( 1962 CGM, byrefInfo, CXXByrefHelpers(valueAlignment, type, copyExpr)); 1963 } 1964 1965 // Otherwise, if we don't have a retainable type, there's nothing to do. 1966 // that the runtime does extra copies. 1967 if (!type->isObjCRetainableType()) return nullptr; 1968 1969 Qualifiers qs = type.getQualifiers(); 1970 1971 // If we have lifetime, that dominates. 1972 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 1973 switch (lifetime) { 1974 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 1975 1976 // These are just bits as far as the runtime is concerned. 1977 case Qualifiers::OCL_ExplicitNone: 1978 case Qualifiers::OCL_Autoreleasing: 1979 return nullptr; 1980 1981 // Tell the runtime that this is ARC __weak, called by the 1982 // byref routines. 1983 case Qualifiers::OCL_Weak: 1984 return ::buildByrefHelpers(CGM, byrefInfo, 1985 ARCWeakByrefHelpers(valueAlignment)); 1986 1987 // ARC __strong __block variables need to be retained. 1988 case Qualifiers::OCL_Strong: 1989 // Block pointers need to be copied, and there's no direct 1990 // transfer possible. 1991 if (type->isBlockPointerType()) { 1992 return ::buildByrefHelpers(CGM, byrefInfo, 1993 ARCStrongBlockByrefHelpers(valueAlignment)); 1994 1995 // Otherwise, we transfer ownership of the retain from the stack 1996 // to the heap. 1997 } else { 1998 return ::buildByrefHelpers(CGM, byrefInfo, 1999 ARCStrongByrefHelpers(valueAlignment)); 2000 } 2001 } 2002 llvm_unreachable("fell out of lifetime switch!"); 2003 } 2004 2005 BlockFieldFlags flags; 2006 if (type->isBlockPointerType()) { 2007 flags |= BLOCK_FIELD_IS_BLOCK; 2008 } else if (CGM.getContext().isObjCNSObjectType(type) || 2009 type->isObjCObjectPointerType()) { 2010 flags |= BLOCK_FIELD_IS_OBJECT; 2011 } else { 2012 return nullptr; 2013 } 2014 2015 if (type.isObjCGCWeak()) 2016 flags |= BLOCK_FIELD_IS_WEAK; 2017 2018 return ::buildByrefHelpers(CGM, byrefInfo, 2019 ObjectByrefHelpers(valueAlignment, flags)); 2020 } 2021 2022 Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr, 2023 const VarDecl *var, 2024 bool followForward) { 2025 auto &info = getBlockByrefInfo(var); 2026 return emitBlockByrefAddress(baseAddr, info, followForward, var->getName()); 2027 } 2028 2029 Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr, 2030 const BlockByrefInfo &info, 2031 bool followForward, 2032 const llvm::Twine &name) { 2033 // Chase the forwarding address if requested. 2034 if (followForward) { 2035 Address forwardingAddr = 2036 Builder.CreateStructGEP(baseAddr, 1, getPointerSize(), "forwarding"); 2037 baseAddr = Address(Builder.CreateLoad(forwardingAddr), info.ByrefAlignment); 2038 } 2039 2040 return Builder.CreateStructGEP(baseAddr, info.FieldIndex, 2041 info.FieldOffset, name); 2042 } 2043 2044 /// BuildByrefInfo - This routine changes a __block variable declared as T x 2045 /// into: 2046 /// 2047 /// struct { 2048 /// void *__isa; 2049 /// void *__forwarding; 2050 /// int32_t __flags; 2051 /// int32_t __size; 2052 /// void *__copy_helper; // only if needed 2053 /// void *__destroy_helper; // only if needed 2054 /// void *__byref_variable_layout;// only if needed 2055 /// char padding[X]; // only if needed 2056 /// T x; 2057 /// } x 2058 /// 2059 const BlockByrefInfo &CodeGenFunction::getBlockByrefInfo(const VarDecl *D) { 2060 auto it = BlockByrefInfos.find(D); 2061 if (it != BlockByrefInfos.end()) 2062 return it->second; 2063 2064 llvm::StructType *byrefType = 2065 llvm::StructType::create(getLLVMContext(), 2066 "struct.__block_byref_" + D->getNameAsString()); 2067 2068 QualType Ty = D->getType(); 2069 2070 CharUnits size; 2071 SmallVector<llvm::Type *, 8> types; 2072 2073 // void *__isa; 2074 types.push_back(Int8PtrTy); 2075 size += getPointerSize(); 2076 2077 // void *__forwarding; 2078 types.push_back(llvm::PointerType::getUnqual(byrefType)); 2079 size += getPointerSize(); 2080 2081 // int32_t __flags; 2082 types.push_back(Int32Ty); 2083 size += CharUnits::fromQuantity(4); 2084 2085 // int32_t __size; 2086 types.push_back(Int32Ty); 2087 size += CharUnits::fromQuantity(4); 2088 2089 // Note that this must match *exactly* the logic in buildByrefHelpers. 2090 bool hasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D); 2091 if (hasCopyAndDispose) { 2092 /// void *__copy_helper; 2093 types.push_back(Int8PtrTy); 2094 size += getPointerSize(); 2095 2096 /// void *__destroy_helper; 2097 types.push_back(Int8PtrTy); 2098 size += getPointerSize(); 2099 } 2100 2101 bool HasByrefExtendedLayout = false; 2102 Qualifiers::ObjCLifetime Lifetime; 2103 if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) && 2104 HasByrefExtendedLayout) { 2105 /// void *__byref_variable_layout; 2106 types.push_back(Int8PtrTy); 2107 size += CharUnits::fromQuantity(PointerSizeInBytes); 2108 } 2109 2110 // T x; 2111 llvm::Type *varTy = ConvertTypeForMem(Ty); 2112 2113 bool packed = false; 2114 CharUnits varAlign = getContext().getDeclAlign(D); 2115 CharUnits varOffset = size.alignTo(varAlign); 2116 2117 // We may have to insert padding. 2118 if (varOffset != size) { 2119 llvm::Type *paddingTy = 2120 llvm::ArrayType::get(Int8Ty, (varOffset - size).getQuantity()); 2121 2122 types.push_back(paddingTy); 2123 size = varOffset; 2124 2125 // Conversely, we might have to prevent LLVM from inserting padding. 2126 } else if (CGM.getDataLayout().getABITypeAlignment(varTy) 2127 > varAlign.getQuantity()) { 2128 packed = true; 2129 } 2130 types.push_back(varTy); 2131 2132 byrefType->setBody(types, packed); 2133 2134 BlockByrefInfo info; 2135 info.Type = byrefType; 2136 info.FieldIndex = types.size() - 1; 2137 info.FieldOffset = varOffset; 2138 info.ByrefAlignment = std::max(varAlign, getPointerAlign()); 2139 2140 auto pair = BlockByrefInfos.insert({D, info}); 2141 assert(pair.second && "info was inserted recursively?"); 2142 return pair.first->second; 2143 } 2144 2145 /// Initialize the structural components of a __block variable, i.e. 2146 /// everything but the actual object. 2147 void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) { 2148 // Find the address of the local. 2149 Address addr = emission.Addr; 2150 2151 // That's an alloca of the byref structure type. 2152 llvm::StructType *byrefType = cast<llvm::StructType>( 2153 cast<llvm::PointerType>(addr.getPointer()->getType())->getElementType()); 2154 2155 unsigned nextHeaderIndex = 0; 2156 CharUnits nextHeaderOffset; 2157 auto storeHeaderField = [&](llvm::Value *value, CharUnits fieldSize, 2158 const Twine &name) { 2159 auto fieldAddr = Builder.CreateStructGEP(addr, nextHeaderIndex, 2160 nextHeaderOffset, name); 2161 Builder.CreateStore(value, fieldAddr); 2162 2163 nextHeaderIndex++; 2164 nextHeaderOffset += fieldSize; 2165 }; 2166 2167 // Build the byref helpers if necessary. This is null if we don't need any. 2168 BlockByrefHelpers *helpers = buildByrefHelpers(*byrefType, emission); 2169 2170 const VarDecl &D = *emission.Variable; 2171 QualType type = D.getType(); 2172 2173 bool HasByrefExtendedLayout; 2174 Qualifiers::ObjCLifetime ByrefLifetime; 2175 bool ByRefHasLifetime = 2176 getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout); 2177 2178 llvm::Value *V; 2179 2180 // Initialize the 'isa', which is just 0 or 1. 2181 int isa = 0; 2182 if (type.isObjCGCWeak()) 2183 isa = 1; 2184 V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa"); 2185 storeHeaderField(V, getPointerSize(), "byref.isa"); 2186 2187 // Store the address of the variable into its own forwarding pointer. 2188 storeHeaderField(addr.getPointer(), getPointerSize(), "byref.forwarding"); 2189 2190 // Blocks ABI: 2191 // c) the flags field is set to either 0 if no helper functions are 2192 // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are, 2193 BlockFlags flags; 2194 if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE; 2195 if (ByRefHasLifetime) { 2196 if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED; 2197 else switch (ByrefLifetime) { 2198 case Qualifiers::OCL_Strong: 2199 flags |= BLOCK_BYREF_LAYOUT_STRONG; 2200 break; 2201 case Qualifiers::OCL_Weak: 2202 flags |= BLOCK_BYREF_LAYOUT_WEAK; 2203 break; 2204 case Qualifiers::OCL_ExplicitNone: 2205 flags |= BLOCK_BYREF_LAYOUT_UNRETAINED; 2206 break; 2207 case Qualifiers::OCL_None: 2208 if (!type->isObjCObjectPointerType() && !type->isBlockPointerType()) 2209 flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT; 2210 break; 2211 default: 2212 break; 2213 } 2214 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2215 printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask()); 2216 if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE) 2217 printf(" BLOCK_BYREF_HAS_COPY_DISPOSE"); 2218 if (flags & BLOCK_BYREF_LAYOUT_MASK) { 2219 BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK); 2220 if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED) 2221 printf(" BLOCK_BYREF_LAYOUT_EXTENDED"); 2222 if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG) 2223 printf(" BLOCK_BYREF_LAYOUT_STRONG"); 2224 if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK) 2225 printf(" BLOCK_BYREF_LAYOUT_WEAK"); 2226 if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED) 2227 printf(" BLOCK_BYREF_LAYOUT_UNRETAINED"); 2228 if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT) 2229 printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT"); 2230 } 2231 printf("\n"); 2232 } 2233 } 2234 storeHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 2235 getIntSize(), "byref.flags"); 2236 2237 CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType); 2238 V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity()); 2239 storeHeaderField(V, getIntSize(), "byref.size"); 2240 2241 if (helpers) { 2242 storeHeaderField(helpers->CopyHelper, getPointerSize(), 2243 "byref.copyHelper"); 2244 storeHeaderField(helpers->DisposeHelper, getPointerSize(), 2245 "byref.disposeHelper"); 2246 } 2247 2248 if (ByRefHasLifetime && HasByrefExtendedLayout) { 2249 auto layoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type); 2250 storeHeaderField(layoutInfo, getPointerSize(), "byref.layout"); 2251 } 2252 } 2253 2254 void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags) { 2255 llvm::Value *F = CGM.getBlockObjectDispose(); 2256 llvm::Value *args[] = { 2257 Builder.CreateBitCast(V, Int8PtrTy), 2258 llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) 2259 }; 2260 EmitNounwindRuntimeCall(F, args); // FIXME: throwing destructors? 2261 } 2262 2263 namespace { 2264 /// Release a __block variable. 2265 struct CallBlockRelease final : EHScopeStack::Cleanup { 2266 llvm::Value *Addr; 2267 CallBlockRelease(llvm::Value *Addr) : Addr(Addr) {} 2268 2269 void Emit(CodeGenFunction &CGF, Flags flags) override { 2270 // Should we be passing FIELD_IS_WEAK here? 2271 CGF.BuildBlockRelease(Addr, BLOCK_FIELD_IS_BYREF); 2272 } 2273 }; 2274 } // end anonymous namespace 2275 2276 /// Enter a cleanup to destroy a __block variable. Note that this 2277 /// cleanup should be a no-op if the variable hasn't left the stack 2278 /// yet; if a cleanup is required for the variable itself, that needs 2279 /// to be done externally. 2280 void CodeGenFunction::enterByrefCleanup(const AutoVarEmission &emission) { 2281 // We don't enter this cleanup if we're in pure-GC mode. 2282 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) 2283 return; 2284 2285 EHStack.pushCleanup<CallBlockRelease>(NormalAndEHCleanup, 2286 emission.Addr.getPointer()); 2287 } 2288 2289 /// Adjust the declaration of something from the blocks API. 2290 static void configureBlocksRuntimeObject(CodeGenModule &CGM, 2291 llvm::Constant *C) { 2292 if (!CGM.getLangOpts().BlocksRuntimeOptional) return; 2293 2294 auto *GV = cast<llvm::GlobalValue>(C->stripPointerCasts()); 2295 if (GV->isDeclaration() && GV->hasExternalLinkage()) 2296 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2297 } 2298 2299 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2300 if (BlockObjectDispose) 2301 return BlockObjectDispose; 2302 2303 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2304 llvm::FunctionType *fty 2305 = llvm::FunctionType::get(VoidTy, args, false); 2306 BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose"); 2307 configureBlocksRuntimeObject(*this, BlockObjectDispose); 2308 return BlockObjectDispose; 2309 } 2310 2311 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2312 if (BlockObjectAssign) 2313 return BlockObjectAssign; 2314 2315 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2316 llvm::FunctionType *fty 2317 = llvm::FunctionType::get(VoidTy, args, false); 2318 BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign"); 2319 configureBlocksRuntimeObject(*this, BlockObjectAssign); 2320 return BlockObjectAssign; 2321 } 2322 2323 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2324 if (NSConcreteGlobalBlock) 2325 return NSConcreteGlobalBlock; 2326 2327 NSConcreteGlobalBlock = GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock", 2328 Int8PtrTy->getPointerTo(), 2329 nullptr); 2330 configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock); 2331 return NSConcreteGlobalBlock; 2332 } 2333 2334 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2335 if (NSConcreteStackBlock) 2336 return NSConcreteStackBlock; 2337 2338 NSConcreteStackBlock = GetOrCreateLLVMGlobal("_NSConcreteStackBlock", 2339 Int8PtrTy->getPointerTo(), 2340 nullptr); 2341 configureBlocksRuntimeObject(*this, NSConcreteStackBlock); 2342 return NSConcreteStackBlock; 2343 } 2344