1 //===--- CGBlocks.cpp - Emit LLVM Code for declarations -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Module.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name) 31 : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false), 32 HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false), 33 StructureType(0), Block(block), 34 DominatingIP(0) { 35 36 // Skip asm prefix, if any. 'name' is usually taken directly from 37 // the mangled name of the enclosing function. 38 if (!name.empty() && name[0] == '\01') 39 name = name.substr(1); 40 } 41 42 // Anchor the vtable to this translation unit. 43 CodeGenModule::ByrefHelpers::~ByrefHelpers() {} 44 45 /// Build the given block as a global block. 46 static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, 47 const CGBlockInfo &blockInfo, 48 llvm::Constant *blockFn); 49 50 /// Build the helper function to copy a block. 51 static llvm::Constant *buildCopyHelper(CodeGenModule &CGM, 52 const CGBlockInfo &blockInfo) { 53 return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo); 54 } 55 56 /// Build the helper function to dispose of a block. 57 static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM, 58 const CGBlockInfo &blockInfo) { 59 return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo); 60 } 61 62 /// buildBlockDescriptor - Build the block descriptor meta-data for a block. 63 /// buildBlockDescriptor is accessed from 5th field of the Block_literal 64 /// meta-data and contains stationary information about the block literal. 65 /// Its definition will have 4 (or optinally 6) words. 66 /// \code 67 /// struct Block_descriptor { 68 /// unsigned long reserved; 69 /// unsigned long size; // size of Block_literal metadata in bytes. 70 /// void *copy_func_helper_decl; // optional copy helper. 71 /// void *destroy_func_decl; // optioanl destructor helper. 72 /// void *block_method_encoding_address; // @encode for block literal signature. 73 /// void *block_layout_info; // encoding of captured block variables. 74 /// }; 75 /// \endcode 76 static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM, 77 const CGBlockInfo &blockInfo) { 78 ASTContext &C = CGM.getContext(); 79 80 llvm::Type *ulong = CGM.getTypes().ConvertType(C.UnsignedLongTy); 81 llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); 82 83 SmallVector<llvm::Constant*, 6> elements; 84 85 // reserved 86 elements.push_back(llvm::ConstantInt::get(ulong, 0)); 87 88 // Size 89 // FIXME: What is the right way to say this doesn't fit? We should give 90 // a user diagnostic in that case. Better fix would be to change the 91 // API to size_t. 92 elements.push_back(llvm::ConstantInt::get(ulong, 93 blockInfo.BlockSize.getQuantity())); 94 95 // Optional copy/dispose helpers. 96 if (blockInfo.NeedsCopyDispose) { 97 // copy_func_helper_decl 98 elements.push_back(buildCopyHelper(CGM, blockInfo)); 99 100 // destroy_func_decl 101 elements.push_back(buildDisposeHelper(CGM, blockInfo)); 102 } 103 104 // Signature. Mandatory ObjC-style method descriptor @encode sequence. 105 std::string typeAtEncoding = 106 CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr()); 107 elements.push_back(llvm::ConstantExpr::getBitCast( 108 CGM.GetAddrOfConstantCString(typeAtEncoding), i8p)); 109 110 // GC layout. 111 if (C.getLangOpts().ObjC1) { 112 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 113 elements.push_back(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo)); 114 else 115 elements.push_back(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo)); 116 } 117 else 118 elements.push_back(llvm::Constant::getNullValue(i8p)); 119 120 llvm::Constant *init = llvm::ConstantStruct::getAnon(elements); 121 122 llvm::GlobalVariable *global = 123 new llvm::GlobalVariable(CGM.getModule(), init->getType(), true, 124 llvm::GlobalValue::InternalLinkage, 125 init, "__block_descriptor_tmp"); 126 127 return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType()); 128 } 129 130 /* 131 Purely notional variadic template describing the layout of a block. 132 133 template <class _ResultType, class... _ParamTypes, class... _CaptureTypes> 134 struct Block_literal { 135 /// Initialized to one of: 136 /// extern void *_NSConcreteStackBlock[]; 137 /// extern void *_NSConcreteGlobalBlock[]; 138 /// 139 /// In theory, we could start one off malloc'ed by setting 140 /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using 141 /// this isa: 142 /// extern void *_NSConcreteMallocBlock[]; 143 struct objc_class *isa; 144 145 /// These are the flags (with corresponding bit number) that the 146 /// compiler is actually supposed to know about. 147 /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block 148 /// descriptor provides copy and dispose helper functions 149 /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured 150 /// object with a nontrivial destructor or copy constructor 151 /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated 152 /// as global memory 153 /// 29. BLOCK_USE_STRET - indicates that the block function 154 /// uses stret, which objc_msgSend needs to know about 155 /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an 156 /// @encoded signature string 157 /// And we're not supposed to manipulate these: 158 /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved 159 /// to malloc'ed memory 160 /// 27. BLOCK_IS_GC - indicates that the block has been moved to 161 /// to GC-allocated memory 162 /// Additionally, the bottom 16 bits are a reference count which 163 /// should be zero on the stack. 164 int flags; 165 166 /// Reserved; should be zero-initialized. 167 int reserved; 168 169 /// Function pointer generated from block literal. 170 _ResultType (*invoke)(Block_literal *, _ParamTypes...); 171 172 /// Block description metadata generated from block literal. 173 struct Block_descriptor *block_descriptor; 174 175 /// Captured values follow. 176 _CapturesTypes captures...; 177 }; 178 */ 179 180 /// The number of fields in a block header. 181 const unsigned BlockHeaderSize = 5; 182 183 namespace { 184 /// A chunk of data that we actually have to capture in the block. 185 struct BlockLayoutChunk { 186 CharUnits Alignment; 187 CharUnits Size; 188 Qualifiers::ObjCLifetime Lifetime; 189 const BlockDecl::Capture *Capture; // null for 'this' 190 llvm::Type *Type; 191 192 BlockLayoutChunk(CharUnits align, CharUnits size, 193 Qualifiers::ObjCLifetime lifetime, 194 const BlockDecl::Capture *capture, 195 llvm::Type *type) 196 : Alignment(align), Size(size), Lifetime(lifetime), 197 Capture(capture), Type(type) {} 198 199 /// Tell the block info that this chunk has the given field index. 200 void setIndex(CGBlockInfo &info, unsigned index) { 201 if (!Capture) 202 info.CXXThisIndex = index; 203 else 204 info.Captures[Capture->getVariable()] 205 = CGBlockInfo::Capture::makeIndex(index); 206 } 207 }; 208 209 /// Order by 1) all __strong together 2) next, all byfref together 3) next, 210 /// all __weak together. Preserve descending alignment in all situations. 211 bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) { 212 CharUnits LeftValue, RightValue; 213 bool LeftByref = left.Capture ? left.Capture->isByRef() : false; 214 bool RightByref = right.Capture ? right.Capture->isByRef() : false; 215 216 if (left.Lifetime == Qualifiers::OCL_Strong && 217 left.Alignment >= right.Alignment) 218 LeftValue = CharUnits::fromQuantity(64); 219 else if (LeftByref && left.Alignment >= right.Alignment) 220 LeftValue = CharUnits::fromQuantity(32); 221 else if (left.Lifetime == Qualifiers::OCL_Weak && 222 left.Alignment >= right.Alignment) 223 LeftValue = CharUnits::fromQuantity(16); 224 else 225 LeftValue = left.Alignment; 226 if (right.Lifetime == Qualifiers::OCL_Strong && 227 right.Alignment >= left.Alignment) 228 RightValue = CharUnits::fromQuantity(64); 229 else if (RightByref && right.Alignment >= left.Alignment) 230 RightValue = CharUnits::fromQuantity(32); 231 else if (right.Lifetime == Qualifiers::OCL_Weak && 232 right.Alignment >= left.Alignment) 233 RightValue = CharUnits::fromQuantity(16); 234 else 235 RightValue = right.Alignment; 236 237 return LeftValue > RightValue; 238 } 239 } 240 241 /// Determines if the given type is safe for constant capture in C++. 242 static bool isSafeForCXXConstantCapture(QualType type) { 243 const RecordType *recordType = 244 type->getBaseElementTypeUnsafe()->getAs<RecordType>(); 245 246 // Only records can be unsafe. 247 if (!recordType) return true; 248 249 const CXXRecordDecl *record = cast<CXXRecordDecl>(recordType->getDecl()); 250 251 // Maintain semantics for classes with non-trivial dtors or copy ctors. 252 if (!record->hasTrivialDestructor()) return false; 253 if (record->hasNonTrivialCopyConstructor()) return false; 254 255 // Otherwise, we just have to make sure there aren't any mutable 256 // fields that might have changed since initialization. 257 return !record->hasMutableFields(); 258 } 259 260 /// It is illegal to modify a const object after initialization. 261 /// Therefore, if a const object has a constant initializer, we don't 262 /// actually need to keep storage for it in the block; we'll just 263 /// rematerialize it at the start of the block function. This is 264 /// acceptable because we make no promises about address stability of 265 /// captured variables. 266 static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM, 267 CodeGenFunction *CGF, 268 const VarDecl *var) { 269 QualType type = var->getType(); 270 271 // We can only do this if the variable is const. 272 if (!type.isConstQualified()) return 0; 273 274 // Furthermore, in C++ we have to worry about mutable fields: 275 // C++ [dcl.type.cv]p4: 276 // Except that any class member declared mutable can be 277 // modified, any attempt to modify a const object during its 278 // lifetime results in undefined behavior. 279 if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type)) 280 return 0; 281 282 // If the variable doesn't have any initializer (shouldn't this be 283 // invalid?), it's not clear what we should do. Maybe capture as 284 // zero? 285 const Expr *init = var->getInit(); 286 if (!init) return 0; 287 288 return CGM.EmitConstantInit(*var, CGF); 289 } 290 291 /// Get the low bit of a nonzero character count. This is the 292 /// alignment of the nth byte if the 0th byte is universally aligned. 293 static CharUnits getLowBit(CharUnits v) { 294 return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1)); 295 } 296 297 static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info, 298 SmallVectorImpl<llvm::Type*> &elementTypes) { 299 ASTContext &C = CGM.getContext(); 300 301 // The header is basically a 'struct { void *; int; int; void *; void *; }'. 302 CharUnits ptrSize, ptrAlign, intSize, intAlign; 303 std::tie(ptrSize, ptrAlign) = C.getTypeInfoInChars(C.VoidPtrTy); 304 std::tie(intSize, intAlign) = C.getTypeInfoInChars(C.IntTy); 305 306 // Are there crazy embedded platforms where this isn't true? 307 assert(intSize <= ptrSize && "layout assumptions horribly violated"); 308 309 CharUnits headerSize = ptrSize; 310 if (2 * intSize < ptrAlign) headerSize += ptrSize; 311 else headerSize += 2 * intSize; 312 headerSize += 2 * ptrSize; 313 314 info.BlockAlign = ptrAlign; 315 info.BlockSize = headerSize; 316 317 assert(elementTypes.empty()); 318 llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); 319 llvm::Type *intTy = CGM.getTypes().ConvertType(C.IntTy); 320 elementTypes.push_back(i8p); 321 elementTypes.push_back(intTy); 322 elementTypes.push_back(intTy); 323 elementTypes.push_back(i8p); 324 elementTypes.push_back(CGM.getBlockDescriptorType()); 325 326 assert(elementTypes.size() == BlockHeaderSize); 327 } 328 329 /// Compute the layout of the given block. Attempts to lay the block 330 /// out with minimal space requirements. 331 static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF, 332 CGBlockInfo &info) { 333 ASTContext &C = CGM.getContext(); 334 const BlockDecl *block = info.getBlockDecl(); 335 336 SmallVector<llvm::Type*, 8> elementTypes; 337 initializeForBlockHeader(CGM, info, elementTypes); 338 339 if (!block->hasCaptures()) { 340 info.StructureType = 341 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 342 info.CanBeGlobal = true; 343 return; 344 } 345 else if (C.getLangOpts().ObjC1 && 346 CGM.getLangOpts().getGC() == LangOptions::NonGC) 347 info.HasCapturedVariableLayout = true; 348 349 // Collect the layout chunks. 350 SmallVector<BlockLayoutChunk, 16> layout; 351 layout.reserve(block->capturesCXXThis() + 352 (block->capture_end() - block->capture_begin())); 353 354 CharUnits maxFieldAlign; 355 356 // First, 'this'. 357 if (block->capturesCXXThis()) { 358 assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) && 359 "Can't capture 'this' outside a method"); 360 QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType(C); 361 362 llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType); 363 std::pair<CharUnits,CharUnits> tinfo 364 = CGM.getContext().getTypeInfoInChars(thisType); 365 maxFieldAlign = std::max(maxFieldAlign, tinfo.second); 366 367 layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, 368 Qualifiers::OCL_None, 369 0, llvmType)); 370 } 371 372 // Next, all the block captures. 373 for (const auto &CI : block->captures()) { 374 const VarDecl *variable = CI.getVariable(); 375 376 if (CI.isByRef()) { 377 // We have to copy/dispose of the __block reference. 378 info.NeedsCopyDispose = true; 379 380 // Just use void* instead of a pointer to the byref type. 381 QualType byRefPtrTy = C.VoidPtrTy; 382 383 llvm::Type *llvmType = CGM.getTypes().ConvertType(byRefPtrTy); 384 std::pair<CharUnits,CharUnits> tinfo 385 = CGM.getContext().getTypeInfoInChars(byRefPtrTy); 386 maxFieldAlign = std::max(maxFieldAlign, tinfo.second); 387 388 layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, 389 Qualifiers::OCL_None, &CI, llvmType)); 390 continue; 391 } 392 393 // Otherwise, build a layout chunk with the size and alignment of 394 // the declaration. 395 if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) { 396 info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant); 397 continue; 398 } 399 400 // If we have a lifetime qualifier, honor it for capture purposes. 401 // That includes *not* copying it if it's __unsafe_unretained. 402 Qualifiers::ObjCLifetime lifetime = 403 variable->getType().getObjCLifetime(); 404 if (lifetime) { 405 switch (lifetime) { 406 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 407 case Qualifiers::OCL_ExplicitNone: 408 case Qualifiers::OCL_Autoreleasing: 409 break; 410 411 case Qualifiers::OCL_Strong: 412 case Qualifiers::OCL_Weak: 413 info.NeedsCopyDispose = true; 414 } 415 416 // Block pointers require copy/dispose. So do Objective-C pointers. 417 } else if (variable->getType()->isObjCRetainableType()) { 418 info.NeedsCopyDispose = true; 419 // used for mrr below. 420 lifetime = Qualifiers::OCL_Strong; 421 422 // So do types that require non-trivial copy construction. 423 } else if (CI.hasCopyExpr()) { 424 info.NeedsCopyDispose = true; 425 info.HasCXXObject = true; 426 427 // And so do types with destructors. 428 } else if (CGM.getLangOpts().CPlusPlus) { 429 if (const CXXRecordDecl *record = 430 variable->getType()->getAsCXXRecordDecl()) { 431 if (!record->hasTrivialDestructor()) { 432 info.HasCXXObject = true; 433 info.NeedsCopyDispose = true; 434 } 435 } 436 } 437 438 QualType VT = variable->getType(); 439 CharUnits size = C.getTypeSizeInChars(VT); 440 CharUnits align = C.getDeclAlign(variable); 441 442 maxFieldAlign = std::max(maxFieldAlign, align); 443 444 llvm::Type *llvmType = 445 CGM.getTypes().ConvertTypeForMem(VT); 446 447 layout.push_back(BlockLayoutChunk(align, size, lifetime, &CI, llvmType)); 448 } 449 450 // If that was everything, we're done here. 451 if (layout.empty()) { 452 info.StructureType = 453 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 454 info.CanBeGlobal = true; 455 return; 456 } 457 458 // Sort the layout by alignment. We have to use a stable sort here 459 // to get reproducible results. There should probably be an 460 // llvm::array_pod_stable_sort. 461 std::stable_sort(layout.begin(), layout.end()); 462 463 // Needed for blocks layout info. 464 info.BlockHeaderForcedGapOffset = info.BlockSize; 465 info.BlockHeaderForcedGapSize = CharUnits::Zero(); 466 467 CharUnits &blockSize = info.BlockSize; 468 info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign); 469 470 // Assuming that the first byte in the header is maximally aligned, 471 // get the alignment of the first byte following the header. 472 CharUnits endAlign = getLowBit(blockSize); 473 474 // If the end of the header isn't satisfactorily aligned for the 475 // maximum thing, look for things that are okay with the header-end 476 // alignment, and keep appending them until we get something that's 477 // aligned right. This algorithm is only guaranteed optimal if 478 // that condition is satisfied at some point; otherwise we can get 479 // things like: 480 // header // next byte has alignment 4 481 // something_with_size_5; // next byte has alignment 1 482 // something_with_alignment_8; 483 // which has 7 bytes of padding, as opposed to the naive solution 484 // which might have less (?). 485 if (endAlign < maxFieldAlign) { 486 SmallVectorImpl<BlockLayoutChunk>::iterator 487 li = layout.begin() + 1, le = layout.end(); 488 489 // Look for something that the header end is already 490 // satisfactorily aligned for. 491 for (; li != le && endAlign < li->Alignment; ++li) 492 ; 493 494 // If we found something that's naturally aligned for the end of 495 // the header, keep adding things... 496 if (li != le) { 497 SmallVectorImpl<BlockLayoutChunk>::iterator first = li; 498 for (; li != le; ++li) { 499 assert(endAlign >= li->Alignment); 500 501 li->setIndex(info, elementTypes.size()); 502 elementTypes.push_back(li->Type); 503 blockSize += li->Size; 504 endAlign = getLowBit(blockSize); 505 506 // ...until we get to the alignment of the maximum field. 507 if (endAlign >= maxFieldAlign) { 508 if (li == first) { 509 // No user field was appended. So, a gap was added. 510 // Save total gap size for use in block layout bit map. 511 info.BlockHeaderForcedGapSize = li->Size; 512 } 513 break; 514 } 515 } 516 // Don't re-append everything we just appended. 517 layout.erase(first, li); 518 } 519 } 520 521 assert(endAlign == getLowBit(blockSize)); 522 523 // At this point, we just have to add padding if the end align still 524 // isn't aligned right. 525 if (endAlign < maxFieldAlign) { 526 CharUnits newBlockSize = blockSize.RoundUpToAlignment(maxFieldAlign); 527 CharUnits padding = newBlockSize - blockSize; 528 529 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, 530 padding.getQuantity())); 531 blockSize = newBlockSize; 532 endAlign = getLowBit(blockSize); // might be > maxFieldAlign 533 } 534 535 assert(endAlign >= maxFieldAlign); 536 assert(endAlign == getLowBit(blockSize)); 537 // Slam everything else on now. This works because they have 538 // strictly decreasing alignment and we expect that size is always a 539 // multiple of alignment. 540 for (SmallVectorImpl<BlockLayoutChunk>::iterator 541 li = layout.begin(), le = layout.end(); li != le; ++li) { 542 assert(endAlign >= li->Alignment); 543 li->setIndex(info, elementTypes.size()); 544 elementTypes.push_back(li->Type); 545 blockSize += li->Size; 546 endAlign = getLowBit(blockSize); 547 } 548 549 info.StructureType = 550 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); 551 } 552 553 /// Enter the scope of a block. This should be run at the entrance to 554 /// a full-expression so that the block's cleanups are pushed at the 555 /// right place in the stack. 556 static void enterBlockScope(CodeGenFunction &CGF, BlockDecl *block) { 557 assert(CGF.HaveInsertPoint()); 558 559 // Allocate the block info and place it at the head of the list. 560 CGBlockInfo &blockInfo = 561 *new CGBlockInfo(block, CGF.CurFn->getName()); 562 blockInfo.NextBlockInfo = CGF.FirstBlockInfo; 563 CGF.FirstBlockInfo = &blockInfo; 564 565 // Compute information about the layout, etc., of this block, 566 // pushing cleanups as necessary. 567 computeBlockInfo(CGF.CGM, &CGF, blockInfo); 568 569 // Nothing else to do if it can be global. 570 if (blockInfo.CanBeGlobal) return; 571 572 // Make the allocation for the block. 573 blockInfo.Address = 574 CGF.CreateTempAlloca(blockInfo.StructureType, "block"); 575 blockInfo.Address->setAlignment(blockInfo.BlockAlign.getQuantity()); 576 577 // If there are cleanups to emit, enter them (but inactive). 578 if (!blockInfo.NeedsCopyDispose) return; 579 580 // Walk through the captures (in order) and find the ones not 581 // captured by constant. 582 for (const auto &CI : block->captures()) { 583 // Ignore __block captures; there's nothing special in the 584 // on-stack block that we need to do for them. 585 if (CI.isByRef()) continue; 586 587 // Ignore variables that are constant-captured. 588 const VarDecl *variable = CI.getVariable(); 589 CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 590 if (capture.isConstant()) continue; 591 592 // Ignore objects that aren't destructed. 593 QualType::DestructionKind dtorKind = 594 variable->getType().isDestructedType(); 595 if (dtorKind == QualType::DK_none) continue; 596 597 CodeGenFunction::Destroyer *destroyer; 598 599 // Block captures count as local values and have imprecise semantics. 600 // They also can't be arrays, so need to worry about that. 601 if (dtorKind == QualType::DK_objc_strong_lifetime) { 602 destroyer = CodeGenFunction::destroyARCStrongImprecise; 603 } else { 604 destroyer = CGF.getDestroyer(dtorKind); 605 } 606 607 // GEP down to the address. 608 llvm::Value *addr = CGF.Builder.CreateStructGEP(blockInfo.Address, 609 capture.getIndex()); 610 611 // We can use that GEP as the dominating IP. 612 if (!blockInfo.DominatingIP) 613 blockInfo.DominatingIP = cast<llvm::Instruction>(addr); 614 615 CleanupKind cleanupKind = InactiveNormalCleanup; 616 bool useArrayEHCleanup = CGF.needsEHCleanup(dtorKind); 617 if (useArrayEHCleanup) 618 cleanupKind = InactiveNormalAndEHCleanup; 619 620 CGF.pushDestroy(cleanupKind, addr, variable->getType(), 621 destroyer, useArrayEHCleanup); 622 623 // Remember where that cleanup was. 624 capture.setCleanup(CGF.EHStack.stable_begin()); 625 } 626 } 627 628 /// Enter a full-expression with a non-trivial number of objects to 629 /// clean up. This is in this file because, at the moment, the only 630 /// kind of cleanup object is a BlockDecl*. 631 void CodeGenFunction::enterNonTrivialFullExpression(const ExprWithCleanups *E) { 632 assert(E->getNumObjects() != 0); 633 ArrayRef<ExprWithCleanups::CleanupObject> cleanups = E->getObjects(); 634 for (ArrayRef<ExprWithCleanups::CleanupObject>::iterator 635 i = cleanups.begin(), e = cleanups.end(); i != e; ++i) { 636 enterBlockScope(*this, *i); 637 } 638 } 639 640 /// Find the layout for the given block in a linked list and remove it. 641 static CGBlockInfo *findAndRemoveBlockInfo(CGBlockInfo **head, 642 const BlockDecl *block) { 643 while (true) { 644 assert(head && *head); 645 CGBlockInfo *cur = *head; 646 647 // If this is the block we're looking for, splice it out of the list. 648 if (cur->getBlockDecl() == block) { 649 *head = cur->NextBlockInfo; 650 return cur; 651 } 652 653 head = &cur->NextBlockInfo; 654 } 655 } 656 657 /// Destroy a chain of block layouts. 658 void CodeGenFunction::destroyBlockInfos(CGBlockInfo *head) { 659 assert(head && "destroying an empty chain"); 660 do { 661 CGBlockInfo *cur = head; 662 head = cur->NextBlockInfo; 663 delete cur; 664 } while (head != 0); 665 } 666 667 /// Emit a block literal expression in the current function. 668 llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) { 669 // If the block has no captures, we won't have a pre-computed 670 // layout for it. 671 if (!blockExpr->getBlockDecl()->hasCaptures()) { 672 CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName()); 673 computeBlockInfo(CGM, this, blockInfo); 674 blockInfo.BlockExpression = blockExpr; 675 return EmitBlockLiteral(blockInfo); 676 } 677 678 // Find the block info for this block and take ownership of it. 679 std::unique_ptr<CGBlockInfo> blockInfo; 680 blockInfo.reset(findAndRemoveBlockInfo(&FirstBlockInfo, 681 blockExpr->getBlockDecl())); 682 683 blockInfo->BlockExpression = blockExpr; 684 return EmitBlockLiteral(*blockInfo); 685 } 686 687 llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) { 688 // Using the computed layout, generate the actual block function. 689 bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda(); 690 llvm::Constant *blockFn 691 = CodeGenFunction(CGM, true).GenerateBlockFunction(CurGD, blockInfo, 692 LocalDeclMap, 693 isLambdaConv); 694 blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); 695 696 // If there is nothing to capture, we can emit this as a global block. 697 if (blockInfo.CanBeGlobal) 698 return buildGlobalBlock(CGM, blockInfo, blockFn); 699 700 // Otherwise, we have to emit this as a local block. 701 702 llvm::Constant *isa = CGM.getNSConcreteStackBlock(); 703 isa = llvm::ConstantExpr::getBitCast(isa, VoidPtrTy); 704 705 // Build the block descriptor. 706 llvm::Constant *descriptor = buildBlockDescriptor(CGM, blockInfo); 707 708 llvm::AllocaInst *blockAddr = blockInfo.Address; 709 assert(blockAddr && "block has no address!"); 710 711 // Compute the initial on-stack block flags. 712 BlockFlags flags = BLOCK_HAS_SIGNATURE; 713 if (blockInfo.HasCapturedVariableLayout) flags |= BLOCK_HAS_EXTENDED_LAYOUT; 714 if (blockInfo.NeedsCopyDispose) flags |= BLOCK_HAS_COPY_DISPOSE; 715 if (blockInfo.HasCXXObject) flags |= BLOCK_HAS_CXX_OBJ; 716 if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; 717 718 // Initialize the block literal. 719 Builder.CreateStore(isa, Builder.CreateStructGEP(blockAddr, 0, "block.isa")); 720 Builder.CreateStore(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 721 Builder.CreateStructGEP(blockAddr, 1, "block.flags")); 722 Builder.CreateStore(llvm::ConstantInt::get(IntTy, 0), 723 Builder.CreateStructGEP(blockAddr, 2, "block.reserved")); 724 Builder.CreateStore(blockFn, Builder.CreateStructGEP(blockAddr, 3, 725 "block.invoke")); 726 Builder.CreateStore(descriptor, Builder.CreateStructGEP(blockAddr, 4, 727 "block.descriptor")); 728 729 // Finally, capture all the values into the block. 730 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 731 732 // First, 'this'. 733 if (blockDecl->capturesCXXThis()) { 734 llvm::Value *addr = Builder.CreateStructGEP(blockAddr, 735 blockInfo.CXXThisIndex, 736 "block.captured-this.addr"); 737 Builder.CreateStore(LoadCXXThis(), addr); 738 } 739 740 // Next, captured variables. 741 for (const auto &CI : blockDecl->captures()) { 742 const VarDecl *variable = CI.getVariable(); 743 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 744 745 // Ignore constant captures. 746 if (capture.isConstant()) continue; 747 748 QualType type = variable->getType(); 749 CharUnits align = getContext().getDeclAlign(variable); 750 751 // This will be a [[type]]*, except that a byref entry will just be 752 // an i8**. 753 llvm::Value *blockField = 754 Builder.CreateStructGEP(blockAddr, capture.getIndex(), 755 "block.captured"); 756 757 // Compute the address of the thing we're going to move into the 758 // block literal. 759 llvm::Value *src; 760 if (BlockInfo && CI.isNested()) { 761 // We need to use the capture from the enclosing block. 762 const CGBlockInfo::Capture &enclosingCapture = 763 BlockInfo->getCapture(variable); 764 765 // This is a [[type]]*, except that a byref entry wil just be an i8**. 766 src = Builder.CreateStructGEP(LoadBlockStruct(), 767 enclosingCapture.getIndex(), 768 "block.capture.addr"); 769 } else if (blockDecl->isConversionFromLambda()) { 770 // The lambda capture in a lambda's conversion-to-block-pointer is 771 // special; we'll simply emit it directly. 772 src = 0; 773 } else { 774 // Just look it up in the locals map, which will give us back a 775 // [[type]]*. If that doesn't work, do the more elaborate DRE 776 // emission. 777 src = LocalDeclMap.lookup(variable); 778 if (!src) { 779 DeclRefExpr declRef(const_cast<VarDecl *>(variable), 780 /*refersToEnclosing*/ CI.isNested(), type, 781 VK_LValue, SourceLocation()); 782 src = EmitDeclRefLValue(&declRef).getAddress(); 783 } 784 } 785 786 // For byrefs, we just write the pointer to the byref struct into 787 // the block field. There's no need to chase the forwarding 788 // pointer at this point, since we're building something that will 789 // live a shorter life than the stack byref anyway. 790 if (CI.isByRef()) { 791 // Get a void* that points to the byref struct. 792 if (CI.isNested()) 793 src = Builder.CreateAlignedLoad(src, align.getQuantity(), 794 "byref.capture"); 795 else 796 src = Builder.CreateBitCast(src, VoidPtrTy); 797 798 // Write that void* into the capture field. 799 Builder.CreateAlignedStore(src, blockField, align.getQuantity()); 800 801 // If we have a copy constructor, evaluate that into the block field. 802 } else if (const Expr *copyExpr = CI.getCopyExpr()) { 803 if (blockDecl->isConversionFromLambda()) { 804 // If we have a lambda conversion, emit the expression 805 // directly into the block instead. 806 AggValueSlot Slot = 807 AggValueSlot::forAddr(blockField, align, Qualifiers(), 808 AggValueSlot::IsDestructed, 809 AggValueSlot::DoesNotNeedGCBarriers, 810 AggValueSlot::IsNotAliased); 811 EmitAggExpr(copyExpr, Slot); 812 } else { 813 EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr); 814 } 815 816 // If it's a reference variable, copy the reference into the block field. 817 } else if (type->isReferenceType()) { 818 llvm::Value *ref = 819 Builder.CreateAlignedLoad(src, align.getQuantity(), "ref.val"); 820 Builder.CreateAlignedStore(ref, blockField, align.getQuantity()); 821 822 // If this is an ARC __strong block-pointer variable, don't do a 823 // block copy. 824 // 825 // TODO: this can be generalized into the normal initialization logic: 826 // we should never need to do a block-copy when initializing a local 827 // variable, because the local variable's lifetime should be strictly 828 // contained within the stack block's. 829 } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong && 830 type->isBlockPointerType()) { 831 // Load the block and do a simple retain. 832 LValue srcLV = MakeAddrLValue(src, type, align); 833 llvm::Value *value = EmitLoadOfScalar(srcLV, SourceLocation()); 834 value = EmitARCRetainNonBlock(value); 835 836 // Do a primitive store to the block field. 837 LValue destLV = MakeAddrLValue(blockField, type, align); 838 EmitStoreOfScalar(value, destLV, /*init*/ true); 839 840 // Otherwise, fake up a POD copy into the block field. 841 } else { 842 // Fake up a new variable so that EmitScalarInit doesn't think 843 // we're referring to the variable in its own initializer. 844 ImplicitParamDecl blockFieldPseudoVar(/*DC*/ 0, SourceLocation(), 845 /*name*/ 0, type); 846 847 // We use one of these or the other depending on whether the 848 // reference is nested. 849 DeclRefExpr declRef(const_cast<VarDecl*>(variable), 850 /*refersToEnclosing*/ CI.isNested(), type, 851 VK_LValue, SourceLocation()); 852 853 ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue, 854 &declRef, VK_RValue); 855 EmitExprAsInit(&l2r, &blockFieldPseudoVar, 856 MakeAddrLValue(blockField, type, align), 857 /*captured by init*/ false); 858 } 859 860 // Activate the cleanup if layout pushed one. 861 if (!CI.isByRef()) { 862 EHScopeStack::stable_iterator cleanup = capture.getCleanup(); 863 if (cleanup.isValid()) 864 ActivateCleanupBlock(cleanup, blockInfo.DominatingIP); 865 } 866 } 867 868 // Cast to the converted block-pointer type, which happens (somewhat 869 // unfortunately) to be a pointer to function type. 870 llvm::Value *result = 871 Builder.CreateBitCast(blockAddr, 872 ConvertType(blockInfo.getBlockExpr()->getType())); 873 874 return result; 875 } 876 877 878 llvm::Type *CodeGenModule::getBlockDescriptorType() { 879 if (BlockDescriptorType) 880 return BlockDescriptorType; 881 882 llvm::Type *UnsignedLongTy = 883 getTypes().ConvertType(getContext().UnsignedLongTy); 884 885 // struct __block_descriptor { 886 // unsigned long reserved; 887 // unsigned long block_size; 888 // 889 // // later, the following will be added 890 // 891 // struct { 892 // void (*copyHelper)(); 893 // void (*copyHelper)(); 894 // } helpers; // !!! optional 895 // 896 // const char *signature; // the block signature 897 // const char *layout; // reserved 898 // }; 899 BlockDescriptorType = 900 llvm::StructType::create("struct.__block_descriptor", 901 UnsignedLongTy, UnsignedLongTy, NULL); 902 903 // Now form a pointer to that. 904 BlockDescriptorType = llvm::PointerType::getUnqual(BlockDescriptorType); 905 return BlockDescriptorType; 906 } 907 908 llvm::Type *CodeGenModule::getGenericBlockLiteralType() { 909 if (GenericBlockLiteralType) 910 return GenericBlockLiteralType; 911 912 llvm::Type *BlockDescPtrTy = getBlockDescriptorType(); 913 914 // struct __block_literal_generic { 915 // void *__isa; 916 // int __flags; 917 // int __reserved; 918 // void (*__invoke)(void *); 919 // struct __block_descriptor *__descriptor; 920 // }; 921 GenericBlockLiteralType = 922 llvm::StructType::create("struct.__block_literal_generic", 923 VoidPtrTy, IntTy, IntTy, VoidPtrTy, 924 BlockDescPtrTy, NULL); 925 926 return GenericBlockLiteralType; 927 } 928 929 930 RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E, 931 ReturnValueSlot ReturnValue) { 932 const BlockPointerType *BPT = 933 E->getCallee()->getType()->getAs<BlockPointerType>(); 934 935 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 936 937 // Get a pointer to the generic block literal. 938 llvm::Type *BlockLiteralTy = 939 llvm::PointerType::getUnqual(CGM.getGenericBlockLiteralType()); 940 941 // Bitcast the callee to a block literal. 942 llvm::Value *BlockLiteral = 943 Builder.CreateBitCast(Callee, BlockLiteralTy, "block.literal"); 944 945 // Get the function pointer from the literal. 946 llvm::Value *FuncPtr = Builder.CreateStructGEP(BlockLiteral, 3); 947 948 BlockLiteral = Builder.CreateBitCast(BlockLiteral, VoidPtrTy); 949 950 // Add the block literal. 951 CallArgList Args; 952 Args.add(RValue::get(BlockLiteral), getContext().VoidPtrTy); 953 954 QualType FnType = BPT->getPointeeType(); 955 956 // And the rest of the arguments. 957 EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), 958 E->arg_begin(), E->arg_end()); 959 960 // Load the function. 961 llvm::Value *Func = Builder.CreateLoad(FuncPtr); 962 963 const FunctionType *FuncTy = FnType->castAs<FunctionType>(); 964 const CGFunctionInfo &FnInfo = 965 CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy); 966 967 // Cast the function pointer to the right type. 968 llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo); 969 970 llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy); 971 Func = Builder.CreateBitCast(Func, BlockFTyPtr); 972 973 // And call the block. 974 return EmitCall(FnInfo, Func, ReturnValue, Args); 975 } 976 977 llvm::Value *CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable, 978 bool isByRef) { 979 assert(BlockInfo && "evaluating block ref without block information?"); 980 const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable); 981 982 // Handle constant captures. 983 if (capture.isConstant()) return LocalDeclMap[variable]; 984 985 llvm::Value *addr = 986 Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(), 987 "block.capture.addr"); 988 989 if (isByRef) { 990 // addr should be a void** right now. Load, then cast the result 991 // to byref*. 992 993 addr = Builder.CreateLoad(addr); 994 llvm::PointerType *byrefPointerType 995 = llvm::PointerType::get(BuildByRefType(variable), 0); 996 addr = Builder.CreateBitCast(addr, byrefPointerType, 997 "byref.addr"); 998 999 // Follow the forwarding pointer. 1000 addr = Builder.CreateStructGEP(addr, 1, "byref.forwarding"); 1001 addr = Builder.CreateLoad(addr, "byref.addr.forwarded"); 1002 1003 // Cast back to byref* and GEP over to the actual object. 1004 addr = Builder.CreateBitCast(addr, byrefPointerType); 1005 addr = Builder.CreateStructGEP(addr, getByRefValueLLVMField(variable), 1006 variable->getNameAsString()); 1007 } 1008 1009 if (variable->getType()->isReferenceType()) 1010 addr = Builder.CreateLoad(addr, "ref.tmp"); 1011 1012 return addr; 1013 } 1014 1015 llvm::Constant * 1016 CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *blockExpr, 1017 const char *name) { 1018 CGBlockInfo blockInfo(blockExpr->getBlockDecl(), name); 1019 blockInfo.BlockExpression = blockExpr; 1020 1021 // Compute information about the layout, etc., of this block. 1022 computeBlockInfo(*this, 0, blockInfo); 1023 1024 // Using that metadata, generate the actual block function. 1025 llvm::Constant *blockFn; 1026 { 1027 llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap; 1028 blockFn = CodeGenFunction(*this).GenerateBlockFunction(GlobalDecl(), 1029 blockInfo, 1030 LocalDeclMap, 1031 false); 1032 } 1033 blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); 1034 1035 return buildGlobalBlock(*this, blockInfo, blockFn); 1036 } 1037 1038 static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, 1039 const CGBlockInfo &blockInfo, 1040 llvm::Constant *blockFn) { 1041 assert(blockInfo.CanBeGlobal); 1042 1043 // Generate the constants for the block literal initializer. 1044 llvm::Constant *fields[BlockHeaderSize]; 1045 1046 // isa 1047 fields[0] = CGM.getNSConcreteGlobalBlock(); 1048 1049 // __flags 1050 BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE; 1051 if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; 1052 1053 fields[1] = llvm::ConstantInt::get(CGM.IntTy, flags.getBitMask()); 1054 1055 // Reserved 1056 fields[2] = llvm::Constant::getNullValue(CGM.IntTy); 1057 1058 // Function 1059 fields[3] = blockFn; 1060 1061 // Descriptor 1062 fields[4] = buildBlockDescriptor(CGM, blockInfo); 1063 1064 llvm::Constant *init = llvm::ConstantStruct::getAnon(fields); 1065 1066 llvm::GlobalVariable *literal = 1067 new llvm::GlobalVariable(CGM.getModule(), 1068 init->getType(), 1069 /*constant*/ true, 1070 llvm::GlobalVariable::InternalLinkage, 1071 init, 1072 "__block_literal_global"); 1073 literal->setAlignment(blockInfo.BlockAlign.getQuantity()); 1074 1075 // Return a constant of the appropriately-casted type. 1076 llvm::Type *requiredType = 1077 CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType()); 1078 return llvm::ConstantExpr::getBitCast(literal, requiredType); 1079 } 1080 1081 llvm::Function * 1082 CodeGenFunction::GenerateBlockFunction(GlobalDecl GD, 1083 const CGBlockInfo &blockInfo, 1084 const DeclMapTy &ldm, 1085 bool IsLambdaConversionToBlock) { 1086 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1087 1088 CurGD = GD; 1089 1090 BlockInfo = &blockInfo; 1091 1092 // Arrange for local static and local extern declarations to appear 1093 // to be local to this function as well, in case they're directly 1094 // referenced in a block. 1095 for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) { 1096 const VarDecl *var = dyn_cast<VarDecl>(i->first); 1097 if (var && !var->hasLocalStorage()) 1098 LocalDeclMap[var] = i->second; 1099 } 1100 1101 // Begin building the function declaration. 1102 1103 // Build the argument list. 1104 FunctionArgList args; 1105 1106 // The first argument is the block pointer. Just take it as a void* 1107 // and cast it later. 1108 QualType selfTy = getContext().VoidPtrTy; 1109 IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor"); 1110 1111 ImplicitParamDecl selfDecl(const_cast<BlockDecl*>(blockDecl), 1112 SourceLocation(), II, selfTy); 1113 args.push_back(&selfDecl); 1114 1115 // Now add the rest of the parameters. 1116 for (auto i : blockDecl->params()) 1117 args.push_back(i); 1118 1119 // Create the function declaration. 1120 const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType(); 1121 const CGFunctionInfo &fnInfo = CGM.getTypes().arrangeFreeFunctionDeclaration( 1122 fnType->getReturnType(), args, fnType->getExtInfo(), 1123 fnType->isVariadic()); 1124 if (CGM.ReturnTypeUsesSRet(fnInfo)) 1125 blockInfo.UsesStret = true; 1126 1127 llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo); 1128 1129 MangleBuffer name; 1130 CGM.getBlockMangledName(GD, name, blockDecl); 1131 llvm::Function *fn = 1132 llvm::Function::Create(fnLLVMType, llvm::GlobalValue::InternalLinkage, 1133 name.getString(), &CGM.getModule()); 1134 CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo); 1135 1136 // Begin generating the function. 1137 StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args, 1138 blockInfo.getBlockExpr()->getBody()->getLocStart()); 1139 1140 // Okay. Undo some of what StartFunction did. 1141 1142 // Pull the 'self' reference out of the local decl map. 1143 llvm::Value *blockAddr = LocalDeclMap[&selfDecl]; 1144 LocalDeclMap.erase(&selfDecl); 1145 BlockPointer = Builder.CreateBitCast(blockAddr, 1146 blockInfo.StructureType->getPointerTo(), 1147 "block"); 1148 // At -O0 we generate an explicit alloca for the BlockPointer, so the RA 1149 // won't delete the dbg.declare intrinsics for captured variables. 1150 llvm::Value *BlockPointerDbgLoc = BlockPointer; 1151 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1152 // Allocate a stack slot for it, so we can point the debugger to it 1153 llvm::AllocaInst *Alloca = CreateTempAlloca(BlockPointer->getType(), 1154 "block.addr"); 1155 unsigned Align = getContext().getDeclAlign(&selfDecl).getQuantity(); 1156 Alloca->setAlignment(Align); 1157 // Set the DebugLocation to empty, so the store is recognized as a 1158 // frame setup instruction by llvm::DwarfDebug::beginFunction(). 1159 NoLocation NL(*this, Builder); 1160 Builder.CreateAlignedStore(BlockPointer, Alloca, Align); 1161 BlockPointerDbgLoc = Alloca; 1162 } 1163 1164 // If we have a C++ 'this' reference, go ahead and force it into 1165 // existence now. 1166 if (blockDecl->capturesCXXThis()) { 1167 llvm::Value *addr = Builder.CreateStructGEP(BlockPointer, 1168 blockInfo.CXXThisIndex, 1169 "block.captured-this"); 1170 CXXThisValue = Builder.CreateLoad(addr, "this"); 1171 } 1172 1173 // Also force all the constant captures. 1174 for (const auto &CI : blockDecl->captures()) { 1175 const VarDecl *variable = CI.getVariable(); 1176 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1177 if (!capture.isConstant()) continue; 1178 1179 unsigned align = getContext().getDeclAlign(variable).getQuantity(); 1180 1181 llvm::AllocaInst *alloca = 1182 CreateMemTemp(variable->getType(), "block.captured-const"); 1183 alloca->setAlignment(align); 1184 1185 Builder.CreateAlignedStore(capture.getConstant(), alloca, align); 1186 1187 LocalDeclMap[variable] = alloca; 1188 } 1189 1190 // Save a spot to insert the debug information for all the DeclRefExprs. 1191 llvm::BasicBlock *entry = Builder.GetInsertBlock(); 1192 llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint(); 1193 --entry_ptr; 1194 1195 if (IsLambdaConversionToBlock) 1196 EmitLambdaBlockInvokeBody(); 1197 else { 1198 PGO.assignRegionCounters(blockDecl, fn); 1199 RegionCounter Cnt = getPGORegionCounter(blockDecl->getBody()); 1200 Cnt.beginRegion(Builder); 1201 EmitStmt(blockDecl->getBody()); 1202 PGO.emitInstrumentationData(); 1203 PGO.destroyRegionCounters(); 1204 } 1205 1206 // Remember where we were... 1207 llvm::BasicBlock *resume = Builder.GetInsertBlock(); 1208 1209 // Go back to the entry. 1210 ++entry_ptr; 1211 Builder.SetInsertPoint(entry, entry_ptr); 1212 1213 // Emit debug information for all the DeclRefExprs. 1214 // FIXME: also for 'this' 1215 if (CGDebugInfo *DI = getDebugInfo()) { 1216 for (const auto &CI : blockDecl->captures()) { 1217 const VarDecl *variable = CI.getVariable(); 1218 DI->EmitLocation(Builder, variable->getLocation()); 1219 1220 if (CGM.getCodeGenOpts().getDebugInfo() 1221 >= CodeGenOptions::LimitedDebugInfo) { 1222 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1223 if (capture.isConstant()) { 1224 DI->EmitDeclareOfAutoVariable(variable, LocalDeclMap[variable], 1225 Builder); 1226 continue; 1227 } 1228 1229 DI->EmitDeclareOfBlockDeclRefVariable(variable, BlockPointerDbgLoc, 1230 Builder, blockInfo); 1231 } 1232 } 1233 // Recover location if it was changed in the above loop. 1234 DI->EmitLocation(Builder, 1235 cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); 1236 } 1237 1238 // And resume where we left off. 1239 if (resume == 0) 1240 Builder.ClearInsertionPoint(); 1241 else 1242 Builder.SetInsertPoint(resume); 1243 1244 FinishFunction(cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); 1245 1246 return fn; 1247 } 1248 1249 /* 1250 notes.push_back(HelperInfo()); 1251 HelperInfo ¬e = notes.back(); 1252 note.index = capture.getIndex(); 1253 note.RequiresCopying = (ci->hasCopyExpr() || BlockRequiresCopying(type)); 1254 note.cxxbar_import = ci->getCopyExpr(); 1255 1256 if (ci->isByRef()) { 1257 note.flag = BLOCK_FIELD_IS_BYREF; 1258 if (type.isObjCGCWeak()) 1259 note.flag |= BLOCK_FIELD_IS_WEAK; 1260 } else if (type->isBlockPointerType()) { 1261 note.flag = BLOCK_FIELD_IS_BLOCK; 1262 } else { 1263 note.flag = BLOCK_FIELD_IS_OBJECT; 1264 } 1265 */ 1266 1267 1268 /// Generate the copy-helper function for a block closure object: 1269 /// static void block_copy_helper(block_t *dst, block_t *src); 1270 /// The runtime will have previously initialized 'dst' by doing a 1271 /// bit-copy of 'src'. 1272 /// 1273 /// Note that this copies an entire block closure object to the heap; 1274 /// it should not be confused with a 'byref copy helper', which moves 1275 /// the contents of an individual __block variable to the heap. 1276 llvm::Constant * 1277 CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) { 1278 ASTContext &C = getContext(); 1279 1280 FunctionArgList args; 1281 ImplicitParamDecl dstDecl(0, SourceLocation(), 0, C.VoidPtrTy); 1282 args.push_back(&dstDecl); 1283 ImplicitParamDecl srcDecl(0, SourceLocation(), 0, C.VoidPtrTy); 1284 args.push_back(&srcDecl); 1285 1286 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 1287 C.VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false); 1288 1289 // FIXME: it would be nice if these were mergeable with things with 1290 // identical semantics. 1291 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 1292 1293 llvm::Function *Fn = 1294 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1295 "__copy_helper_block_", &CGM.getModule()); 1296 1297 IdentifierInfo *II 1298 = &CGM.getContext().Idents.get("__copy_helper_block_"); 1299 1300 FunctionDecl *FD = FunctionDecl::Create(C, 1301 C.getTranslationUnitDecl(), 1302 SourceLocation(), 1303 SourceLocation(), II, C.VoidTy, 0, 1304 SC_Static, 1305 false, 1306 false); 1307 // Create a scope with an artificial location for the body of this function. 1308 ArtificialLocation AL(*this, Builder); 1309 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 1310 AL.Emit(); 1311 1312 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); 1313 1314 llvm::Value *src = GetAddrOfLocalVar(&srcDecl); 1315 src = Builder.CreateLoad(src); 1316 src = Builder.CreateBitCast(src, structPtrTy, "block.source"); 1317 1318 llvm::Value *dst = GetAddrOfLocalVar(&dstDecl); 1319 dst = Builder.CreateLoad(dst); 1320 dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest"); 1321 1322 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1323 1324 for (const auto &CI : blockDecl->captures()) { 1325 const VarDecl *variable = CI.getVariable(); 1326 QualType type = variable->getType(); 1327 1328 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1329 if (capture.isConstant()) continue; 1330 1331 const Expr *copyExpr = CI.getCopyExpr(); 1332 BlockFieldFlags flags; 1333 1334 bool useARCWeakCopy = false; 1335 bool useARCStrongCopy = false; 1336 1337 if (copyExpr) { 1338 assert(!CI.isByRef()); 1339 // don't bother computing flags 1340 1341 } else if (CI.isByRef()) { 1342 flags = BLOCK_FIELD_IS_BYREF; 1343 if (type.isObjCGCWeak()) 1344 flags |= BLOCK_FIELD_IS_WEAK; 1345 1346 } else if (type->isObjCRetainableType()) { 1347 flags = BLOCK_FIELD_IS_OBJECT; 1348 bool isBlockPointer = type->isBlockPointerType(); 1349 if (isBlockPointer) 1350 flags = BLOCK_FIELD_IS_BLOCK; 1351 1352 // Special rules for ARC captures: 1353 if (getLangOpts().ObjCAutoRefCount) { 1354 Qualifiers qs = type.getQualifiers(); 1355 1356 // We need to register __weak direct captures with the runtime. 1357 if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) { 1358 useARCWeakCopy = true; 1359 1360 // We need to retain the copied value for __strong direct captures. 1361 } else if (qs.getObjCLifetime() == Qualifiers::OCL_Strong) { 1362 // If it's a block pointer, we have to copy the block and 1363 // assign that to the destination pointer, so we might as 1364 // well use _Block_object_assign. Otherwise we can avoid that. 1365 if (!isBlockPointer) 1366 useARCStrongCopy = true; 1367 1368 // Otherwise the memcpy is fine. 1369 } else { 1370 continue; 1371 } 1372 1373 // Non-ARC captures of retainable pointers are strong and 1374 // therefore require a call to _Block_object_assign. 1375 } else { 1376 // fall through 1377 } 1378 } else { 1379 continue; 1380 } 1381 1382 unsigned index = capture.getIndex(); 1383 llvm::Value *srcField = Builder.CreateStructGEP(src, index); 1384 llvm::Value *dstField = Builder.CreateStructGEP(dst, index); 1385 1386 // If there's an explicit copy expression, we do that. 1387 if (copyExpr) { 1388 EmitSynthesizedCXXCopyCtor(dstField, srcField, copyExpr); 1389 } else if (useARCWeakCopy) { 1390 EmitARCCopyWeak(dstField, srcField); 1391 } else { 1392 llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); 1393 if (useARCStrongCopy) { 1394 // At -O0, store null into the destination field (so that the 1395 // storeStrong doesn't over-release) and then call storeStrong. 1396 // This is a workaround to not having an initStrong call. 1397 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1398 llvm::PointerType *ty = cast<llvm::PointerType>(srcValue->getType()); 1399 llvm::Value *null = llvm::ConstantPointerNull::get(ty); 1400 Builder.CreateStore(null, dstField); 1401 EmitARCStoreStrongCall(dstField, srcValue, true); 1402 1403 // With optimization enabled, take advantage of the fact that 1404 // the blocks runtime guarantees a memcpy of the block data, and 1405 // just emit a retain of the src field. 1406 } else { 1407 EmitARCRetainNonBlock(srcValue); 1408 1409 // We don't need this anymore, so kill it. It's not quite 1410 // worth the annoyance to avoid creating it in the first place. 1411 cast<llvm::Instruction>(dstField)->eraseFromParent(); 1412 } 1413 } else { 1414 srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy); 1415 llvm::Value *dstAddr = Builder.CreateBitCast(dstField, VoidPtrTy); 1416 llvm::Value *args[] = { 1417 dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) 1418 }; 1419 1420 bool copyCanThrow = false; 1421 if (CI.isByRef() && variable->getType()->getAsCXXRecordDecl()) { 1422 const Expr *copyExpr = 1423 CGM.getContext().getBlockVarCopyInits(variable); 1424 if (copyExpr) { 1425 copyCanThrow = true; // FIXME: reuse the noexcept logic 1426 } 1427 } 1428 1429 if (copyCanThrow) { 1430 EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args); 1431 } else { 1432 EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args); 1433 } 1434 } 1435 } 1436 } 1437 1438 FinishFunction(); 1439 1440 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 1441 } 1442 1443 /// Generate the destroy-helper function for a block closure object: 1444 /// static void block_destroy_helper(block_t *theBlock); 1445 /// 1446 /// Note that this destroys a heap-allocated block closure object; 1447 /// it should not be confused with a 'byref destroy helper', which 1448 /// destroys the heap-allocated contents of an individual __block 1449 /// variable. 1450 llvm::Constant * 1451 CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) { 1452 ASTContext &C = getContext(); 1453 1454 FunctionArgList args; 1455 ImplicitParamDecl srcDecl(0, SourceLocation(), 0, C.VoidPtrTy); 1456 args.push_back(&srcDecl); 1457 1458 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 1459 C.VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false); 1460 1461 // FIXME: We'd like to put these into a mergable by content, with 1462 // internal linkage. 1463 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 1464 1465 llvm::Function *Fn = 1466 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1467 "__destroy_helper_block_", &CGM.getModule()); 1468 1469 IdentifierInfo *II 1470 = &CGM.getContext().Idents.get("__destroy_helper_block_"); 1471 1472 FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), 1473 SourceLocation(), 1474 SourceLocation(), II, C.VoidTy, 0, 1475 SC_Static, 1476 false, false); 1477 // Create a scope with an artificial location for the body of this function. 1478 ArtificialLocation AL(*this, Builder); 1479 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 1480 AL.Emit(); 1481 1482 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); 1483 1484 llvm::Value *src = GetAddrOfLocalVar(&srcDecl); 1485 src = Builder.CreateLoad(src); 1486 src = Builder.CreateBitCast(src, structPtrTy, "block"); 1487 1488 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1489 1490 CodeGenFunction::RunCleanupsScope cleanups(*this); 1491 1492 for (const auto &CI : blockDecl->captures()) { 1493 const VarDecl *variable = CI.getVariable(); 1494 QualType type = variable->getType(); 1495 1496 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1497 if (capture.isConstant()) continue; 1498 1499 BlockFieldFlags flags; 1500 const CXXDestructorDecl *dtor = 0; 1501 1502 bool useARCWeakDestroy = false; 1503 bool useARCStrongDestroy = false; 1504 1505 if (CI.isByRef()) { 1506 flags = BLOCK_FIELD_IS_BYREF; 1507 if (type.isObjCGCWeak()) 1508 flags |= BLOCK_FIELD_IS_WEAK; 1509 } else if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { 1510 if (record->hasTrivialDestructor()) 1511 continue; 1512 dtor = record->getDestructor(); 1513 } else if (type->isObjCRetainableType()) { 1514 flags = BLOCK_FIELD_IS_OBJECT; 1515 if (type->isBlockPointerType()) 1516 flags = BLOCK_FIELD_IS_BLOCK; 1517 1518 // Special rules for ARC captures. 1519 if (getLangOpts().ObjCAutoRefCount) { 1520 Qualifiers qs = type.getQualifiers(); 1521 1522 // Don't generate special dispose logic for a captured object 1523 // unless it's __strong or __weak. 1524 if (!qs.hasStrongOrWeakObjCLifetime()) 1525 continue; 1526 1527 // Support __weak direct captures. 1528 if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) 1529 useARCWeakDestroy = true; 1530 1531 // Tools really want us to use objc_storeStrong here. 1532 else 1533 useARCStrongDestroy = true; 1534 } 1535 } else { 1536 continue; 1537 } 1538 1539 unsigned index = capture.getIndex(); 1540 llvm::Value *srcField = Builder.CreateStructGEP(src, index); 1541 1542 // If there's an explicit copy expression, we do that. 1543 if (dtor) { 1544 PushDestructorCleanup(dtor, srcField); 1545 1546 // If this is a __weak capture, emit the release directly. 1547 } else if (useARCWeakDestroy) { 1548 EmitARCDestroyWeak(srcField); 1549 1550 // Destroy strong objects with a call if requested. 1551 } else if (useARCStrongDestroy) { 1552 EmitARCDestroyStrong(srcField, ARCImpreciseLifetime); 1553 1554 // Otherwise we call _Block_object_dispose. It wouldn't be too 1555 // hard to just emit this as a cleanup if we wanted to make sure 1556 // that things were done in reverse. 1557 } else { 1558 llvm::Value *value = Builder.CreateLoad(srcField); 1559 value = Builder.CreateBitCast(value, VoidPtrTy); 1560 BuildBlockRelease(value, flags); 1561 } 1562 } 1563 1564 cleanups.ForceCleanup(); 1565 1566 FinishFunction(); 1567 1568 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 1569 } 1570 1571 namespace { 1572 1573 /// Emits the copy/dispose helper functions for a __block object of id type. 1574 class ObjectByrefHelpers : public CodeGenModule::ByrefHelpers { 1575 BlockFieldFlags Flags; 1576 1577 public: 1578 ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags) 1579 : ByrefHelpers(alignment), Flags(flags) {} 1580 1581 void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, 1582 llvm::Value *srcField) override { 1583 destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy); 1584 1585 srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy); 1586 llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField); 1587 1588 unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask(); 1589 1590 llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags); 1591 llvm::Value *fn = CGF.CGM.getBlockObjectAssign(); 1592 1593 llvm::Value *args[] = { destField, srcValue, flagsVal }; 1594 CGF.EmitNounwindRuntimeCall(fn, args); 1595 } 1596 1597 void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { 1598 field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0)); 1599 llvm::Value *value = CGF.Builder.CreateLoad(field); 1600 1601 CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER); 1602 } 1603 1604 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1605 id.AddInteger(Flags.getBitMask()); 1606 } 1607 }; 1608 1609 /// Emits the copy/dispose helpers for an ARC __block __weak variable. 1610 class ARCWeakByrefHelpers : public CodeGenModule::ByrefHelpers { 1611 public: 1612 ARCWeakByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {} 1613 1614 void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, 1615 llvm::Value *srcField) override { 1616 CGF.EmitARCMoveWeak(destField, srcField); 1617 } 1618 1619 void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { 1620 CGF.EmitARCDestroyWeak(field); 1621 } 1622 1623 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1624 // 0 is distinguishable from all pointers and byref flags 1625 id.AddInteger(0); 1626 } 1627 }; 1628 1629 /// Emits the copy/dispose helpers for an ARC __block __strong variable 1630 /// that's not of block-pointer type. 1631 class ARCStrongByrefHelpers : public CodeGenModule::ByrefHelpers { 1632 public: 1633 ARCStrongByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {} 1634 1635 void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, 1636 llvm::Value *srcField) override { 1637 // Do a "move" by copying the value and then zeroing out the old 1638 // variable. 1639 1640 llvm::LoadInst *value = CGF.Builder.CreateLoad(srcField); 1641 value->setAlignment(Alignment.getQuantity()); 1642 1643 llvm::Value *null = 1644 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(value->getType())); 1645 1646 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 1647 llvm::StoreInst *store = CGF.Builder.CreateStore(null, destField); 1648 store->setAlignment(Alignment.getQuantity()); 1649 CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true); 1650 CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true); 1651 return; 1652 } 1653 llvm::StoreInst *store = CGF.Builder.CreateStore(value, destField); 1654 store->setAlignment(Alignment.getQuantity()); 1655 1656 store = CGF.Builder.CreateStore(null, srcField); 1657 store->setAlignment(Alignment.getQuantity()); 1658 } 1659 1660 void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { 1661 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); 1662 } 1663 1664 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1665 // 1 is distinguishable from all pointers and byref flags 1666 id.AddInteger(1); 1667 } 1668 }; 1669 1670 /// Emits the copy/dispose helpers for an ARC __block __strong 1671 /// variable that's of block-pointer type. 1672 class ARCStrongBlockByrefHelpers : public CodeGenModule::ByrefHelpers { 1673 public: 1674 ARCStrongBlockByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {} 1675 1676 void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, 1677 llvm::Value *srcField) override { 1678 // Do the copy with objc_retainBlock; that's all that 1679 // _Block_object_assign would do anyway, and we'd have to pass the 1680 // right arguments to make sure it doesn't get no-op'ed. 1681 llvm::LoadInst *oldValue = CGF.Builder.CreateLoad(srcField); 1682 oldValue->setAlignment(Alignment.getQuantity()); 1683 1684 llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true); 1685 1686 llvm::StoreInst *store = CGF.Builder.CreateStore(copy, destField); 1687 store->setAlignment(Alignment.getQuantity()); 1688 } 1689 1690 void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { 1691 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); 1692 } 1693 1694 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1695 // 2 is distinguishable from all pointers and byref flags 1696 id.AddInteger(2); 1697 } 1698 }; 1699 1700 /// Emits the copy/dispose helpers for a __block variable with a 1701 /// nontrivial copy constructor or destructor. 1702 class CXXByrefHelpers : public CodeGenModule::ByrefHelpers { 1703 QualType VarType; 1704 const Expr *CopyExpr; 1705 1706 public: 1707 CXXByrefHelpers(CharUnits alignment, QualType type, 1708 const Expr *copyExpr) 1709 : ByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {} 1710 1711 bool needsCopy() const override { return CopyExpr != 0; } 1712 void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, 1713 llvm::Value *srcField) override { 1714 if (!CopyExpr) return; 1715 CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr); 1716 } 1717 1718 void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { 1719 EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin(); 1720 CGF.PushDestructorCleanup(VarType, field); 1721 CGF.PopCleanupBlocks(cleanupDepth); 1722 } 1723 1724 void profileImpl(llvm::FoldingSetNodeID &id) const override { 1725 id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr()); 1726 } 1727 }; 1728 } // end anonymous namespace 1729 1730 static llvm::Constant * 1731 generateByrefCopyHelper(CodeGenFunction &CGF, 1732 llvm::StructType &byrefType, 1733 unsigned valueFieldIndex, 1734 CodeGenModule::ByrefHelpers &byrefInfo) { 1735 ASTContext &Context = CGF.getContext(); 1736 1737 QualType R = Context.VoidTy; 1738 1739 FunctionArgList args; 1740 ImplicitParamDecl dst(0, SourceLocation(), 0, Context.VoidPtrTy); 1741 args.push_back(&dst); 1742 1743 ImplicitParamDecl src(0, SourceLocation(), 0, Context.VoidPtrTy); 1744 args.push_back(&src); 1745 1746 const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeFreeFunctionDeclaration( 1747 R, args, FunctionType::ExtInfo(), /*variadic=*/false); 1748 1749 CodeGenTypes &Types = CGF.CGM.getTypes(); 1750 llvm::FunctionType *LTy = Types.GetFunctionType(FI); 1751 1752 // FIXME: We'd like to put these into a mergable by content, with 1753 // internal linkage. 1754 llvm::Function *Fn = 1755 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1756 "__Block_byref_object_copy_", &CGF.CGM.getModule()); 1757 1758 IdentifierInfo *II 1759 = &Context.Idents.get("__Block_byref_object_copy_"); 1760 1761 FunctionDecl *FD = FunctionDecl::Create(Context, 1762 Context.getTranslationUnitDecl(), 1763 SourceLocation(), 1764 SourceLocation(), II, R, 0, 1765 SC_Static, 1766 false, false); 1767 1768 CGF.StartFunction(FD, R, Fn, FI, args, SourceLocation()); 1769 1770 if (byrefInfo.needsCopy()) { 1771 llvm::Type *byrefPtrType = byrefType.getPointerTo(0); 1772 1773 // dst->x 1774 llvm::Value *destField = CGF.GetAddrOfLocalVar(&dst); 1775 destField = CGF.Builder.CreateLoad(destField); 1776 destField = CGF.Builder.CreateBitCast(destField, byrefPtrType); 1777 destField = CGF.Builder.CreateStructGEP(destField, valueFieldIndex, "x"); 1778 1779 // src->x 1780 llvm::Value *srcField = CGF.GetAddrOfLocalVar(&src); 1781 srcField = CGF.Builder.CreateLoad(srcField); 1782 srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType); 1783 srcField = CGF.Builder.CreateStructGEP(srcField, valueFieldIndex, "x"); 1784 1785 byrefInfo.emitCopy(CGF, destField, srcField); 1786 } 1787 1788 CGF.FinishFunction(); 1789 1790 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); 1791 } 1792 1793 /// Build the copy helper for a __block variable. 1794 static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM, 1795 llvm::StructType &byrefType, 1796 unsigned byrefValueIndex, 1797 CodeGenModule::ByrefHelpers &info) { 1798 CodeGenFunction CGF(CGM); 1799 return generateByrefCopyHelper(CGF, byrefType, byrefValueIndex, info); 1800 } 1801 1802 /// Generate code for a __block variable's dispose helper. 1803 static llvm::Constant * 1804 generateByrefDisposeHelper(CodeGenFunction &CGF, 1805 llvm::StructType &byrefType, 1806 unsigned byrefValueIndex, 1807 CodeGenModule::ByrefHelpers &byrefInfo) { 1808 ASTContext &Context = CGF.getContext(); 1809 QualType R = Context.VoidTy; 1810 1811 FunctionArgList args; 1812 ImplicitParamDecl src(0, SourceLocation(), 0, Context.VoidPtrTy); 1813 args.push_back(&src); 1814 1815 const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeFreeFunctionDeclaration( 1816 R, args, FunctionType::ExtInfo(), /*variadic=*/false); 1817 1818 CodeGenTypes &Types = CGF.CGM.getTypes(); 1819 llvm::FunctionType *LTy = Types.GetFunctionType(FI); 1820 1821 // FIXME: We'd like to put these into a mergable by content, with 1822 // internal linkage. 1823 llvm::Function *Fn = 1824 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 1825 "__Block_byref_object_dispose_", 1826 &CGF.CGM.getModule()); 1827 1828 IdentifierInfo *II 1829 = &Context.Idents.get("__Block_byref_object_dispose_"); 1830 1831 FunctionDecl *FD = FunctionDecl::Create(Context, 1832 Context.getTranslationUnitDecl(), 1833 SourceLocation(), 1834 SourceLocation(), II, R, 0, 1835 SC_Static, 1836 false, false); 1837 CGF.StartFunction(FD, R, Fn, FI, args, SourceLocation()); 1838 1839 if (byrefInfo.needsDispose()) { 1840 llvm::Value *V = CGF.GetAddrOfLocalVar(&src); 1841 V = CGF.Builder.CreateLoad(V); 1842 V = CGF.Builder.CreateBitCast(V, byrefType.getPointerTo(0)); 1843 V = CGF.Builder.CreateStructGEP(V, byrefValueIndex, "x"); 1844 1845 byrefInfo.emitDispose(CGF, V); 1846 } 1847 1848 CGF.FinishFunction(); 1849 1850 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); 1851 } 1852 1853 /// Build the dispose helper for a __block variable. 1854 static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM, 1855 llvm::StructType &byrefType, 1856 unsigned byrefValueIndex, 1857 CodeGenModule::ByrefHelpers &info) { 1858 CodeGenFunction CGF(CGM); 1859 return generateByrefDisposeHelper(CGF, byrefType, byrefValueIndex, info); 1860 } 1861 1862 /// Lazily build the copy and dispose helpers for a __block variable 1863 /// with the given information. 1864 template <class T> static T *buildByrefHelpers(CodeGenModule &CGM, 1865 llvm::StructType &byrefTy, 1866 unsigned byrefValueIndex, 1867 T &byrefInfo) { 1868 // Increase the field's alignment to be at least pointer alignment, 1869 // since the layout of the byref struct will guarantee at least that. 1870 byrefInfo.Alignment = std::max(byrefInfo.Alignment, 1871 CharUnits::fromQuantity(CGM.PointerAlignInBytes)); 1872 1873 llvm::FoldingSetNodeID id; 1874 byrefInfo.Profile(id); 1875 1876 void *insertPos; 1877 CodeGenModule::ByrefHelpers *node 1878 = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos); 1879 if (node) return static_cast<T*>(node); 1880 1881 byrefInfo.CopyHelper = 1882 buildByrefCopyHelper(CGM, byrefTy, byrefValueIndex, byrefInfo); 1883 byrefInfo.DisposeHelper = 1884 buildByrefDisposeHelper(CGM, byrefTy, byrefValueIndex,byrefInfo); 1885 1886 T *copy = new (CGM.getContext()) T(byrefInfo); 1887 CGM.ByrefHelpersCache.InsertNode(copy, insertPos); 1888 return copy; 1889 } 1890 1891 /// Build the copy and dispose helpers for the given __block variable 1892 /// emission. Places the helpers in the global cache. Returns null 1893 /// if no helpers are required. 1894 CodeGenModule::ByrefHelpers * 1895 CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType, 1896 const AutoVarEmission &emission) { 1897 const VarDecl &var = *emission.Variable; 1898 QualType type = var.getType(); 1899 1900 unsigned byrefValueIndex = getByRefValueLLVMField(&var); 1901 1902 if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { 1903 const Expr *copyExpr = CGM.getContext().getBlockVarCopyInits(&var); 1904 if (!copyExpr && record->hasTrivialDestructor()) return 0; 1905 1906 CXXByrefHelpers byrefInfo(emission.Alignment, type, copyExpr); 1907 return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); 1908 } 1909 1910 // Otherwise, if we don't have a retainable type, there's nothing to do. 1911 // that the runtime does extra copies. 1912 if (!type->isObjCRetainableType()) return 0; 1913 1914 Qualifiers qs = type.getQualifiers(); 1915 1916 // If we have lifetime, that dominates. 1917 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 1918 assert(getLangOpts().ObjCAutoRefCount); 1919 1920 switch (lifetime) { 1921 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 1922 1923 // These are just bits as far as the runtime is concerned. 1924 case Qualifiers::OCL_ExplicitNone: 1925 case Qualifiers::OCL_Autoreleasing: 1926 return 0; 1927 1928 // Tell the runtime that this is ARC __weak, called by the 1929 // byref routines. 1930 case Qualifiers::OCL_Weak: { 1931 ARCWeakByrefHelpers byrefInfo(emission.Alignment); 1932 return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); 1933 } 1934 1935 // ARC __strong __block variables need to be retained. 1936 case Qualifiers::OCL_Strong: 1937 // Block pointers need to be copied, and there's no direct 1938 // transfer possible. 1939 if (type->isBlockPointerType()) { 1940 ARCStrongBlockByrefHelpers byrefInfo(emission.Alignment); 1941 return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); 1942 1943 // Otherwise, we transfer ownership of the retain from the stack 1944 // to the heap. 1945 } else { 1946 ARCStrongByrefHelpers byrefInfo(emission.Alignment); 1947 return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); 1948 } 1949 } 1950 llvm_unreachable("fell out of lifetime switch!"); 1951 } 1952 1953 BlockFieldFlags flags; 1954 if (type->isBlockPointerType()) { 1955 flags |= BLOCK_FIELD_IS_BLOCK; 1956 } else if (CGM.getContext().isObjCNSObjectType(type) || 1957 type->isObjCObjectPointerType()) { 1958 flags |= BLOCK_FIELD_IS_OBJECT; 1959 } else { 1960 return 0; 1961 } 1962 1963 if (type.isObjCGCWeak()) 1964 flags |= BLOCK_FIELD_IS_WEAK; 1965 1966 ObjectByrefHelpers byrefInfo(emission.Alignment, flags); 1967 return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); 1968 } 1969 1970 unsigned CodeGenFunction::getByRefValueLLVMField(const ValueDecl *VD) const { 1971 assert(ByRefValueInfo.count(VD) && "Did not find value!"); 1972 1973 return ByRefValueInfo.find(VD)->second.second; 1974 } 1975 1976 llvm::Value *CodeGenFunction::BuildBlockByrefAddress(llvm::Value *BaseAddr, 1977 const VarDecl *V) { 1978 llvm::Value *Loc = Builder.CreateStructGEP(BaseAddr, 1, "forwarding"); 1979 Loc = Builder.CreateLoad(Loc); 1980 Loc = Builder.CreateStructGEP(Loc, getByRefValueLLVMField(V), 1981 V->getNameAsString()); 1982 return Loc; 1983 } 1984 1985 /// BuildByRefType - This routine changes a __block variable declared as T x 1986 /// into: 1987 /// 1988 /// struct { 1989 /// void *__isa; 1990 /// void *__forwarding; 1991 /// int32_t __flags; 1992 /// int32_t __size; 1993 /// void *__copy_helper; // only if needed 1994 /// void *__destroy_helper; // only if needed 1995 /// void *__byref_variable_layout;// only if needed 1996 /// char padding[X]; // only if needed 1997 /// T x; 1998 /// } x 1999 /// 2000 llvm::Type *CodeGenFunction::BuildByRefType(const VarDecl *D) { 2001 std::pair<llvm::Type *, unsigned> &Info = ByRefValueInfo[D]; 2002 if (Info.first) 2003 return Info.first; 2004 2005 QualType Ty = D->getType(); 2006 2007 SmallVector<llvm::Type *, 8> types; 2008 2009 llvm::StructType *ByRefType = 2010 llvm::StructType::create(getLLVMContext(), 2011 "struct.__block_byref_" + D->getNameAsString()); 2012 2013 // void *__isa; 2014 types.push_back(Int8PtrTy); 2015 2016 // void *__forwarding; 2017 types.push_back(llvm::PointerType::getUnqual(ByRefType)); 2018 2019 // int32_t __flags; 2020 types.push_back(Int32Ty); 2021 2022 // int32_t __size; 2023 types.push_back(Int32Ty); 2024 // Note that this must match *exactly* the logic in buildByrefHelpers. 2025 bool HasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D); 2026 if (HasCopyAndDispose) { 2027 /// void *__copy_helper; 2028 types.push_back(Int8PtrTy); 2029 2030 /// void *__destroy_helper; 2031 types.push_back(Int8PtrTy); 2032 } 2033 bool HasByrefExtendedLayout = false; 2034 Qualifiers::ObjCLifetime Lifetime; 2035 if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) && 2036 HasByrefExtendedLayout) 2037 /// void *__byref_variable_layout; 2038 types.push_back(Int8PtrTy); 2039 2040 bool Packed = false; 2041 CharUnits Align = getContext().getDeclAlign(D); 2042 if (Align > 2043 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))) { 2044 // We have to insert padding. 2045 2046 // The struct above has 2 32-bit integers. 2047 unsigned CurrentOffsetInBytes = 4 * 2; 2048 2049 // And either 2, 3, 4 or 5 pointers. 2050 unsigned noPointers = 2; 2051 if (HasCopyAndDispose) 2052 noPointers += 2; 2053 if (HasByrefExtendedLayout) 2054 noPointers += 1; 2055 2056 CurrentOffsetInBytes += noPointers * CGM.getDataLayout().getTypeAllocSize(Int8PtrTy); 2057 2058 // Align the offset. 2059 unsigned AlignedOffsetInBytes = 2060 llvm::RoundUpToAlignment(CurrentOffsetInBytes, Align.getQuantity()); 2061 2062 unsigned NumPaddingBytes = AlignedOffsetInBytes - CurrentOffsetInBytes; 2063 if (NumPaddingBytes > 0) { 2064 llvm::Type *Ty = Int8Ty; 2065 // FIXME: We need a sema error for alignment larger than the minimum of 2066 // the maximal stack alignment and the alignment of malloc on the system. 2067 if (NumPaddingBytes > 1) 2068 Ty = llvm::ArrayType::get(Ty, NumPaddingBytes); 2069 2070 types.push_back(Ty); 2071 2072 // We want a packed struct. 2073 Packed = true; 2074 } 2075 } 2076 2077 // T x; 2078 types.push_back(ConvertTypeForMem(Ty)); 2079 2080 ByRefType->setBody(types, Packed); 2081 2082 Info.first = ByRefType; 2083 2084 Info.second = types.size() - 1; 2085 2086 return Info.first; 2087 } 2088 2089 /// Initialize the structural components of a __block variable, i.e. 2090 /// everything but the actual object. 2091 void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) { 2092 // Find the address of the local. 2093 llvm::Value *addr = emission.Address; 2094 2095 // That's an alloca of the byref structure type. 2096 llvm::StructType *byrefType = cast<llvm::StructType>( 2097 cast<llvm::PointerType>(addr->getType())->getElementType()); 2098 2099 // Build the byref helpers if necessary. This is null if we don't need any. 2100 CodeGenModule::ByrefHelpers *helpers = 2101 buildByrefHelpers(*byrefType, emission); 2102 2103 const VarDecl &D = *emission.Variable; 2104 QualType type = D.getType(); 2105 2106 bool HasByrefExtendedLayout; 2107 Qualifiers::ObjCLifetime ByrefLifetime; 2108 bool ByRefHasLifetime = 2109 getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout); 2110 2111 llvm::Value *V; 2112 2113 // Initialize the 'isa', which is just 0 or 1. 2114 int isa = 0; 2115 if (type.isObjCGCWeak()) 2116 isa = 1; 2117 V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa"); 2118 Builder.CreateStore(V, Builder.CreateStructGEP(addr, 0, "byref.isa")); 2119 2120 // Store the address of the variable into its own forwarding pointer. 2121 Builder.CreateStore(addr, 2122 Builder.CreateStructGEP(addr, 1, "byref.forwarding")); 2123 2124 // Blocks ABI: 2125 // c) the flags field is set to either 0 if no helper functions are 2126 // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are, 2127 BlockFlags flags; 2128 if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE; 2129 if (ByRefHasLifetime) { 2130 if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED; 2131 else switch (ByrefLifetime) { 2132 case Qualifiers::OCL_Strong: 2133 flags |= BLOCK_BYREF_LAYOUT_STRONG; 2134 break; 2135 case Qualifiers::OCL_Weak: 2136 flags |= BLOCK_BYREF_LAYOUT_WEAK; 2137 break; 2138 case Qualifiers::OCL_ExplicitNone: 2139 flags |= BLOCK_BYREF_LAYOUT_UNRETAINED; 2140 break; 2141 case Qualifiers::OCL_None: 2142 if (!type->isObjCObjectPointerType() && !type->isBlockPointerType()) 2143 flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT; 2144 break; 2145 default: 2146 break; 2147 } 2148 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2149 printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask()); 2150 if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE) 2151 printf(" BLOCK_BYREF_HAS_COPY_DISPOSE"); 2152 if (flags & BLOCK_BYREF_LAYOUT_MASK) { 2153 BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK); 2154 if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED) 2155 printf(" BLOCK_BYREF_LAYOUT_EXTENDED"); 2156 if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG) 2157 printf(" BLOCK_BYREF_LAYOUT_STRONG"); 2158 if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK) 2159 printf(" BLOCK_BYREF_LAYOUT_WEAK"); 2160 if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED) 2161 printf(" BLOCK_BYREF_LAYOUT_UNRETAINED"); 2162 if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT) 2163 printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT"); 2164 } 2165 printf("\n"); 2166 } 2167 } 2168 2169 Builder.CreateStore(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 2170 Builder.CreateStructGEP(addr, 2, "byref.flags")); 2171 2172 CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType); 2173 V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity()); 2174 Builder.CreateStore(V, Builder.CreateStructGEP(addr, 3, "byref.size")); 2175 2176 if (helpers) { 2177 llvm::Value *copy_helper = Builder.CreateStructGEP(addr, 4); 2178 Builder.CreateStore(helpers->CopyHelper, copy_helper); 2179 2180 llvm::Value *destroy_helper = Builder.CreateStructGEP(addr, 5); 2181 Builder.CreateStore(helpers->DisposeHelper, destroy_helper); 2182 } 2183 if (ByRefHasLifetime && HasByrefExtendedLayout) { 2184 llvm::Constant* ByrefLayoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type); 2185 llvm::Value *ByrefInfoAddr = Builder.CreateStructGEP(addr, helpers ? 6 : 4, 2186 "byref.layout"); 2187 // cast destination to pointer to source type. 2188 llvm::Type *DesTy = ByrefLayoutInfo->getType(); 2189 DesTy = DesTy->getPointerTo(); 2190 llvm::Value *BC = Builder.CreatePointerCast(ByrefInfoAddr, DesTy); 2191 Builder.CreateStore(ByrefLayoutInfo, BC); 2192 } 2193 } 2194 2195 void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags) { 2196 llvm::Value *F = CGM.getBlockObjectDispose(); 2197 llvm::Value *args[] = { 2198 Builder.CreateBitCast(V, Int8PtrTy), 2199 llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) 2200 }; 2201 EmitNounwindRuntimeCall(F, args); // FIXME: throwing destructors? 2202 } 2203 2204 namespace { 2205 struct CallBlockRelease : EHScopeStack::Cleanup { 2206 llvm::Value *Addr; 2207 CallBlockRelease(llvm::Value *Addr) : Addr(Addr) {} 2208 2209 void Emit(CodeGenFunction &CGF, Flags flags) override { 2210 // Should we be passing FIELD_IS_WEAK here? 2211 CGF.BuildBlockRelease(Addr, BLOCK_FIELD_IS_BYREF); 2212 } 2213 }; 2214 } 2215 2216 /// Enter a cleanup to destroy a __block variable. Note that this 2217 /// cleanup should be a no-op if the variable hasn't left the stack 2218 /// yet; if a cleanup is required for the variable itself, that needs 2219 /// to be done externally. 2220 void CodeGenFunction::enterByrefCleanup(const AutoVarEmission &emission) { 2221 // We don't enter this cleanup if we're in pure-GC mode. 2222 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) 2223 return; 2224 2225 EHStack.pushCleanup<CallBlockRelease>(NormalAndEHCleanup, emission.Address); 2226 } 2227 2228 /// Adjust the declaration of something from the blocks API. 2229 static void configureBlocksRuntimeObject(CodeGenModule &CGM, 2230 llvm::Constant *C) { 2231 if (!CGM.getLangOpts().BlocksRuntimeOptional) return; 2232 2233 llvm::GlobalValue *GV = cast<llvm::GlobalValue>(C->stripPointerCasts()); 2234 if (GV->isDeclaration() && 2235 GV->getLinkage() == llvm::GlobalValue::ExternalLinkage) 2236 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2237 } 2238 2239 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2240 if (BlockObjectDispose) 2241 return BlockObjectDispose; 2242 2243 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2244 llvm::FunctionType *fty 2245 = llvm::FunctionType::get(VoidTy, args, false); 2246 BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose"); 2247 configureBlocksRuntimeObject(*this, BlockObjectDispose); 2248 return BlockObjectDispose; 2249 } 2250 2251 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2252 if (BlockObjectAssign) 2253 return BlockObjectAssign; 2254 2255 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2256 llvm::FunctionType *fty 2257 = llvm::FunctionType::get(VoidTy, args, false); 2258 BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign"); 2259 configureBlocksRuntimeObject(*this, BlockObjectAssign); 2260 return BlockObjectAssign; 2261 } 2262 2263 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2264 if (NSConcreteGlobalBlock) 2265 return NSConcreteGlobalBlock; 2266 2267 NSConcreteGlobalBlock = GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock", 2268 Int8PtrTy->getPointerTo(), 0); 2269 configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock); 2270 return NSConcreteGlobalBlock; 2271 } 2272 2273 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2274 if (NSConcreteStackBlock) 2275 return NSConcreteStackBlock; 2276 2277 NSConcreteStackBlock = GetOrCreateLLVMGlobal("_NSConcreteStackBlock", 2278 Int8PtrTy->getPointerTo(), 0); 2279 configureBlocksRuntimeObject(*this, NSConcreteStackBlock); 2280 return NSConcreteStackBlock; 2281 } 2282