1 //===--- CGBlocks.cpp - Emit LLVM Code for declarations ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/CodeGen/ConstantInitBuilder.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Module.h" 28 #include <algorithm> 29 #include <cstdio> 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name) 35 : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false), 36 HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false), 37 LocalAddress(Address::invalid()), StructureType(nullptr), Block(block), 38 DominatingIP(nullptr) { 39 40 // Skip asm prefix, if any. 'name' is usually taken directly from 41 // the mangled name of the enclosing function. 42 if (!name.empty() && name[0] == '\01') 43 name = name.substr(1); 44 } 45 46 // Anchor the vtable to this translation unit. 47 BlockByrefHelpers::~BlockByrefHelpers() {} 48 49 /// Build the given block as a global block. 50 static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, 51 const CGBlockInfo &blockInfo, 52 llvm::Constant *blockFn); 53 54 /// Build the helper function to copy a block. 55 static llvm::Constant *buildCopyHelper(CodeGenModule &CGM, 56 const CGBlockInfo &blockInfo) { 57 return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo); 58 } 59 60 /// Build the helper function to dispose of a block. 61 static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM, 62 const CGBlockInfo &blockInfo) { 63 return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo); 64 } 65 66 /// buildBlockDescriptor - Build the block descriptor meta-data for a block. 67 /// buildBlockDescriptor is accessed from 5th field of the Block_literal 68 /// meta-data and contains stationary information about the block literal. 69 /// Its definition will have 4 (or optinally 6) words. 70 /// \code 71 /// struct Block_descriptor { 72 /// unsigned long reserved; 73 /// unsigned long size; // size of Block_literal metadata in bytes. 74 /// void *copy_func_helper_decl; // optional copy helper. 75 /// void *destroy_func_decl; // optioanl destructor helper. 76 /// void *block_method_encoding_address; // @encode for block literal signature. 77 /// void *block_layout_info; // encoding of captured block variables. 78 /// }; 79 /// \endcode 80 static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM, 81 const CGBlockInfo &blockInfo) { 82 ASTContext &C = CGM.getContext(); 83 84 llvm::IntegerType *ulong = 85 cast<llvm::IntegerType>(CGM.getTypes().ConvertType(C.UnsignedLongTy)); 86 llvm::PointerType *i8p = nullptr; 87 if (CGM.getLangOpts().OpenCL) 88 i8p = 89 llvm::Type::getInt8PtrTy( 90 CGM.getLLVMContext(), C.getTargetAddressSpace(LangAS::opencl_constant)); 91 else 92 i8p = CGM.VoidPtrTy; 93 94 ConstantInitBuilder builder(CGM); 95 auto elements = builder.beginStruct(); 96 97 // reserved 98 elements.addInt(ulong, 0); 99 100 // Size 101 // FIXME: What is the right way to say this doesn't fit? We should give 102 // a user diagnostic in that case. Better fix would be to change the 103 // API to size_t. 104 elements.addInt(ulong, blockInfo.BlockSize.getQuantity()); 105 106 // Optional copy/dispose helpers. 107 if (blockInfo.NeedsCopyDispose) { 108 // copy_func_helper_decl 109 elements.add(buildCopyHelper(CGM, blockInfo)); 110 111 // destroy_func_decl 112 elements.add(buildDisposeHelper(CGM, blockInfo)); 113 } 114 115 // Signature. Mandatory ObjC-style method descriptor @encode sequence. 116 std::string typeAtEncoding = 117 CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr()); 118 elements.add(llvm::ConstantExpr::getBitCast( 119 CGM.GetAddrOfConstantCString(typeAtEncoding).getPointer(), i8p)); 120 121 // GC layout. 122 if (C.getLangOpts().ObjC1) { 123 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 124 elements.add(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo)); 125 else 126 elements.add(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo)); 127 } 128 else 129 elements.addNullPointer(i8p); 130 131 unsigned AddrSpace = 0; 132 if (C.getLangOpts().OpenCL) 133 AddrSpace = C.getTargetAddressSpace(LangAS::opencl_constant); 134 135 llvm::GlobalVariable *global = 136 elements.finishAndCreateGlobal("__block_descriptor_tmp", 137 CGM.getPointerAlign(), 138 /*constant*/ true, 139 llvm::GlobalValue::InternalLinkage, 140 AddrSpace); 141 142 return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType()); 143 } 144 145 /* 146 Purely notional variadic template describing the layout of a block. 147 148 template <class _ResultType, class... _ParamTypes, class... _CaptureTypes> 149 struct Block_literal { 150 /// Initialized to one of: 151 /// extern void *_NSConcreteStackBlock[]; 152 /// extern void *_NSConcreteGlobalBlock[]; 153 /// 154 /// In theory, we could start one off malloc'ed by setting 155 /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using 156 /// this isa: 157 /// extern void *_NSConcreteMallocBlock[]; 158 struct objc_class *isa; 159 160 /// These are the flags (with corresponding bit number) that the 161 /// compiler is actually supposed to know about. 162 /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block 163 /// descriptor provides copy and dispose helper functions 164 /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured 165 /// object with a nontrivial destructor or copy constructor 166 /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated 167 /// as global memory 168 /// 29. BLOCK_USE_STRET - indicates that the block function 169 /// uses stret, which objc_msgSend needs to know about 170 /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an 171 /// @encoded signature string 172 /// And we're not supposed to manipulate these: 173 /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved 174 /// to malloc'ed memory 175 /// 27. BLOCK_IS_GC - indicates that the block has been moved to 176 /// to GC-allocated memory 177 /// Additionally, the bottom 16 bits are a reference count which 178 /// should be zero on the stack. 179 int flags; 180 181 /// Reserved; should be zero-initialized. 182 int reserved; 183 184 /// Function pointer generated from block literal. 185 _ResultType (*invoke)(Block_literal *, _ParamTypes...); 186 187 /// Block description metadata generated from block literal. 188 struct Block_descriptor *block_descriptor; 189 190 /// Captured values follow. 191 _CapturesTypes captures...; 192 }; 193 */ 194 195 namespace { 196 /// A chunk of data that we actually have to capture in the block. 197 struct BlockLayoutChunk { 198 CharUnits Alignment; 199 CharUnits Size; 200 Qualifiers::ObjCLifetime Lifetime; 201 const BlockDecl::Capture *Capture; // null for 'this' 202 llvm::Type *Type; 203 QualType FieldType; 204 205 BlockLayoutChunk(CharUnits align, CharUnits size, 206 Qualifiers::ObjCLifetime lifetime, 207 const BlockDecl::Capture *capture, 208 llvm::Type *type, QualType fieldType) 209 : Alignment(align), Size(size), Lifetime(lifetime), 210 Capture(capture), Type(type), FieldType(fieldType) {} 211 212 /// Tell the block info that this chunk has the given field index. 213 void setIndex(CGBlockInfo &info, unsigned index, CharUnits offset) { 214 if (!Capture) { 215 info.CXXThisIndex = index; 216 info.CXXThisOffset = offset; 217 } else { 218 auto C = CGBlockInfo::Capture::makeIndex(index, offset, FieldType); 219 info.Captures.insert({Capture->getVariable(), C}); 220 } 221 } 222 }; 223 224 /// Order by 1) all __strong together 2) next, all byfref together 3) next, 225 /// all __weak together. Preserve descending alignment in all situations. 226 bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) { 227 if (left.Alignment != right.Alignment) 228 return left.Alignment > right.Alignment; 229 230 auto getPrefOrder = [](const BlockLayoutChunk &chunk) { 231 if (chunk.Capture && chunk.Capture->isByRef()) 232 return 1; 233 if (chunk.Lifetime == Qualifiers::OCL_Strong) 234 return 0; 235 if (chunk.Lifetime == Qualifiers::OCL_Weak) 236 return 2; 237 return 3; 238 }; 239 240 return getPrefOrder(left) < getPrefOrder(right); 241 } 242 } // end anonymous namespace 243 244 /// Determines if the given type is safe for constant capture in C++. 245 static bool isSafeForCXXConstantCapture(QualType type) { 246 const RecordType *recordType = 247 type->getBaseElementTypeUnsafe()->getAs<RecordType>(); 248 249 // Only records can be unsafe. 250 if (!recordType) return true; 251 252 const auto *record = cast<CXXRecordDecl>(recordType->getDecl()); 253 254 // Maintain semantics for classes with non-trivial dtors or copy ctors. 255 if (!record->hasTrivialDestructor()) return false; 256 if (record->hasNonTrivialCopyConstructor()) return false; 257 258 // Otherwise, we just have to make sure there aren't any mutable 259 // fields that might have changed since initialization. 260 return !record->hasMutableFields(); 261 } 262 263 /// It is illegal to modify a const object after initialization. 264 /// Therefore, if a const object has a constant initializer, we don't 265 /// actually need to keep storage for it in the block; we'll just 266 /// rematerialize it at the start of the block function. This is 267 /// acceptable because we make no promises about address stability of 268 /// captured variables. 269 static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM, 270 CodeGenFunction *CGF, 271 const VarDecl *var) { 272 // Return if this is a function parameter. We shouldn't try to 273 // rematerialize default arguments of function parameters. 274 if (isa<ParmVarDecl>(var)) 275 return nullptr; 276 277 QualType type = var->getType(); 278 279 // We can only do this if the variable is const. 280 if (!type.isConstQualified()) return nullptr; 281 282 // Furthermore, in C++ we have to worry about mutable fields: 283 // C++ [dcl.type.cv]p4: 284 // Except that any class member declared mutable can be 285 // modified, any attempt to modify a const object during its 286 // lifetime results in undefined behavior. 287 if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type)) 288 return nullptr; 289 290 // If the variable doesn't have any initializer (shouldn't this be 291 // invalid?), it's not clear what we should do. Maybe capture as 292 // zero? 293 const Expr *init = var->getInit(); 294 if (!init) return nullptr; 295 296 return ConstantEmitter(CGM, CGF).tryEmitAbstractForInitializer(*var); 297 } 298 299 /// Get the low bit of a nonzero character count. This is the 300 /// alignment of the nth byte if the 0th byte is universally aligned. 301 static CharUnits getLowBit(CharUnits v) { 302 return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1)); 303 } 304 305 static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info, 306 SmallVectorImpl<llvm::Type*> &elementTypes) { 307 308 assert(elementTypes.empty()); 309 if (CGM.getLangOpts().OpenCL) { 310 // The header is basically 'struct { int; int; generic void *; 311 // custom_fields; }'. Assert that struct is packed. 312 auto GenericAS = 313 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic); 314 auto GenPtrAlign = 315 CharUnits::fromQuantity(CGM.getTarget().getPointerAlign(GenericAS) / 8); 316 auto GenPtrSize = 317 CharUnits::fromQuantity(CGM.getTarget().getPointerWidth(GenericAS) / 8); 318 assert(CGM.getIntSize() <= GenPtrSize); 319 assert(CGM.getIntAlign() <= GenPtrAlign); 320 assert((2 * CGM.getIntSize()).isMultipleOf(GenPtrAlign)); 321 elementTypes.push_back(CGM.IntTy); /* total size */ 322 elementTypes.push_back(CGM.IntTy); /* align */ 323 elementTypes.push_back( 324 CGM.getOpenCLRuntime() 325 .getGenericVoidPointerType()); /* invoke function */ 326 unsigned Offset = 327 2 * CGM.getIntSize().getQuantity() + GenPtrSize.getQuantity(); 328 unsigned BlockAlign = GenPtrAlign.getQuantity(); 329 if (auto *Helper = 330 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { 331 for (auto I : Helper->getCustomFieldTypes()) /* custom fields */ { 332 // TargetOpenCLBlockHelp needs to make sure the struct is packed. 333 // If necessary, add padding fields to the custom fields. 334 unsigned Align = CGM.getDataLayout().getABITypeAlignment(I); 335 if (BlockAlign < Align) 336 BlockAlign = Align; 337 assert(Offset % Align == 0); 338 Offset += CGM.getDataLayout().getTypeAllocSize(I); 339 elementTypes.push_back(I); 340 } 341 } 342 info.BlockAlign = CharUnits::fromQuantity(BlockAlign); 343 info.BlockSize = CharUnits::fromQuantity(Offset); 344 } else { 345 // The header is basically 'struct { void *; int; int; void *; void *; }'. 346 // Assert that that struct is packed. 347 assert(CGM.getIntSize() <= CGM.getPointerSize()); 348 assert(CGM.getIntAlign() <= CGM.getPointerAlign()); 349 assert((2 * CGM.getIntSize()).isMultipleOf(CGM.getPointerAlign())); 350 info.BlockAlign = CGM.getPointerAlign(); 351 info.BlockSize = 3 * CGM.getPointerSize() + 2 * CGM.getIntSize(); 352 elementTypes.push_back(CGM.VoidPtrTy); 353 elementTypes.push_back(CGM.IntTy); 354 elementTypes.push_back(CGM.IntTy); 355 elementTypes.push_back(CGM.VoidPtrTy); 356 elementTypes.push_back(CGM.getBlockDescriptorType()); 357 } 358 } 359 360 static QualType getCaptureFieldType(const CodeGenFunction &CGF, 361 const BlockDecl::Capture &CI) { 362 const VarDecl *VD = CI.getVariable(); 363 364 // If the variable is captured by an enclosing block or lambda expression, 365 // use the type of the capture field. 366 if (CGF.BlockInfo && CI.isNested()) 367 return CGF.BlockInfo->getCapture(VD).fieldType(); 368 if (auto *FD = CGF.LambdaCaptureFields.lookup(VD)) 369 return FD->getType(); 370 return VD->getType(); 371 } 372 373 /// Compute the layout of the given block. Attempts to lay the block 374 /// out with minimal space requirements. 375 static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF, 376 CGBlockInfo &info) { 377 ASTContext &C = CGM.getContext(); 378 const BlockDecl *block = info.getBlockDecl(); 379 380 SmallVector<llvm::Type*, 8> elementTypes; 381 initializeForBlockHeader(CGM, info, elementTypes); 382 bool hasNonConstantCustomFields = false; 383 if (auto *OpenCLHelper = 384 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) 385 hasNonConstantCustomFields = 386 !OpenCLHelper->areAllCustomFieldValuesConstant(info); 387 if (!block->hasCaptures() && !hasNonConstantCustomFields) { 388 info.StructureType = 389 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 390 info.CanBeGlobal = true; 391 return; 392 } 393 else if (C.getLangOpts().ObjC1 && 394 CGM.getLangOpts().getGC() == LangOptions::NonGC) 395 info.HasCapturedVariableLayout = true; 396 397 // Collect the layout chunks. 398 SmallVector<BlockLayoutChunk, 16> layout; 399 layout.reserve(block->capturesCXXThis() + 400 (block->capture_end() - block->capture_begin())); 401 402 CharUnits maxFieldAlign; 403 404 // First, 'this'. 405 if (block->capturesCXXThis()) { 406 assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) && 407 "Can't capture 'this' outside a method"); 408 QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType(C); 409 410 // Theoretically, this could be in a different address space, so 411 // don't assume standard pointer size/align. 412 llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType); 413 std::pair<CharUnits,CharUnits> tinfo 414 = CGM.getContext().getTypeInfoInChars(thisType); 415 maxFieldAlign = std::max(maxFieldAlign, tinfo.second); 416 417 layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, 418 Qualifiers::OCL_None, 419 nullptr, llvmType, thisType)); 420 } 421 422 // Next, all the block captures. 423 for (const auto &CI : block->captures()) { 424 const VarDecl *variable = CI.getVariable(); 425 426 if (CI.isByRef()) { 427 // We have to copy/dispose of the __block reference. 428 info.NeedsCopyDispose = true; 429 430 // Just use void* instead of a pointer to the byref type. 431 CharUnits align = CGM.getPointerAlign(); 432 maxFieldAlign = std::max(maxFieldAlign, align); 433 434 layout.push_back(BlockLayoutChunk(align, CGM.getPointerSize(), 435 Qualifiers::OCL_None, &CI, 436 CGM.VoidPtrTy, variable->getType())); 437 continue; 438 } 439 440 // Otherwise, build a layout chunk with the size and alignment of 441 // the declaration. 442 if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) { 443 info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant); 444 continue; 445 } 446 447 // If we have a lifetime qualifier, honor it for capture purposes. 448 // That includes *not* copying it if it's __unsafe_unretained. 449 Qualifiers::ObjCLifetime lifetime = 450 variable->getType().getObjCLifetime(); 451 if (lifetime) { 452 switch (lifetime) { 453 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 454 case Qualifiers::OCL_ExplicitNone: 455 case Qualifiers::OCL_Autoreleasing: 456 break; 457 458 case Qualifiers::OCL_Strong: 459 case Qualifiers::OCL_Weak: 460 info.NeedsCopyDispose = true; 461 } 462 463 // Block pointers require copy/dispose. So do Objective-C pointers. 464 } else if (variable->getType()->isObjCRetainableType()) { 465 // But honor the inert __unsafe_unretained qualifier, which doesn't 466 // actually make it into the type system. 467 if (variable->getType()->isObjCInertUnsafeUnretainedType()) { 468 lifetime = Qualifiers::OCL_ExplicitNone; 469 } else { 470 info.NeedsCopyDispose = true; 471 // used for mrr below. 472 lifetime = Qualifiers::OCL_Strong; 473 } 474 475 // So do types that require non-trivial copy construction. 476 } else if (CI.hasCopyExpr()) { 477 info.NeedsCopyDispose = true; 478 info.HasCXXObject = true; 479 480 // And so do types with destructors. 481 } else if (CGM.getLangOpts().CPlusPlus) { 482 if (const CXXRecordDecl *record = 483 variable->getType()->getAsCXXRecordDecl()) { 484 if (!record->hasTrivialDestructor()) { 485 info.HasCXXObject = true; 486 info.NeedsCopyDispose = true; 487 } 488 } 489 } 490 491 QualType VT = getCaptureFieldType(*CGF, CI); 492 CharUnits size = C.getTypeSizeInChars(VT); 493 CharUnits align = C.getDeclAlign(variable); 494 495 maxFieldAlign = std::max(maxFieldAlign, align); 496 497 llvm::Type *llvmType = 498 CGM.getTypes().ConvertTypeForMem(VT); 499 500 layout.push_back( 501 BlockLayoutChunk(align, size, lifetime, &CI, llvmType, VT)); 502 } 503 504 // If that was everything, we're done here. 505 if (layout.empty()) { 506 info.StructureType = 507 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 508 info.CanBeGlobal = true; 509 return; 510 } 511 512 // Sort the layout by alignment. We have to use a stable sort here 513 // to get reproducible results. There should probably be an 514 // llvm::array_pod_stable_sort. 515 std::stable_sort(layout.begin(), layout.end()); 516 517 // Needed for blocks layout info. 518 info.BlockHeaderForcedGapOffset = info.BlockSize; 519 info.BlockHeaderForcedGapSize = CharUnits::Zero(); 520 521 CharUnits &blockSize = info.BlockSize; 522 info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign); 523 524 // Assuming that the first byte in the header is maximally aligned, 525 // get the alignment of the first byte following the header. 526 CharUnits endAlign = getLowBit(blockSize); 527 528 // If the end of the header isn't satisfactorily aligned for the 529 // maximum thing, look for things that are okay with the header-end 530 // alignment, and keep appending them until we get something that's 531 // aligned right. This algorithm is only guaranteed optimal if 532 // that condition is satisfied at some point; otherwise we can get 533 // things like: 534 // header // next byte has alignment 4 535 // something_with_size_5; // next byte has alignment 1 536 // something_with_alignment_8; 537 // which has 7 bytes of padding, as opposed to the naive solution 538 // which might have less (?). 539 if (endAlign < maxFieldAlign) { 540 SmallVectorImpl<BlockLayoutChunk>::iterator 541 li = layout.begin() + 1, le = layout.end(); 542 543 // Look for something that the header end is already 544 // satisfactorily aligned for. 545 for (; li != le && endAlign < li->Alignment; ++li) 546 ; 547 548 // If we found something that's naturally aligned for the end of 549 // the header, keep adding things... 550 if (li != le) { 551 SmallVectorImpl<BlockLayoutChunk>::iterator first = li; 552 for (; li != le; ++li) { 553 assert(endAlign >= li->Alignment); 554 555 li->setIndex(info, elementTypes.size(), blockSize); 556 elementTypes.push_back(li->Type); 557 blockSize += li->Size; 558 endAlign = getLowBit(blockSize); 559 560 // ...until we get to the alignment of the maximum field. 561 if (endAlign >= maxFieldAlign) { 562 break; 563 } 564 } 565 // Don't re-append everything we just appended. 566 layout.erase(first, li); 567 } 568 } 569 570 assert(endAlign == getLowBit(blockSize)); 571 572 // At this point, we just have to add padding if the end align still 573 // isn't aligned right. 574 if (endAlign < maxFieldAlign) { 575 CharUnits newBlockSize = blockSize.alignTo(maxFieldAlign); 576 CharUnits padding = newBlockSize - blockSize; 577 578 // If we haven't yet added any fields, remember that there was an 579 // initial gap; this need to go into the block layout bit map. 580 if (blockSize == info.BlockHeaderForcedGapOffset) { 581 info.BlockHeaderForcedGapSize = padding; 582 } 583 584 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, 585 padding.getQuantity())); 586 blockSize = newBlockSize; 587 endAlign = getLowBit(blockSize); // might be > maxFieldAlign 588 } 589 590 assert(endAlign >= maxFieldAlign); 591 assert(endAlign == getLowBit(blockSize)); 592 // Slam everything else on now. This works because they have 593 // strictly decreasing alignment and we expect that size is always a 594 // multiple of alignment. 595 for (SmallVectorImpl<BlockLayoutChunk>::iterator 596 li = layout.begin(), le = layout.end(); li != le; ++li) { 597 if (endAlign < li->Alignment) { 598 // size may not be multiple of alignment. This can only happen with 599 // an over-aligned variable. We will be adding a padding field to 600 // make the size be multiple of alignment. 601 CharUnits padding = li->Alignment - endAlign; 602 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, 603 padding.getQuantity())); 604 blockSize += padding; 605 endAlign = getLowBit(blockSize); 606 } 607 assert(endAlign >= li->Alignment); 608 li->setIndex(info, elementTypes.size(), blockSize); 609 elementTypes.push_back(li->Type); 610 blockSize += li->Size; 611 endAlign = getLowBit(blockSize); 612 } 613 614 info.StructureType = 615 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 616 } 617 618 /// Enter the scope of a block. This should be run at the entrance to 619 /// a full-expression so that the block's cleanups are pushed at the 620 /// right place in the stack. 621 static void enterBlockScope(CodeGenFunction &CGF, BlockDecl *block) { 622 assert(CGF.HaveInsertPoint()); 623 624 // Allocate the block info and place it at the head of the list. 625 CGBlockInfo &blockInfo = 626 *new CGBlockInfo(block, CGF.CurFn->getName()); 627 blockInfo.NextBlockInfo = CGF.FirstBlockInfo; 628 CGF.FirstBlockInfo = &blockInfo; 629 630 // Compute information about the layout, etc., of this block, 631 // pushing cleanups as necessary. 632 computeBlockInfo(CGF.CGM, &CGF, blockInfo); 633 634 // Nothing else to do if it can be global. 635 if (blockInfo.CanBeGlobal) return; 636 637 // Make the allocation for the block. 638 blockInfo.LocalAddress = CGF.CreateTempAlloca(blockInfo.StructureType, 639 blockInfo.BlockAlign, "block"); 640 641 // If there are cleanups to emit, enter them (but inactive). 642 if (!blockInfo.NeedsCopyDispose) return; 643 644 // Walk through the captures (in order) and find the ones not 645 // captured by constant. 646 for (const auto &CI : block->captures()) { 647 // Ignore __block captures; there's nothing special in the 648 // on-stack block that we need to do for them. 649 if (CI.isByRef()) continue; 650 651 // Ignore variables that are constant-captured. 652 const VarDecl *variable = CI.getVariable(); 653 CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 654 if (capture.isConstant()) continue; 655 656 // Ignore objects that aren't destructed. 657 QualType VT = getCaptureFieldType(CGF, CI); 658 QualType::DestructionKind dtorKind = VT.isDestructedType(); 659 if (dtorKind == QualType::DK_none) continue; 660 661 CodeGenFunction::Destroyer *destroyer; 662 663 // Block captures count as local values and have imprecise semantics. 664 // They also can't be arrays, so need to worry about that. 665 // 666 // For const-qualified captures, emit clang.arc.use to ensure the captured 667 // object doesn't get released while we are still depending on its validity 668 // within the block. 669 if (VT.isConstQualified() && 670 VT.getObjCLifetime() == Qualifiers::OCL_Strong && 671 CGF.CGM.getCodeGenOpts().OptimizationLevel != 0) { 672 assert(CGF.CGM.getLangOpts().ObjCAutoRefCount && 673 "expected ObjC ARC to be enabled"); 674 destroyer = CodeGenFunction::emitARCIntrinsicUse; 675 } else if (dtorKind == QualType::DK_objc_strong_lifetime) { 676 destroyer = CodeGenFunction::destroyARCStrongImprecise; 677 } else { 678 destroyer = CGF.getDestroyer(dtorKind); 679 } 680 681 // GEP down to the address. 682 Address addr = CGF.Builder.CreateStructGEP(blockInfo.LocalAddress, 683 capture.getIndex(), 684 capture.getOffset()); 685 686 // We can use that GEP as the dominating IP. 687 if (!blockInfo.DominatingIP) 688 blockInfo.DominatingIP = cast<llvm::Instruction>(addr.getPointer()); 689 690 CleanupKind cleanupKind = InactiveNormalCleanup; 691 bool useArrayEHCleanup = CGF.needsEHCleanup(dtorKind); 692 if (useArrayEHCleanup) 693 cleanupKind = InactiveNormalAndEHCleanup; 694 695 CGF.pushDestroy(cleanupKind, addr, VT, 696 destroyer, useArrayEHCleanup); 697 698 // Remember where that cleanup was. 699 capture.setCleanup(CGF.EHStack.stable_begin()); 700 } 701 } 702 703 /// Enter a full-expression with a non-trivial number of objects to 704 /// clean up. This is in this file because, at the moment, the only 705 /// kind of cleanup object is a BlockDecl*. 706 void CodeGenFunction::enterNonTrivialFullExpression(const ExprWithCleanups *E) { 707 assert(E->getNumObjects() != 0); 708 ArrayRef<ExprWithCleanups::CleanupObject> cleanups = E->getObjects(); 709 for (ArrayRef<ExprWithCleanups::CleanupObject>::iterator 710 i = cleanups.begin(), e = cleanups.end(); i != e; ++i) { 711 enterBlockScope(*this, *i); 712 } 713 } 714 715 /// Find the layout for the given block in a linked list and remove it. 716 static CGBlockInfo *findAndRemoveBlockInfo(CGBlockInfo **head, 717 const BlockDecl *block) { 718 while (true) { 719 assert(head && *head); 720 CGBlockInfo *cur = *head; 721 722 // If this is the block we're looking for, splice it out of the list. 723 if (cur->getBlockDecl() == block) { 724 *head = cur->NextBlockInfo; 725 return cur; 726 } 727 728 head = &cur->NextBlockInfo; 729 } 730 } 731 732 /// Destroy a chain of block layouts. 733 void CodeGenFunction::destroyBlockInfos(CGBlockInfo *head) { 734 assert(head && "destroying an empty chain"); 735 do { 736 CGBlockInfo *cur = head; 737 head = cur->NextBlockInfo; 738 delete cur; 739 } while (head != nullptr); 740 } 741 742 /// Emit a block literal expression in the current function. 743 llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr, 744 llvm::Function **InvokeF) { 745 // If the block has no captures, we won't have a pre-computed 746 // layout for it. 747 if (!blockExpr->getBlockDecl()->hasCaptures()) { 748 // The block literal is emitted as a global variable, and the block invoke 749 // function has to be extracted from its initializer. 750 if (llvm::Constant *Block = CGM.getAddrOfGlobalBlockIfEmitted(blockExpr)) { 751 if (InvokeF) { 752 auto *GV = cast<llvm::GlobalVariable>( 753 cast<llvm::Constant>(Block)->stripPointerCasts()); 754 auto *BlockInit = cast<llvm::ConstantStruct>(GV->getInitializer()); 755 *InvokeF = cast<llvm::Function>( 756 BlockInit->getAggregateElement(2)->stripPointerCasts()); 757 } 758 return Block; 759 } 760 CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName()); 761 computeBlockInfo(CGM, this, blockInfo); 762 blockInfo.BlockExpression = blockExpr; 763 return EmitBlockLiteral(blockInfo, InvokeF); 764 } 765 766 // Find the block info for this block and take ownership of it. 767 std::unique_ptr<CGBlockInfo> blockInfo; 768 blockInfo.reset(findAndRemoveBlockInfo(&FirstBlockInfo, 769 blockExpr->getBlockDecl())); 770 771 blockInfo->BlockExpression = blockExpr; 772 return EmitBlockLiteral(*blockInfo, InvokeF); 773 } 774 775 llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo, 776 llvm::Function **InvokeF) { 777 bool IsOpenCL = CGM.getContext().getLangOpts().OpenCL; 778 auto GenVoidPtrTy = 779 IsOpenCL ? CGM.getOpenCLRuntime().getGenericVoidPointerType() : VoidPtrTy; 780 LangAS GenVoidPtrAddr = IsOpenCL ? LangAS::opencl_generic : LangAS::Default; 781 auto GenVoidPtrSize = CharUnits::fromQuantity( 782 CGM.getTarget().getPointerWidth( 783 CGM.getContext().getTargetAddressSpace(GenVoidPtrAddr)) / 784 8); 785 // Using the computed layout, generate the actual block function. 786 bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda(); 787 auto *InvokeFn = CodeGenFunction(CGM, true).GenerateBlockFunction( 788 CurGD, blockInfo, LocalDeclMap, isLambdaConv, blockInfo.CanBeGlobal); 789 if (InvokeF) 790 *InvokeF = InvokeFn; 791 auto *blockFn = llvm::ConstantExpr::getPointerCast(InvokeFn, GenVoidPtrTy); 792 793 // If there is nothing to capture, we can emit this as a global block. 794 if (blockInfo.CanBeGlobal) 795 return CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression); 796 797 // Otherwise, we have to emit this as a local block. 798 799 Address blockAddr = blockInfo.LocalAddress; 800 assert(blockAddr.isValid() && "block has no address!"); 801 802 llvm::Constant *isa; 803 llvm::Constant *descriptor; 804 BlockFlags flags; 805 if (!IsOpenCL) { 806 isa = llvm::ConstantExpr::getBitCast(CGM.getNSConcreteStackBlock(), 807 VoidPtrTy); 808 809 // Build the block descriptor. 810 descriptor = buildBlockDescriptor(CGM, blockInfo); 811 812 // Compute the initial on-stack block flags. 813 flags = BLOCK_HAS_SIGNATURE; 814 if (blockInfo.HasCapturedVariableLayout) 815 flags |= BLOCK_HAS_EXTENDED_LAYOUT; 816 if (blockInfo.NeedsCopyDispose) 817 flags |= BLOCK_HAS_COPY_DISPOSE; 818 if (blockInfo.HasCXXObject) 819 flags |= BLOCK_HAS_CXX_OBJ; 820 if (blockInfo.UsesStret) 821 flags |= BLOCK_USE_STRET; 822 } 823 824 auto projectField = 825 [&](unsigned index, CharUnits offset, const Twine &name) -> Address { 826 return Builder.CreateStructGEP(blockAddr, index, offset, name); 827 }; 828 auto storeField = 829 [&](llvm::Value *value, unsigned index, CharUnits offset, 830 const Twine &name) { 831 Builder.CreateStore(value, projectField(index, offset, name)); 832 }; 833 834 // Initialize the block header. 835 { 836 // We assume all the header fields are densely packed. 837 unsigned index = 0; 838 CharUnits offset; 839 auto addHeaderField = 840 [&](llvm::Value *value, CharUnits size, const Twine &name) { 841 storeField(value, index, offset, name); 842 offset += size; 843 index++; 844 }; 845 846 if (!IsOpenCL) { 847 addHeaderField(isa, getPointerSize(), "block.isa"); 848 addHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 849 getIntSize(), "block.flags"); 850 addHeaderField(llvm::ConstantInt::get(IntTy, 0), getIntSize(), 851 "block.reserved"); 852 } else { 853 addHeaderField( 854 llvm::ConstantInt::get(IntTy, blockInfo.BlockSize.getQuantity()), 855 getIntSize(), "block.size"); 856 addHeaderField( 857 llvm::ConstantInt::get(IntTy, blockInfo.BlockAlign.getQuantity()), 858 getIntSize(), "block.align"); 859 } 860 addHeaderField(blockFn, GenVoidPtrSize, "block.invoke"); 861 if (!IsOpenCL) 862 addHeaderField(descriptor, getPointerSize(), "block.descriptor"); 863 else if (auto *Helper = 864 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { 865 for (auto I : Helper->getCustomFieldValues(*this, blockInfo)) { 866 addHeaderField( 867 I.first, 868 CharUnits::fromQuantity( 869 CGM.getDataLayout().getTypeAllocSize(I.first->getType())), 870 I.second); 871 } 872 } 873 } 874 875 // Finally, capture all the values into the block. 876 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 877 878 // First, 'this'. 879 if (blockDecl->capturesCXXThis()) { 880 Address addr = projectField(blockInfo.CXXThisIndex, blockInfo.CXXThisOffset, 881 "block.captured-this.addr"); 882 Builder.CreateStore(LoadCXXThis(), addr); 883 } 884 885 // Next, captured variables. 886 for (const auto &CI : blockDecl->captures()) { 887 const VarDecl *variable = CI.getVariable(); 888 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 889 890 // Ignore constant captures. 891 if (capture.isConstant()) continue; 892 893 QualType type = capture.fieldType(); 894 895 // This will be a [[type]]*, except that a byref entry will just be 896 // an i8**. 897 Address blockField = 898 projectField(capture.getIndex(), capture.getOffset(), "block.captured"); 899 900 // Compute the address of the thing we're going to move into the 901 // block literal. 902 Address src = Address::invalid(); 903 904 if (blockDecl->isConversionFromLambda()) { 905 // The lambda capture in a lambda's conversion-to-block-pointer is 906 // special; we'll simply emit it directly. 907 src = Address::invalid(); 908 } else if (CI.isByRef()) { 909 if (BlockInfo && CI.isNested()) { 910 // We need to use the capture from the enclosing block. 911 const CGBlockInfo::Capture &enclosingCapture = 912 BlockInfo->getCapture(variable); 913 914 // This is a [[type]]*, except that a byref entry wil just be an i8**. 915 src = Builder.CreateStructGEP(LoadBlockStruct(), 916 enclosingCapture.getIndex(), 917 enclosingCapture.getOffset(), 918 "block.capture.addr"); 919 } else { 920 auto I = LocalDeclMap.find(variable); 921 assert(I != LocalDeclMap.end()); 922 src = I->second; 923 } 924 } else { 925 DeclRefExpr declRef(const_cast<VarDecl *>(variable), 926 /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), 927 type.getNonReferenceType(), VK_LValue, 928 SourceLocation()); 929 src = EmitDeclRefLValue(&declRef).getAddress(); 930 }; 931 932 // For byrefs, we just write the pointer to the byref struct into 933 // the block field. There's no need to chase the forwarding 934 // pointer at this point, since we're building something that will 935 // live a shorter life than the stack byref anyway. 936 if (CI.isByRef()) { 937 // Get a void* that points to the byref struct. 938 llvm::Value *byrefPointer; 939 if (CI.isNested()) 940 byrefPointer = Builder.CreateLoad(src, "byref.capture"); 941 else 942 byrefPointer = Builder.CreateBitCast(src.getPointer(), VoidPtrTy); 943 944 // Write that void* into the capture field. 945 Builder.CreateStore(byrefPointer, blockField); 946 947 // If we have a copy constructor, evaluate that into the block field. 948 } else if (const Expr *copyExpr = CI.getCopyExpr()) { 949 if (blockDecl->isConversionFromLambda()) { 950 // If we have a lambda conversion, emit the expression 951 // directly into the block instead. 952 AggValueSlot Slot = 953 AggValueSlot::forAddr(blockField, Qualifiers(), 954 AggValueSlot::IsDestructed, 955 AggValueSlot::DoesNotNeedGCBarriers, 956 AggValueSlot::IsNotAliased); 957 EmitAggExpr(copyExpr, Slot); 958 } else { 959 EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr); 960 } 961 962 // If it's a reference variable, copy the reference into the block field. 963 } else if (type->isReferenceType()) { 964 Builder.CreateStore(src.getPointer(), blockField); 965 966 // If type is const-qualified, copy the value into the block field. 967 } else if (type.isConstQualified() && 968 type.getObjCLifetime() == Qualifiers::OCL_Strong && 969 CGM.getCodeGenOpts().OptimizationLevel != 0) { 970 llvm::Value *value = Builder.CreateLoad(src, "captured"); 971 Builder.CreateStore(value, blockField); 972 973 // If this is an ARC __strong block-pointer variable, don't do a 974 // block copy. 975 // 976 // TODO: this can be generalized into the normal initialization logic: 977 // we should never need to do a block-copy when initializing a local 978 // variable, because the local variable's lifetime should be strictly 979 // contained within the stack block's. 980 } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong && 981 type->isBlockPointerType()) { 982 // Load the block and do a simple retain. 983 llvm::Value *value = Builder.CreateLoad(src, "block.captured_block"); 984 value = EmitARCRetainNonBlock(value); 985 986 // Do a primitive store to the block field. 987 Builder.CreateStore(value, blockField); 988 989 // Otherwise, fake up a POD copy into the block field. 990 } else { 991 // Fake up a new variable so that EmitScalarInit doesn't think 992 // we're referring to the variable in its own initializer. 993 ImplicitParamDecl BlockFieldPseudoVar(getContext(), type, 994 ImplicitParamDecl::Other); 995 996 // We use one of these or the other depending on whether the 997 // reference is nested. 998 DeclRefExpr declRef(const_cast<VarDecl *>(variable), 999 /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), 1000 type, VK_LValue, SourceLocation()); 1001 1002 ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue, 1003 &declRef, VK_RValue); 1004 // FIXME: Pass a specific location for the expr init so that the store is 1005 // attributed to a reasonable location - otherwise it may be attributed to 1006 // locations of subexpressions in the initialization. 1007 EmitExprAsInit(&l2r, &BlockFieldPseudoVar, 1008 MakeAddrLValue(blockField, type, AlignmentSource::Decl), 1009 /*captured by init*/ false); 1010 } 1011 1012 // Activate the cleanup if layout pushed one. 1013 if (!CI.isByRef()) { 1014 EHScopeStack::stable_iterator cleanup = capture.getCleanup(); 1015 if (cleanup.isValid()) 1016 ActivateCleanupBlock(cleanup, blockInfo.DominatingIP); 1017 } 1018 } 1019 1020 // Cast to the converted block-pointer type, which happens (somewhat 1021 // unfortunately) to be a pointer to function type. 1022 llvm::Value *result = Builder.CreatePointerCast( 1023 blockAddr.getPointer(), ConvertType(blockInfo.getBlockExpr()->getType())); 1024 1025 return result; 1026 } 1027 1028 1029 llvm::Type *CodeGenModule::getBlockDescriptorType() { 1030 if (BlockDescriptorType) 1031 return BlockDescriptorType; 1032 1033 llvm::Type *UnsignedLongTy = 1034 getTypes().ConvertType(getContext().UnsignedLongTy); 1035 1036 // struct __block_descriptor { 1037 // unsigned long reserved; 1038 // unsigned long block_size; 1039 // 1040 // // later, the following will be added 1041 // 1042 // struct { 1043 // void (*copyHelper)(); 1044 // void (*copyHelper)(); 1045 // } helpers; // !!! optional 1046 // 1047 // const char *signature; // the block signature 1048 // const char *layout; // reserved 1049 // }; 1050 BlockDescriptorType = llvm::StructType::create( 1051 "struct.__block_descriptor", UnsignedLongTy, UnsignedLongTy); 1052 1053 // Now form a pointer to that. 1054 unsigned AddrSpace = 0; 1055 if (getLangOpts().OpenCL) 1056 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 1057 BlockDescriptorType = llvm::PointerType::get(BlockDescriptorType, AddrSpace); 1058 return BlockDescriptorType; 1059 } 1060 1061 llvm::Type *CodeGenModule::getGenericBlockLiteralType() { 1062 if (GenericBlockLiteralType) 1063 return GenericBlockLiteralType; 1064 1065 llvm::Type *BlockDescPtrTy = getBlockDescriptorType(); 1066 1067 if (getLangOpts().OpenCL) { 1068 // struct __opencl_block_literal_generic { 1069 // int __size; 1070 // int __align; 1071 // __generic void *__invoke; 1072 // /* custom fields */ 1073 // }; 1074 SmallVector<llvm::Type *, 8> StructFields( 1075 {IntTy, IntTy, getOpenCLRuntime().getGenericVoidPointerType()}); 1076 if (auto *Helper = getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { 1077 for (auto I : Helper->getCustomFieldTypes()) 1078 StructFields.push_back(I); 1079 } 1080 GenericBlockLiteralType = llvm::StructType::create( 1081 StructFields, "struct.__opencl_block_literal_generic"); 1082 } else { 1083 // struct __block_literal_generic { 1084 // void *__isa; 1085 // int __flags; 1086 // int __reserved; 1087 // void (*__invoke)(void *); 1088 // struct __block_descriptor *__descriptor; 1089 // }; 1090 GenericBlockLiteralType = 1091 llvm::StructType::create("struct.__block_literal_generic", VoidPtrTy, 1092 IntTy, IntTy, VoidPtrTy, BlockDescPtrTy); 1093 } 1094 1095 return GenericBlockLiteralType; 1096 } 1097 1098 RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E, 1099 ReturnValueSlot ReturnValue) { 1100 const BlockPointerType *BPT = 1101 E->getCallee()->getType()->getAs<BlockPointerType>(); 1102 1103 llvm::Value *BlockPtr = EmitScalarExpr(E->getCallee()); 1104 1105 // Get a pointer to the generic block literal. 1106 // For OpenCL we generate generic AS void ptr to be able to reuse the same 1107 // block definition for blocks with captures generated as private AS local 1108 // variables and without captures generated as global AS program scope 1109 // variables. 1110 unsigned AddrSpace = 0; 1111 if (getLangOpts().OpenCL) 1112 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_generic); 1113 1114 llvm::Type *BlockLiteralTy = 1115 llvm::PointerType::get(CGM.getGenericBlockLiteralType(), AddrSpace); 1116 1117 // Bitcast the callee to a block literal. 1118 BlockPtr = 1119 Builder.CreatePointerCast(BlockPtr, BlockLiteralTy, "block.literal"); 1120 1121 // Get the function pointer from the literal. 1122 llvm::Value *FuncPtr = 1123 Builder.CreateStructGEP(CGM.getGenericBlockLiteralType(), BlockPtr, 1124 CGM.getLangOpts().OpenCL ? 2 : 3); 1125 1126 // Add the block literal. 1127 CallArgList Args; 1128 1129 QualType VoidPtrQualTy = getContext().VoidPtrTy; 1130 llvm::Type *GenericVoidPtrTy = VoidPtrTy; 1131 if (getLangOpts().OpenCL) { 1132 GenericVoidPtrTy = CGM.getOpenCLRuntime().getGenericVoidPointerType(); 1133 VoidPtrQualTy = 1134 getContext().getPointerType(getContext().getAddrSpaceQualType( 1135 getContext().VoidTy, LangAS::opencl_generic)); 1136 } 1137 1138 BlockPtr = Builder.CreatePointerCast(BlockPtr, GenericVoidPtrTy); 1139 Args.add(RValue::get(BlockPtr), VoidPtrQualTy); 1140 1141 QualType FnType = BPT->getPointeeType(); 1142 1143 // And the rest of the arguments. 1144 EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), E->arguments()); 1145 1146 // Load the function. 1147 llvm::Value *Func = Builder.CreateAlignedLoad(FuncPtr, getPointerAlign()); 1148 1149 const FunctionType *FuncTy = FnType->castAs<FunctionType>(); 1150 const CGFunctionInfo &FnInfo = 1151 CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy); 1152 1153 // Cast the function pointer to the right type. 1154 llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo); 1155 1156 llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy); 1157 Func = Builder.CreatePointerCast(Func, BlockFTyPtr); 1158 1159 // Prepare the callee. 1160 CGCallee Callee(CGCalleeInfo(), Func); 1161 1162 // And call the block. 1163 return EmitCall(FnInfo, Callee, ReturnValue, Args); 1164 } 1165 1166 Address CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable, 1167 bool isByRef) { 1168 assert(BlockInfo && "evaluating block ref without block information?"); 1169 const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable); 1170 1171 // Handle constant captures. 1172 if (capture.isConstant()) return LocalDeclMap.find(variable)->second; 1173 1174 Address addr = 1175 Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(), 1176 capture.getOffset(), "block.capture.addr"); 1177 1178 if (isByRef) { 1179 // addr should be a void** right now. Load, then cast the result 1180 // to byref*. 1181 1182 auto &byrefInfo = getBlockByrefInfo(variable); 1183 addr = Address(Builder.CreateLoad(addr), byrefInfo.ByrefAlignment); 1184 1185 auto byrefPointerType = llvm::PointerType::get(byrefInfo.Type, 0); 1186 addr = Builder.CreateBitCast(addr, byrefPointerType, "byref.addr"); 1187 1188 addr = emitBlockByrefAddress(addr, byrefInfo, /*follow*/ true, 1189 variable->getName()); 1190 } 1191 1192 if (auto refType = capture.fieldType()->getAs<ReferenceType>()) 1193 addr = EmitLoadOfReference(addr, refType); 1194 1195 return addr; 1196 } 1197 1198 void CodeGenModule::setAddrOfGlobalBlock(const BlockExpr *BE, 1199 llvm::Constant *Addr) { 1200 bool Ok = EmittedGlobalBlocks.insert(std::make_pair(BE, Addr)).second; 1201 (void)Ok; 1202 assert(Ok && "Trying to replace an already-existing global block!"); 1203 } 1204 1205 llvm::Constant * 1206 CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *BE, 1207 StringRef Name) { 1208 if (llvm::Constant *Block = getAddrOfGlobalBlockIfEmitted(BE)) 1209 return Block; 1210 1211 CGBlockInfo blockInfo(BE->getBlockDecl(), Name); 1212 blockInfo.BlockExpression = BE; 1213 1214 // Compute information about the layout, etc., of this block. 1215 computeBlockInfo(*this, nullptr, blockInfo); 1216 1217 // Using that metadata, generate the actual block function. 1218 { 1219 CodeGenFunction::DeclMapTy LocalDeclMap; 1220 CodeGenFunction(*this).GenerateBlockFunction( 1221 GlobalDecl(), blockInfo, LocalDeclMap, 1222 /*IsLambdaConversionToBlock*/ false, /*BuildGlobalBlock*/ true); 1223 } 1224 1225 return getAddrOfGlobalBlockIfEmitted(BE); 1226 } 1227 1228 static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, 1229 const CGBlockInfo &blockInfo, 1230 llvm::Constant *blockFn) { 1231 assert(blockInfo.CanBeGlobal); 1232 // Callers should detect this case on their own: calling this function 1233 // generally requires computing layout information, which is a waste of time 1234 // if we've already emitted this block. 1235 assert(!CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression) && 1236 "Refusing to re-emit a global block."); 1237 1238 // Generate the constants for the block literal initializer. 1239 ConstantInitBuilder builder(CGM); 1240 auto fields = builder.beginStruct(); 1241 1242 bool IsOpenCL = CGM.getLangOpts().OpenCL; 1243 if (!IsOpenCL) { 1244 // isa 1245 fields.add(CGM.getNSConcreteGlobalBlock()); 1246 1247 // __flags 1248 BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE; 1249 if (blockInfo.UsesStret) 1250 flags |= BLOCK_USE_STRET; 1251 1252 fields.addInt(CGM.IntTy, flags.getBitMask()); 1253 1254 // Reserved 1255 fields.addInt(CGM.IntTy, 0); 1256 } else { 1257 fields.addInt(CGM.IntTy, blockInfo.BlockSize.getQuantity()); 1258 fields.addInt(CGM.IntTy, blockInfo.BlockAlign.getQuantity()); 1259 } 1260 1261 // Function 1262 fields.add(blockFn); 1263 1264 if (!IsOpenCL) { 1265 // Descriptor 1266 fields.add(buildBlockDescriptor(CGM, blockInfo)); 1267 } else if (auto *Helper = 1268 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { 1269 for (auto I : Helper->getCustomFieldValues(CGM, blockInfo)) { 1270 fields.add(I); 1271 } 1272 } 1273 1274 unsigned AddrSpace = 0; 1275 if (CGM.getContext().getLangOpts().OpenCL) 1276 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 1277 1278 llvm::Constant *literal = fields.finishAndCreateGlobal( 1279 "__block_literal_global", blockInfo.BlockAlign, 1280 /*constant*/ true, llvm::GlobalVariable::InternalLinkage, AddrSpace); 1281 1282 // Return a constant of the appropriately-casted type. 1283 llvm::Type *RequiredType = 1284 CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType()); 1285 llvm::Constant *Result = 1286 llvm::ConstantExpr::getPointerCast(literal, RequiredType); 1287 CGM.setAddrOfGlobalBlock(blockInfo.BlockExpression, Result); 1288 return Result; 1289 } 1290 1291 void CodeGenFunction::setBlockContextParameter(const ImplicitParamDecl *D, 1292 unsigned argNum, 1293 llvm::Value *arg) { 1294 assert(BlockInfo && "not emitting prologue of block invocation function?!"); 1295 1296 llvm::Value *localAddr = nullptr; 1297 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1298 // Allocate a stack slot to let the debug info survive the RA. 1299 Address alloc = CreateMemTemp(D->getType(), D->getName() + ".addr"); 1300 Builder.CreateStore(arg, alloc); 1301 localAddr = Builder.CreateLoad(alloc); 1302 } 1303 1304 if (CGDebugInfo *DI = getDebugInfo()) { 1305 if (CGM.getCodeGenOpts().getDebugInfo() >= 1306 codegenoptions::LimitedDebugInfo) { 1307 DI->setLocation(D->getLocation()); 1308 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, arg, argNum, 1309 localAddr, Builder); 1310 } 1311 } 1312 1313 SourceLocation StartLoc = BlockInfo->getBlockExpr()->getBody()->getLocStart(); 1314 ApplyDebugLocation Scope(*this, StartLoc); 1315 1316 // Instead of messing around with LocalDeclMap, just set the value 1317 // directly as BlockPointer. 1318 BlockPointer = Builder.CreatePointerCast( 1319 arg, 1320 BlockInfo->StructureType->getPointerTo( 1321 getContext().getLangOpts().OpenCL 1322 ? getContext().getTargetAddressSpace(LangAS::opencl_generic) 1323 : 0), 1324 "block"); 1325 } 1326 1327 Address CodeGenFunction::LoadBlockStruct() { 1328 assert(BlockInfo && "not in a block invocation function!"); 1329 assert(BlockPointer && "no block pointer set!"); 1330 return Address(BlockPointer, BlockInfo->BlockAlign); 1331 } 1332 1333 llvm::Function * 1334 CodeGenFunction::GenerateBlockFunction(GlobalDecl GD, 1335 const CGBlockInfo &blockInfo, 1336 const DeclMapTy &ldm, 1337 bool IsLambdaConversionToBlock, 1338 bool BuildGlobalBlock) { 1339 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1340 1341 CurGD = GD; 1342 1343 CurEHLocation = blockInfo.getBlockExpr()->getLocEnd(); 1344 1345 BlockInfo = &blockInfo; 1346 1347 // Arrange for local static and local extern declarations to appear 1348 // to be local to this function as well, in case they're directly 1349 // referenced in a block. 1350 for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) { 1351 const auto *var = dyn_cast<VarDecl>(i->first); 1352 if (var && !var->hasLocalStorage()) 1353 setAddrOfLocalVar(var, i->second); 1354 } 1355 1356 // Begin building the function declaration. 1357 1358 // Build the argument list. 1359 FunctionArgList args; 1360 1361 // The first argument is the block pointer. Just take it as a void* 1362 // and cast it later. 1363 QualType selfTy = getContext().VoidPtrTy; 1364 1365 // For OpenCL passed block pointer can be private AS local variable or 1366 // global AS program scope variable (for the case with and without captures). 1367 // Generic AS is used therefore to be able to accommodate both private and 1368 // generic AS in one implementation. 1369 if (getLangOpts().OpenCL) 1370 selfTy = getContext().getPointerType(getContext().getAddrSpaceQualType( 1371 getContext().VoidTy, LangAS::opencl_generic)); 1372 1373 IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor"); 1374 1375 ImplicitParamDecl SelfDecl(getContext(), const_cast<BlockDecl *>(blockDecl), 1376 SourceLocation(), II, selfTy, 1377 ImplicitParamDecl::ObjCSelf); 1378 args.push_back(&SelfDecl); 1379 1380 // Now add the rest of the parameters. 1381 args.append(blockDecl->param_begin(), blockDecl->param_end()); 1382 1383 // Create the function declaration. 1384 const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType(); 1385 const CGFunctionInfo &fnInfo = 1386 CGM.getTypes().arrangeBlockFunctionDeclaration(fnType, args); 1387 if (CGM.ReturnSlotInterferesWithArgs(fnInfo)) 1388 blockInfo.UsesStret = true; 1389 1390 llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo); 1391 1392 StringRef name = CGM.getBlockMangledName(GD, blockDecl); 1393 llvm::Function *fn = llvm::Function::Create( 1394 fnLLVMType, llvm::GlobalValue::InternalLinkage, name, &CGM.getModule()); 1395 CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo); 1396 1397 if (BuildGlobalBlock) { 1398 auto GenVoidPtrTy = getContext().getLangOpts().OpenCL 1399 ? CGM.getOpenCLRuntime().getGenericVoidPointerType() 1400 : VoidPtrTy; 1401 buildGlobalBlock(CGM, blockInfo, 1402 llvm::ConstantExpr::getPointerCast(fn, GenVoidPtrTy)); 1403 } 1404 1405 // Begin generating the function. 1406 StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args, 1407 blockDecl->getLocation(), 1408 blockInfo.getBlockExpr()->getBody()->getLocStart()); 1409 1410 // Okay. Undo some of what StartFunction did. 1411 1412 // At -O0 we generate an explicit alloca for the BlockPointer, so the RA 1413 // won't delete the dbg.declare intrinsics for captured variables. 1414 llvm::Value *BlockPointerDbgLoc = BlockPointer; 1415 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1416 // Allocate a stack slot for it, so we can point the debugger to it 1417 Address Alloca = CreateTempAlloca(BlockPointer->getType(), 1418 getPointerAlign(), 1419 "block.addr"); 1420 // Set the DebugLocation to empty, so the store is recognized as a 1421 // frame setup instruction by llvm::DwarfDebug::beginFunction(). 1422 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1423 Builder.CreateStore(BlockPointer, Alloca); 1424 BlockPointerDbgLoc = Alloca.getPointer(); 1425 } 1426 1427 // If we have a C++ 'this' reference, go ahead and force it into 1428 // existence now. 1429 if (blockDecl->capturesCXXThis()) { 1430 Address addr = 1431 Builder.CreateStructGEP(LoadBlockStruct(), blockInfo.CXXThisIndex, 1432 blockInfo.CXXThisOffset, "block.captured-this"); 1433 CXXThisValue = Builder.CreateLoad(addr, "this"); 1434 } 1435 1436 // Also force all the constant captures. 1437 for (const auto &CI : blockDecl->captures()) { 1438 const VarDecl *variable = CI.getVariable(); 1439 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1440 if (!capture.isConstant()) continue; 1441 1442 CharUnits align = getContext().getDeclAlign(variable); 1443 Address alloca = 1444 CreateMemTemp(variable->getType(), align, "block.captured-const"); 1445 1446 Builder.CreateStore(capture.getConstant(), alloca); 1447 1448 setAddrOfLocalVar(variable, alloca); 1449 } 1450 1451 // Save a spot to insert the debug information for all the DeclRefExprs. 1452 llvm::BasicBlock *entry = Builder.GetInsertBlock(); 1453 llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint(); 1454 --entry_ptr; 1455 1456 if (IsLambdaConversionToBlock) 1457 EmitLambdaBlockInvokeBody(); 1458 else { 1459 PGO.assignRegionCounters(GlobalDecl(blockDecl), fn); 1460 incrementProfileCounter(blockDecl->getBody()); 1461 EmitStmt(blockDecl->getBody()); 1462 } 1463 1464 // Remember where we were... 1465 llvm::BasicBlock *resume = Builder.GetInsertBlock(); 1466 1467 // Go back to the entry. 1468 ++entry_ptr; 1469 Builder.SetInsertPoint(entry, entry_ptr); 1470 1471 // Emit debug information for all the DeclRefExprs. 1472 // FIXME: also for 'this' 1473 if (CGDebugInfo *DI = getDebugInfo()) { 1474 for (const auto &CI : blockDecl->captures()) { 1475 const VarDecl *variable = CI.getVariable(); 1476 DI->EmitLocation(Builder, variable->getLocation()); 1477 1478 if (CGM.getCodeGenOpts().getDebugInfo() >= 1479 codegenoptions::LimitedDebugInfo) { 1480 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1481 if (capture.isConstant()) { 1482 auto addr = LocalDeclMap.find(variable)->second; 1483 DI->EmitDeclareOfAutoVariable(variable, addr.getPointer(), 1484 Builder); 1485 continue; 1486 } 1487 1488 DI->EmitDeclareOfBlockDeclRefVariable( 1489 variable, BlockPointerDbgLoc, Builder, blockInfo, 1490 entry_ptr == entry->end() ? nullptr : &*entry_ptr); 1491 } 1492 } 1493 // Recover location if it was changed in the above loop. 1494 DI->EmitLocation(Builder, 1495 cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); 1496 } 1497 1498 // And resume where we left off. 1499 if (resume == nullptr) 1500 Builder.ClearInsertionPoint(); 1501 else 1502 Builder.SetInsertPoint(resume); 1503 1504 FinishFunction(cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); 1505 1506 return fn; 1507 } 1508 1509 namespace { 1510 1511 /// Represents a type of copy/destroy operation that should be performed for an 1512 /// entity that's captured by a block. 1513 enum class BlockCaptureEntityKind { 1514 CXXRecord, // Copy or destroy 1515 ARCWeak, 1516 ARCStrong, 1517 BlockObject, // Assign or release 1518 None 1519 }; 1520 1521 /// Represents a captured entity that requires extra operations in order for 1522 /// this entity to be copied or destroyed correctly. 1523 struct BlockCaptureManagedEntity { 1524 BlockCaptureEntityKind Kind; 1525 BlockFieldFlags Flags; 1526 const BlockDecl::Capture &CI; 1527 const CGBlockInfo::Capture &Capture; 1528 1529 BlockCaptureManagedEntity(BlockCaptureEntityKind Type, BlockFieldFlags Flags, 1530 const BlockDecl::Capture &CI, 1531 const CGBlockInfo::Capture &Capture) 1532 : Kind(Type), Flags(Flags), CI(CI), Capture(Capture) {} 1533 }; 1534 1535 } // end anonymous namespace 1536 1537 static std::pair<BlockCaptureEntityKind, BlockFieldFlags> 1538 computeCopyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T, 1539 const LangOptions &LangOpts) { 1540 if (CI.getCopyExpr()) { 1541 assert(!CI.isByRef()); 1542 // don't bother computing flags 1543 return std::make_pair(BlockCaptureEntityKind::CXXRecord, BlockFieldFlags()); 1544 } 1545 BlockFieldFlags Flags; 1546 if (CI.isByRef()) { 1547 Flags = BLOCK_FIELD_IS_BYREF; 1548 if (T.isObjCGCWeak()) 1549 Flags |= BLOCK_FIELD_IS_WEAK; 1550 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); 1551 } 1552 if (!T->isObjCRetainableType()) 1553 // For all other types, the memcpy is fine. 1554 return std::make_pair(BlockCaptureEntityKind::None, Flags); 1555 1556 Flags = BLOCK_FIELD_IS_OBJECT; 1557 bool isBlockPointer = T->isBlockPointerType(); 1558 if (isBlockPointer) 1559 Flags = BLOCK_FIELD_IS_BLOCK; 1560 1561 // Special rules for ARC captures: 1562 Qualifiers QS = T.getQualifiers(); 1563 1564 // We need to register __weak direct captures with the runtime. 1565 if (QS.getObjCLifetime() == Qualifiers::OCL_Weak) 1566 return std::make_pair(BlockCaptureEntityKind::ARCWeak, Flags); 1567 1568 // We need to retain the copied value for __strong direct captures. 1569 if (QS.getObjCLifetime() == Qualifiers::OCL_Strong) { 1570 // If it's a block pointer, we have to copy the block and 1571 // assign that to the destination pointer, so we might as 1572 // well use _Block_object_assign. Otherwise we can avoid that. 1573 return std::make_pair(!isBlockPointer ? BlockCaptureEntityKind::ARCStrong 1574 : BlockCaptureEntityKind::BlockObject, 1575 Flags); 1576 } 1577 1578 // Non-ARC captures of retainable pointers are strong and 1579 // therefore require a call to _Block_object_assign. 1580 if (!QS.getObjCLifetime() && !LangOpts.ObjCAutoRefCount) 1581 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); 1582 1583 // Otherwise the memcpy is fine. 1584 return std::make_pair(BlockCaptureEntityKind::None, Flags); 1585 } 1586 1587 /// Find the set of block captures that need to be explicitly copied or destroy. 1588 static void findBlockCapturedManagedEntities( 1589 const CGBlockInfo &BlockInfo, const LangOptions &LangOpts, 1590 SmallVectorImpl<BlockCaptureManagedEntity> &ManagedCaptures, 1591 llvm::function_ref<std::pair<BlockCaptureEntityKind, BlockFieldFlags>( 1592 const BlockDecl::Capture &, QualType, const LangOptions &)> 1593 Predicate) { 1594 for (const auto &CI : BlockInfo.getBlockDecl()->captures()) { 1595 const VarDecl *Variable = CI.getVariable(); 1596 const CGBlockInfo::Capture &Capture = BlockInfo.getCapture(Variable); 1597 if (Capture.isConstant()) 1598 continue; 1599 1600 auto Info = Predicate(CI, Variable->getType(), LangOpts); 1601 if (Info.first != BlockCaptureEntityKind::None) 1602 ManagedCaptures.emplace_back(Info.first, Info.second, CI, Capture); 1603 } 1604 } 1605 1606 /// Generate the copy-helper function for a block closure object: 1607 /// static void block_copy_helper(block_t *dst, block_t *src); 1608 /// The runtime will have previously initialized 'dst' by doing a 1609 /// bit-copy of 'src'. 1610 /// 1611 /// Note that this copies an entire block closure object to the heap; 1612 /// it should not be confused with a 'byref copy helper', which moves 1613 /// the contents of an individual __block variable to the heap. 1614 llvm::Constant * 1615 CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) { 1616 ASTContext &C = getContext(); 1617 1618 FunctionArgList args; 1619 ImplicitParamDecl DstDecl(getContext(), C.VoidPtrTy, 1620 ImplicitParamDecl::Other); 1621 args.push_back(&DstDecl); 1622 ImplicitParamDecl SrcDecl(getContext(), C.VoidPtrTy, 1623 ImplicitParamDecl::Other); 1624 args.push_back(&SrcDecl); 1625 1626 const CGFunctionInfo &FI = 1627 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 1628 1629 // FIXME: it would be nice if these were mergeable with things with 1630 // identical semantics. 1631 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 1632 1633 llvm::Function *Fn = 1634 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1635 "__copy_helper_block_", &CGM.getModule()); 1636 1637 IdentifierInfo *II 1638 = &CGM.getContext().Idents.get("__copy_helper_block_"); 1639 1640 FunctionDecl *FD = FunctionDecl::Create(C, 1641 C.getTranslationUnitDecl(), 1642 SourceLocation(), 1643 SourceLocation(), II, C.VoidTy, 1644 nullptr, SC_Static, 1645 false, 1646 false); 1647 1648 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 1649 1650 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1651 StartFunction(FD, C.VoidTy, Fn, FI, args); 1652 // Create a scope with an artificial location for the body of this function. 1653 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1654 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); 1655 1656 Address src = GetAddrOfLocalVar(&SrcDecl); 1657 src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign); 1658 src = Builder.CreateBitCast(src, structPtrTy, "block.source"); 1659 1660 Address dst = GetAddrOfLocalVar(&DstDecl); 1661 dst = Address(Builder.CreateLoad(dst), blockInfo.BlockAlign); 1662 dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest"); 1663 1664 SmallVector<BlockCaptureManagedEntity, 4> CopiedCaptures; 1665 findBlockCapturedManagedEntities(blockInfo, getLangOpts(), CopiedCaptures, 1666 computeCopyInfoForBlockCapture); 1667 1668 for (const auto &CopiedCapture : CopiedCaptures) { 1669 const BlockDecl::Capture &CI = CopiedCapture.CI; 1670 const CGBlockInfo::Capture &capture = CopiedCapture.Capture; 1671 BlockFieldFlags flags = CopiedCapture.Flags; 1672 1673 unsigned index = capture.getIndex(); 1674 Address srcField = Builder.CreateStructGEP(src, index, capture.getOffset()); 1675 Address dstField = Builder.CreateStructGEP(dst, index, capture.getOffset()); 1676 1677 // If there's an explicit copy expression, we do that. 1678 if (CI.getCopyExpr()) { 1679 assert(CopiedCapture.Kind == BlockCaptureEntityKind::CXXRecord); 1680 EmitSynthesizedCXXCopyCtor(dstField, srcField, CI.getCopyExpr()); 1681 } else if (CopiedCapture.Kind == BlockCaptureEntityKind::ARCWeak) { 1682 EmitARCCopyWeak(dstField, srcField); 1683 } else { 1684 llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); 1685 if (CopiedCapture.Kind == BlockCaptureEntityKind::ARCStrong) { 1686 // At -O0, store null into the destination field (so that the 1687 // storeStrong doesn't over-release) and then call storeStrong. 1688 // This is a workaround to not having an initStrong call. 1689 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1690 auto *ty = cast<llvm::PointerType>(srcValue->getType()); 1691 llvm::Value *null = llvm::ConstantPointerNull::get(ty); 1692 Builder.CreateStore(null, dstField); 1693 EmitARCStoreStrongCall(dstField, srcValue, true); 1694 1695 // With optimization enabled, take advantage of the fact that 1696 // the blocks runtime guarantees a memcpy of the block data, and 1697 // just emit a retain of the src field. 1698 } else { 1699 EmitARCRetainNonBlock(srcValue); 1700 1701 // We don't need this anymore, so kill it. It's not quite 1702 // worth the annoyance to avoid creating it in the first place. 1703 cast<llvm::Instruction>(dstField.getPointer())->eraseFromParent(); 1704 } 1705 } else { 1706 assert(CopiedCapture.Kind == BlockCaptureEntityKind::BlockObject); 1707 srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy); 1708 llvm::Value *dstAddr = 1709 Builder.CreateBitCast(dstField.getPointer(), VoidPtrTy); 1710 llvm::Value *args[] = { 1711 dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) 1712 }; 1713 1714 const VarDecl *variable = CI.getVariable(); 1715 bool copyCanThrow = false; 1716 if (CI.isByRef() && variable->getType()->getAsCXXRecordDecl()) { 1717 const Expr *copyExpr = 1718 CGM.getContext().getBlockVarCopyInits(variable); 1719 if (copyExpr) { 1720 copyCanThrow = true; // FIXME: reuse the noexcept logic 1721 } 1722 } 1723 1724 if (copyCanThrow) { 1725 EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args); 1726 } else { 1727 EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args); 1728 } 1729 } 1730 } 1731 } 1732 1733 FinishFunction(); 1734 1735 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 1736 } 1737 1738 static std::pair<BlockCaptureEntityKind, BlockFieldFlags> 1739 computeDestroyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T, 1740 const LangOptions &LangOpts) { 1741 BlockFieldFlags Flags; 1742 if (CI.isByRef()) { 1743 Flags = BLOCK_FIELD_IS_BYREF; 1744 if (T.isObjCGCWeak()) 1745 Flags |= BLOCK_FIELD_IS_WEAK; 1746 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); 1747 } 1748 1749 if (const CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1750 if (Record->hasTrivialDestructor()) 1751 return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags()); 1752 return std::make_pair(BlockCaptureEntityKind::CXXRecord, BlockFieldFlags()); 1753 } 1754 1755 // Other types don't need to be destroy explicitly. 1756 if (!T->isObjCRetainableType()) 1757 return std::make_pair(BlockCaptureEntityKind::None, Flags); 1758 1759 Flags = BLOCK_FIELD_IS_OBJECT; 1760 if (T->isBlockPointerType()) 1761 Flags = BLOCK_FIELD_IS_BLOCK; 1762 1763 // Special rules for ARC captures. 1764 Qualifiers QS = T.getQualifiers(); 1765 1766 // Use objc_storeStrong for __strong direct captures; the 1767 // dynamic tools really like it when we do this. 1768 if (QS.getObjCLifetime() == Qualifiers::OCL_Strong) 1769 return std::make_pair(BlockCaptureEntityKind::ARCStrong, Flags); 1770 1771 // Support __weak direct captures. 1772 if (QS.getObjCLifetime() == Qualifiers::OCL_Weak) 1773 return std::make_pair(BlockCaptureEntityKind::ARCWeak, Flags); 1774 1775 // Non-ARC captures are strong, and we need to use 1776 // _Block_object_dispose. 1777 if (!QS.hasObjCLifetime() && !LangOpts.ObjCAutoRefCount) 1778 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); 1779 1780 // Otherwise, we have nothing to do. 1781 return std::make_pair(BlockCaptureEntityKind::None, Flags); 1782 } 1783 1784 /// Generate the destroy-helper function for a block closure object: 1785 /// static void block_destroy_helper(block_t *theBlock); 1786 /// 1787 /// Note that this destroys a heap-allocated block closure object; 1788 /// it should not be confused with a 'byref destroy helper', which 1789 /// destroys the heap-allocated contents of an individual __block 1790 /// variable. 1791 llvm::Constant * 1792 CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) { 1793 ASTContext &C = getContext(); 1794 1795 FunctionArgList args; 1796 ImplicitParamDecl SrcDecl(getContext(), C.VoidPtrTy, 1797 ImplicitParamDecl::Other); 1798 args.push_back(&SrcDecl); 1799 1800 const CGFunctionInfo &FI = 1801 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 1802 1803 // FIXME: We'd like to put these into a mergable by content, with 1804 // internal linkage. 1805 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 1806 1807 llvm::Function *Fn = 1808 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1809 "__destroy_helper_block_", &CGM.getModule()); 1810 1811 IdentifierInfo *II 1812 = &CGM.getContext().Idents.get("__destroy_helper_block_"); 1813 1814 FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), 1815 SourceLocation(), 1816 SourceLocation(), II, C.VoidTy, 1817 nullptr, SC_Static, 1818 false, false); 1819 1820 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 1821 1822 // Create a scope with an artificial location for the body of this function. 1823 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1824 StartFunction(FD, C.VoidTy, Fn, FI, args); 1825 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1826 1827 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); 1828 1829 Address src = GetAddrOfLocalVar(&SrcDecl); 1830 src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign); 1831 src = Builder.CreateBitCast(src, structPtrTy, "block"); 1832 1833 CodeGenFunction::RunCleanupsScope cleanups(*this); 1834 1835 SmallVector<BlockCaptureManagedEntity, 4> DestroyedCaptures; 1836 findBlockCapturedManagedEntities(blockInfo, getLangOpts(), DestroyedCaptures, 1837 computeDestroyInfoForBlockCapture); 1838 1839 for (const auto &DestroyedCapture : DestroyedCaptures) { 1840 const BlockDecl::Capture &CI = DestroyedCapture.CI; 1841 const CGBlockInfo::Capture &capture = DestroyedCapture.Capture; 1842 BlockFieldFlags flags = DestroyedCapture.Flags; 1843 1844 Address srcField = 1845 Builder.CreateStructGEP(src, capture.getIndex(), capture.getOffset()); 1846 1847 // If the captured record has a destructor then call it. 1848 if (DestroyedCapture.Kind == BlockCaptureEntityKind::CXXRecord) { 1849 const auto *Dtor = 1850 CI.getVariable()->getType()->getAsCXXRecordDecl()->getDestructor(); 1851 PushDestructorCleanup(Dtor, srcField); 1852 1853 // If this is a __weak capture, emit the release directly. 1854 } else if (DestroyedCapture.Kind == BlockCaptureEntityKind::ARCWeak) { 1855 EmitARCDestroyWeak(srcField); 1856 1857 // Destroy strong objects with a call if requested. 1858 } else if (DestroyedCapture.Kind == BlockCaptureEntityKind::ARCStrong) { 1859 EmitARCDestroyStrong(srcField, ARCImpreciseLifetime); 1860 1861 // Otherwise we call _Block_object_dispose. It wouldn't be too 1862 // hard to just emit this as a cleanup if we wanted to make sure 1863 // that things were done in reverse. 1864 } else { 1865 assert(DestroyedCapture.Kind == BlockCaptureEntityKind::BlockObject); 1866 llvm::Value *value = Builder.CreateLoad(srcField); 1867 value = Builder.CreateBitCast(value, VoidPtrTy); 1868 BuildBlockRelease(value, flags); 1869 } 1870 } 1871 1872 cleanups.ForceCleanup(); 1873 1874 FinishFunction(); 1875 1876 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 1877 } 1878 1879 namespace { 1880 1881 /// Emits the copy/dispose helper functions for a __block object of id type. 1882 class ObjectByrefHelpers final : public BlockByrefHelpers { 1883 BlockFieldFlags Flags; 1884 1885 public: 1886 ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags) 1887 : BlockByrefHelpers(alignment), Flags(flags) {} 1888 1889 void emitCopy(CodeGenFunction &CGF, Address destField, 1890 Address srcField) override { 1891 destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy); 1892 1893 srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy); 1894 llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField); 1895 1896 unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask(); 1897 1898 llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags); 1899 llvm::Value *fn = CGF.CGM.getBlockObjectAssign(); 1900 1901 llvm::Value *args[] = { destField.getPointer(), srcValue, flagsVal }; 1902 CGF.EmitNounwindRuntimeCall(fn, args); 1903 } 1904 1905 void emitDispose(CodeGenFunction &CGF, Address field) override { 1906 field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0)); 1907 llvm::Value *value = CGF.Builder.CreateLoad(field); 1908 1909 CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER); 1910 } 1911 1912 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1913 id.AddInteger(Flags.getBitMask()); 1914 } 1915 }; 1916 1917 /// Emits the copy/dispose helpers for an ARC __block __weak variable. 1918 class ARCWeakByrefHelpers final : public BlockByrefHelpers { 1919 public: 1920 ARCWeakByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} 1921 1922 void emitCopy(CodeGenFunction &CGF, Address destField, 1923 Address srcField) override { 1924 CGF.EmitARCMoveWeak(destField, srcField); 1925 } 1926 1927 void emitDispose(CodeGenFunction &CGF, Address field) override { 1928 CGF.EmitARCDestroyWeak(field); 1929 } 1930 1931 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1932 // 0 is distinguishable from all pointers and byref flags 1933 id.AddInteger(0); 1934 } 1935 }; 1936 1937 /// Emits the copy/dispose helpers for an ARC __block __strong variable 1938 /// that's not of block-pointer type. 1939 class ARCStrongByrefHelpers final : public BlockByrefHelpers { 1940 public: 1941 ARCStrongByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} 1942 1943 void emitCopy(CodeGenFunction &CGF, Address destField, 1944 Address srcField) override { 1945 // Do a "move" by copying the value and then zeroing out the old 1946 // variable. 1947 1948 llvm::Value *value = CGF.Builder.CreateLoad(srcField); 1949 1950 llvm::Value *null = 1951 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(value->getType())); 1952 1953 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 1954 CGF.Builder.CreateStore(null, destField); 1955 CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true); 1956 CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true); 1957 return; 1958 } 1959 CGF.Builder.CreateStore(value, destField); 1960 CGF.Builder.CreateStore(null, srcField); 1961 } 1962 1963 void emitDispose(CodeGenFunction &CGF, Address field) override { 1964 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); 1965 } 1966 1967 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1968 // 1 is distinguishable from all pointers and byref flags 1969 id.AddInteger(1); 1970 } 1971 }; 1972 1973 /// Emits the copy/dispose helpers for an ARC __block __strong 1974 /// variable that's of block-pointer type. 1975 class ARCStrongBlockByrefHelpers final : public BlockByrefHelpers { 1976 public: 1977 ARCStrongBlockByrefHelpers(CharUnits alignment) 1978 : BlockByrefHelpers(alignment) {} 1979 1980 void emitCopy(CodeGenFunction &CGF, Address destField, 1981 Address srcField) override { 1982 // Do the copy with objc_retainBlock; that's all that 1983 // _Block_object_assign would do anyway, and we'd have to pass the 1984 // right arguments to make sure it doesn't get no-op'ed. 1985 llvm::Value *oldValue = CGF.Builder.CreateLoad(srcField); 1986 llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true); 1987 CGF.Builder.CreateStore(copy, destField); 1988 } 1989 1990 void emitDispose(CodeGenFunction &CGF, Address field) override { 1991 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); 1992 } 1993 1994 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1995 // 2 is distinguishable from all pointers and byref flags 1996 id.AddInteger(2); 1997 } 1998 }; 1999 2000 /// Emits the copy/dispose helpers for a __block variable with a 2001 /// nontrivial copy constructor or destructor. 2002 class CXXByrefHelpers final : public BlockByrefHelpers { 2003 QualType VarType; 2004 const Expr *CopyExpr; 2005 2006 public: 2007 CXXByrefHelpers(CharUnits alignment, QualType type, 2008 const Expr *copyExpr) 2009 : BlockByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {} 2010 2011 bool needsCopy() const override { return CopyExpr != nullptr; } 2012 void emitCopy(CodeGenFunction &CGF, Address destField, 2013 Address srcField) override { 2014 if (!CopyExpr) return; 2015 CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr); 2016 } 2017 2018 void emitDispose(CodeGenFunction &CGF, Address field) override { 2019 EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin(); 2020 CGF.PushDestructorCleanup(VarType, field); 2021 CGF.PopCleanupBlocks(cleanupDepth); 2022 } 2023 2024 void profileImpl(llvm::FoldingSetNodeID &id) const override { 2025 id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr()); 2026 } 2027 }; 2028 } // end anonymous namespace 2029 2030 static llvm::Constant * 2031 generateByrefCopyHelper(CodeGenFunction &CGF, const BlockByrefInfo &byrefInfo, 2032 BlockByrefHelpers &generator) { 2033 ASTContext &Context = CGF.getContext(); 2034 2035 QualType R = Context.VoidTy; 2036 2037 FunctionArgList args; 2038 ImplicitParamDecl Dst(CGF.getContext(), Context.VoidPtrTy, 2039 ImplicitParamDecl::Other); 2040 args.push_back(&Dst); 2041 2042 ImplicitParamDecl Src(CGF.getContext(), Context.VoidPtrTy, 2043 ImplicitParamDecl::Other); 2044 args.push_back(&Src); 2045 2046 const CGFunctionInfo &FI = 2047 CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(R, args); 2048 2049 llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI); 2050 2051 // FIXME: We'd like to put these into a mergable by content, with 2052 // internal linkage. 2053 llvm::Function *Fn = 2054 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2055 "__Block_byref_object_copy_", &CGF.CGM.getModule()); 2056 2057 IdentifierInfo *II 2058 = &Context.Idents.get("__Block_byref_object_copy_"); 2059 2060 FunctionDecl *FD = FunctionDecl::Create(Context, 2061 Context.getTranslationUnitDecl(), 2062 SourceLocation(), 2063 SourceLocation(), II, R, nullptr, 2064 SC_Static, 2065 false, false); 2066 2067 CGF.CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 2068 2069 CGF.StartFunction(FD, R, Fn, FI, args); 2070 2071 if (generator.needsCopy()) { 2072 llvm::Type *byrefPtrType = byrefInfo.Type->getPointerTo(0); 2073 2074 // dst->x 2075 Address destField = CGF.GetAddrOfLocalVar(&Dst); 2076 destField = Address(CGF.Builder.CreateLoad(destField), 2077 byrefInfo.ByrefAlignment); 2078 destField = CGF.Builder.CreateBitCast(destField, byrefPtrType); 2079 destField = CGF.emitBlockByrefAddress(destField, byrefInfo, false, 2080 "dest-object"); 2081 2082 // src->x 2083 Address srcField = CGF.GetAddrOfLocalVar(&Src); 2084 srcField = Address(CGF.Builder.CreateLoad(srcField), 2085 byrefInfo.ByrefAlignment); 2086 srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType); 2087 srcField = CGF.emitBlockByrefAddress(srcField, byrefInfo, false, 2088 "src-object"); 2089 2090 generator.emitCopy(CGF, destField, srcField); 2091 } 2092 2093 CGF.FinishFunction(); 2094 2095 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); 2096 } 2097 2098 /// Build the copy helper for a __block variable. 2099 static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM, 2100 const BlockByrefInfo &byrefInfo, 2101 BlockByrefHelpers &generator) { 2102 CodeGenFunction CGF(CGM); 2103 return generateByrefCopyHelper(CGF, byrefInfo, generator); 2104 } 2105 2106 /// Generate code for a __block variable's dispose helper. 2107 static llvm::Constant * 2108 generateByrefDisposeHelper(CodeGenFunction &CGF, 2109 const BlockByrefInfo &byrefInfo, 2110 BlockByrefHelpers &generator) { 2111 ASTContext &Context = CGF.getContext(); 2112 QualType R = Context.VoidTy; 2113 2114 FunctionArgList args; 2115 ImplicitParamDecl Src(CGF.getContext(), Context.VoidPtrTy, 2116 ImplicitParamDecl::Other); 2117 args.push_back(&Src); 2118 2119 const CGFunctionInfo &FI = 2120 CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(R, args); 2121 2122 llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI); 2123 2124 // FIXME: We'd like to put these into a mergable by content, with 2125 // internal linkage. 2126 llvm::Function *Fn = 2127 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2128 "__Block_byref_object_dispose_", 2129 &CGF.CGM.getModule()); 2130 2131 IdentifierInfo *II 2132 = &Context.Idents.get("__Block_byref_object_dispose_"); 2133 2134 FunctionDecl *FD = FunctionDecl::Create(Context, 2135 Context.getTranslationUnitDecl(), 2136 SourceLocation(), 2137 SourceLocation(), II, R, nullptr, 2138 SC_Static, 2139 false, false); 2140 2141 CGF.CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 2142 2143 CGF.StartFunction(FD, R, Fn, FI, args); 2144 2145 if (generator.needsDispose()) { 2146 Address addr = CGF.GetAddrOfLocalVar(&Src); 2147 addr = Address(CGF.Builder.CreateLoad(addr), byrefInfo.ByrefAlignment); 2148 auto byrefPtrType = byrefInfo.Type->getPointerTo(0); 2149 addr = CGF.Builder.CreateBitCast(addr, byrefPtrType); 2150 addr = CGF.emitBlockByrefAddress(addr, byrefInfo, false, "object"); 2151 2152 generator.emitDispose(CGF, addr); 2153 } 2154 2155 CGF.FinishFunction(); 2156 2157 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); 2158 } 2159 2160 /// Build the dispose helper for a __block variable. 2161 static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM, 2162 const BlockByrefInfo &byrefInfo, 2163 BlockByrefHelpers &generator) { 2164 CodeGenFunction CGF(CGM); 2165 return generateByrefDisposeHelper(CGF, byrefInfo, generator); 2166 } 2167 2168 /// Lazily build the copy and dispose helpers for a __block variable 2169 /// with the given information. 2170 template <class T> 2171 static T *buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, 2172 T &&generator) { 2173 llvm::FoldingSetNodeID id; 2174 generator.Profile(id); 2175 2176 void *insertPos; 2177 BlockByrefHelpers *node 2178 = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos); 2179 if (node) return static_cast<T*>(node); 2180 2181 generator.CopyHelper = buildByrefCopyHelper(CGM, byrefInfo, generator); 2182 generator.DisposeHelper = buildByrefDisposeHelper(CGM, byrefInfo, generator); 2183 2184 T *copy = new (CGM.getContext()) T(std::forward<T>(generator)); 2185 CGM.ByrefHelpersCache.InsertNode(copy, insertPos); 2186 return copy; 2187 } 2188 2189 /// Build the copy and dispose helpers for the given __block variable 2190 /// emission. Places the helpers in the global cache. Returns null 2191 /// if no helpers are required. 2192 BlockByrefHelpers * 2193 CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType, 2194 const AutoVarEmission &emission) { 2195 const VarDecl &var = *emission.Variable; 2196 QualType type = var.getType(); 2197 2198 auto &byrefInfo = getBlockByrefInfo(&var); 2199 2200 // The alignment we care about for the purposes of uniquing byref 2201 // helpers is the alignment of the actual byref value field. 2202 CharUnits valueAlignment = 2203 byrefInfo.ByrefAlignment.alignmentAtOffset(byrefInfo.FieldOffset); 2204 2205 if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { 2206 const Expr *copyExpr = CGM.getContext().getBlockVarCopyInits(&var); 2207 if (!copyExpr && record->hasTrivialDestructor()) return nullptr; 2208 2209 return ::buildByrefHelpers( 2210 CGM, byrefInfo, CXXByrefHelpers(valueAlignment, type, copyExpr)); 2211 } 2212 2213 // Otherwise, if we don't have a retainable type, there's nothing to do. 2214 // that the runtime does extra copies. 2215 if (!type->isObjCRetainableType()) return nullptr; 2216 2217 Qualifiers qs = type.getQualifiers(); 2218 2219 // If we have lifetime, that dominates. 2220 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 2221 switch (lifetime) { 2222 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 2223 2224 // These are just bits as far as the runtime is concerned. 2225 case Qualifiers::OCL_ExplicitNone: 2226 case Qualifiers::OCL_Autoreleasing: 2227 return nullptr; 2228 2229 // Tell the runtime that this is ARC __weak, called by the 2230 // byref routines. 2231 case Qualifiers::OCL_Weak: 2232 return ::buildByrefHelpers(CGM, byrefInfo, 2233 ARCWeakByrefHelpers(valueAlignment)); 2234 2235 // ARC __strong __block variables need to be retained. 2236 case Qualifiers::OCL_Strong: 2237 // Block pointers need to be copied, and there's no direct 2238 // transfer possible. 2239 if (type->isBlockPointerType()) { 2240 return ::buildByrefHelpers(CGM, byrefInfo, 2241 ARCStrongBlockByrefHelpers(valueAlignment)); 2242 2243 // Otherwise, we transfer ownership of the retain from the stack 2244 // to the heap. 2245 } else { 2246 return ::buildByrefHelpers(CGM, byrefInfo, 2247 ARCStrongByrefHelpers(valueAlignment)); 2248 } 2249 } 2250 llvm_unreachable("fell out of lifetime switch!"); 2251 } 2252 2253 BlockFieldFlags flags; 2254 if (type->isBlockPointerType()) { 2255 flags |= BLOCK_FIELD_IS_BLOCK; 2256 } else if (CGM.getContext().isObjCNSObjectType(type) || 2257 type->isObjCObjectPointerType()) { 2258 flags |= BLOCK_FIELD_IS_OBJECT; 2259 } else { 2260 return nullptr; 2261 } 2262 2263 if (type.isObjCGCWeak()) 2264 flags |= BLOCK_FIELD_IS_WEAK; 2265 2266 return ::buildByrefHelpers(CGM, byrefInfo, 2267 ObjectByrefHelpers(valueAlignment, flags)); 2268 } 2269 2270 Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr, 2271 const VarDecl *var, 2272 bool followForward) { 2273 auto &info = getBlockByrefInfo(var); 2274 return emitBlockByrefAddress(baseAddr, info, followForward, var->getName()); 2275 } 2276 2277 Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr, 2278 const BlockByrefInfo &info, 2279 bool followForward, 2280 const llvm::Twine &name) { 2281 // Chase the forwarding address if requested. 2282 if (followForward) { 2283 Address forwardingAddr = 2284 Builder.CreateStructGEP(baseAddr, 1, getPointerSize(), "forwarding"); 2285 baseAddr = Address(Builder.CreateLoad(forwardingAddr), info.ByrefAlignment); 2286 } 2287 2288 return Builder.CreateStructGEP(baseAddr, info.FieldIndex, 2289 info.FieldOffset, name); 2290 } 2291 2292 /// BuildByrefInfo - This routine changes a __block variable declared as T x 2293 /// into: 2294 /// 2295 /// struct { 2296 /// void *__isa; 2297 /// void *__forwarding; 2298 /// int32_t __flags; 2299 /// int32_t __size; 2300 /// void *__copy_helper; // only if needed 2301 /// void *__destroy_helper; // only if needed 2302 /// void *__byref_variable_layout;// only if needed 2303 /// char padding[X]; // only if needed 2304 /// T x; 2305 /// } x 2306 /// 2307 const BlockByrefInfo &CodeGenFunction::getBlockByrefInfo(const VarDecl *D) { 2308 auto it = BlockByrefInfos.find(D); 2309 if (it != BlockByrefInfos.end()) 2310 return it->second; 2311 2312 llvm::StructType *byrefType = 2313 llvm::StructType::create(getLLVMContext(), 2314 "struct.__block_byref_" + D->getNameAsString()); 2315 2316 QualType Ty = D->getType(); 2317 2318 CharUnits size; 2319 SmallVector<llvm::Type *, 8> types; 2320 2321 // void *__isa; 2322 types.push_back(Int8PtrTy); 2323 size += getPointerSize(); 2324 2325 // void *__forwarding; 2326 types.push_back(llvm::PointerType::getUnqual(byrefType)); 2327 size += getPointerSize(); 2328 2329 // int32_t __flags; 2330 types.push_back(Int32Ty); 2331 size += CharUnits::fromQuantity(4); 2332 2333 // int32_t __size; 2334 types.push_back(Int32Ty); 2335 size += CharUnits::fromQuantity(4); 2336 2337 // Note that this must match *exactly* the logic in buildByrefHelpers. 2338 bool hasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D); 2339 if (hasCopyAndDispose) { 2340 /// void *__copy_helper; 2341 types.push_back(Int8PtrTy); 2342 size += getPointerSize(); 2343 2344 /// void *__destroy_helper; 2345 types.push_back(Int8PtrTy); 2346 size += getPointerSize(); 2347 } 2348 2349 bool HasByrefExtendedLayout = false; 2350 Qualifiers::ObjCLifetime Lifetime; 2351 if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) && 2352 HasByrefExtendedLayout) { 2353 /// void *__byref_variable_layout; 2354 types.push_back(Int8PtrTy); 2355 size += CharUnits::fromQuantity(PointerSizeInBytes); 2356 } 2357 2358 // T x; 2359 llvm::Type *varTy = ConvertTypeForMem(Ty); 2360 2361 bool packed = false; 2362 CharUnits varAlign = getContext().getDeclAlign(D); 2363 CharUnits varOffset = size.alignTo(varAlign); 2364 2365 // We may have to insert padding. 2366 if (varOffset != size) { 2367 llvm::Type *paddingTy = 2368 llvm::ArrayType::get(Int8Ty, (varOffset - size).getQuantity()); 2369 2370 types.push_back(paddingTy); 2371 size = varOffset; 2372 2373 // Conversely, we might have to prevent LLVM from inserting padding. 2374 } else if (CGM.getDataLayout().getABITypeAlignment(varTy) 2375 > varAlign.getQuantity()) { 2376 packed = true; 2377 } 2378 types.push_back(varTy); 2379 2380 byrefType->setBody(types, packed); 2381 2382 BlockByrefInfo info; 2383 info.Type = byrefType; 2384 info.FieldIndex = types.size() - 1; 2385 info.FieldOffset = varOffset; 2386 info.ByrefAlignment = std::max(varAlign, getPointerAlign()); 2387 2388 auto pair = BlockByrefInfos.insert({D, info}); 2389 assert(pair.second && "info was inserted recursively?"); 2390 return pair.first->second; 2391 } 2392 2393 /// Initialize the structural components of a __block variable, i.e. 2394 /// everything but the actual object. 2395 void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) { 2396 // Find the address of the local. 2397 Address addr = emission.Addr; 2398 2399 // That's an alloca of the byref structure type. 2400 llvm::StructType *byrefType = cast<llvm::StructType>( 2401 cast<llvm::PointerType>(addr.getPointer()->getType())->getElementType()); 2402 2403 unsigned nextHeaderIndex = 0; 2404 CharUnits nextHeaderOffset; 2405 auto storeHeaderField = [&](llvm::Value *value, CharUnits fieldSize, 2406 const Twine &name) { 2407 auto fieldAddr = Builder.CreateStructGEP(addr, nextHeaderIndex, 2408 nextHeaderOffset, name); 2409 Builder.CreateStore(value, fieldAddr); 2410 2411 nextHeaderIndex++; 2412 nextHeaderOffset += fieldSize; 2413 }; 2414 2415 // Build the byref helpers if necessary. This is null if we don't need any. 2416 BlockByrefHelpers *helpers = buildByrefHelpers(*byrefType, emission); 2417 2418 const VarDecl &D = *emission.Variable; 2419 QualType type = D.getType(); 2420 2421 bool HasByrefExtendedLayout; 2422 Qualifiers::ObjCLifetime ByrefLifetime; 2423 bool ByRefHasLifetime = 2424 getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout); 2425 2426 llvm::Value *V; 2427 2428 // Initialize the 'isa', which is just 0 or 1. 2429 int isa = 0; 2430 if (type.isObjCGCWeak()) 2431 isa = 1; 2432 V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa"); 2433 storeHeaderField(V, getPointerSize(), "byref.isa"); 2434 2435 // Store the address of the variable into its own forwarding pointer. 2436 storeHeaderField(addr.getPointer(), getPointerSize(), "byref.forwarding"); 2437 2438 // Blocks ABI: 2439 // c) the flags field is set to either 0 if no helper functions are 2440 // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are, 2441 BlockFlags flags; 2442 if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE; 2443 if (ByRefHasLifetime) { 2444 if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED; 2445 else switch (ByrefLifetime) { 2446 case Qualifiers::OCL_Strong: 2447 flags |= BLOCK_BYREF_LAYOUT_STRONG; 2448 break; 2449 case Qualifiers::OCL_Weak: 2450 flags |= BLOCK_BYREF_LAYOUT_WEAK; 2451 break; 2452 case Qualifiers::OCL_ExplicitNone: 2453 flags |= BLOCK_BYREF_LAYOUT_UNRETAINED; 2454 break; 2455 case Qualifiers::OCL_None: 2456 if (!type->isObjCObjectPointerType() && !type->isBlockPointerType()) 2457 flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT; 2458 break; 2459 default: 2460 break; 2461 } 2462 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2463 printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask()); 2464 if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE) 2465 printf(" BLOCK_BYREF_HAS_COPY_DISPOSE"); 2466 if (flags & BLOCK_BYREF_LAYOUT_MASK) { 2467 BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK); 2468 if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED) 2469 printf(" BLOCK_BYREF_LAYOUT_EXTENDED"); 2470 if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG) 2471 printf(" BLOCK_BYREF_LAYOUT_STRONG"); 2472 if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK) 2473 printf(" BLOCK_BYREF_LAYOUT_WEAK"); 2474 if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED) 2475 printf(" BLOCK_BYREF_LAYOUT_UNRETAINED"); 2476 if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT) 2477 printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT"); 2478 } 2479 printf("\n"); 2480 } 2481 } 2482 storeHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 2483 getIntSize(), "byref.flags"); 2484 2485 CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType); 2486 V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity()); 2487 storeHeaderField(V, getIntSize(), "byref.size"); 2488 2489 if (helpers) { 2490 storeHeaderField(helpers->CopyHelper, getPointerSize(), 2491 "byref.copyHelper"); 2492 storeHeaderField(helpers->DisposeHelper, getPointerSize(), 2493 "byref.disposeHelper"); 2494 } 2495 2496 if (ByRefHasLifetime && HasByrefExtendedLayout) { 2497 auto layoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type); 2498 storeHeaderField(layoutInfo, getPointerSize(), "byref.layout"); 2499 } 2500 } 2501 2502 void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags) { 2503 llvm::Value *F = CGM.getBlockObjectDispose(); 2504 llvm::Value *args[] = { 2505 Builder.CreateBitCast(V, Int8PtrTy), 2506 llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) 2507 }; 2508 EmitNounwindRuntimeCall(F, args); // FIXME: throwing destructors? 2509 } 2510 2511 namespace { 2512 /// Release a __block variable. 2513 struct CallBlockRelease final : EHScopeStack::Cleanup { 2514 llvm::Value *Addr; 2515 CallBlockRelease(llvm::Value *Addr) : Addr(Addr) {} 2516 2517 void Emit(CodeGenFunction &CGF, Flags flags) override { 2518 // Should we be passing FIELD_IS_WEAK here? 2519 CGF.BuildBlockRelease(Addr, BLOCK_FIELD_IS_BYREF); 2520 } 2521 }; 2522 } // end anonymous namespace 2523 2524 /// Enter a cleanup to destroy a __block variable. Note that this 2525 /// cleanup should be a no-op if the variable hasn't left the stack 2526 /// yet; if a cleanup is required for the variable itself, that needs 2527 /// to be done externally. 2528 void CodeGenFunction::enterByrefCleanup(const AutoVarEmission &emission) { 2529 // We don't enter this cleanup if we're in pure-GC mode. 2530 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) 2531 return; 2532 2533 EHStack.pushCleanup<CallBlockRelease>(NormalAndEHCleanup, 2534 emission.Addr.getPointer()); 2535 } 2536 2537 /// Adjust the declaration of something from the blocks API. 2538 static void configureBlocksRuntimeObject(CodeGenModule &CGM, 2539 llvm::Constant *C) { 2540 auto *GV = cast<llvm::GlobalValue>(C->stripPointerCasts()); 2541 2542 if (CGM.getTarget().getTriple().isOSBinFormatCOFF()) { 2543 IdentifierInfo &II = CGM.getContext().Idents.get(C->getName()); 2544 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2545 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2546 2547 assert((isa<llvm::Function>(C->stripPointerCasts()) || 2548 isa<llvm::GlobalVariable>(C->stripPointerCasts())) && 2549 "expected Function or GlobalVariable"); 2550 2551 const NamedDecl *ND = nullptr; 2552 for (const auto &Result : DC->lookup(&II)) 2553 if ((ND = dyn_cast<FunctionDecl>(Result)) || 2554 (ND = dyn_cast<VarDecl>(Result))) 2555 break; 2556 2557 // TODO: support static blocks runtime 2558 if (GV->isDeclaration() && (!ND || !ND->hasAttr<DLLExportAttr>())) { 2559 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2560 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 2561 } else { 2562 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2563 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 2564 } 2565 } 2566 2567 if (!CGM.getLangOpts().BlocksRuntimeOptional) 2568 return; 2569 2570 if (GV->isDeclaration() && GV->hasExternalLinkage()) 2571 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2572 } 2573 2574 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2575 if (BlockObjectDispose) 2576 return BlockObjectDispose; 2577 2578 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2579 llvm::FunctionType *fty 2580 = llvm::FunctionType::get(VoidTy, args, false); 2581 BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose"); 2582 configureBlocksRuntimeObject(*this, BlockObjectDispose); 2583 return BlockObjectDispose; 2584 } 2585 2586 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2587 if (BlockObjectAssign) 2588 return BlockObjectAssign; 2589 2590 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2591 llvm::FunctionType *fty 2592 = llvm::FunctionType::get(VoidTy, args, false); 2593 BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign"); 2594 configureBlocksRuntimeObject(*this, BlockObjectAssign); 2595 return BlockObjectAssign; 2596 } 2597 2598 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2599 if (NSConcreteGlobalBlock) 2600 return NSConcreteGlobalBlock; 2601 2602 NSConcreteGlobalBlock = GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock", 2603 Int8PtrTy->getPointerTo(), 2604 nullptr); 2605 configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock); 2606 return NSConcreteGlobalBlock; 2607 } 2608 2609 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2610 if (NSConcreteStackBlock) 2611 return NSConcreteStackBlock; 2612 2613 NSConcreteStackBlock = GetOrCreateLLVMGlobal("_NSConcreteStackBlock", 2614 Int8PtrTy->getPointerTo(), 2615 nullptr); 2616 configureBlocksRuntimeObject(*this, NSConcreteStackBlock); 2617 return NSConcreteStackBlock; 2618 } 2619