1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the code for emitting atomic operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCall.h" 14 #include "CGRecordLayout.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/FrontendDiagnostic.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Operator.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 namespace { 30 class AtomicInfo { 31 CodeGenFunction &CGF; 32 QualType AtomicTy; 33 QualType ValueTy; 34 uint64_t AtomicSizeInBits; 35 uint64_t ValueSizeInBits; 36 CharUnits AtomicAlign; 37 CharUnits ValueAlign; 38 TypeEvaluationKind EvaluationKind; 39 bool UseLibcall; 40 LValue LVal; 41 CGBitFieldInfo BFI; 42 public: 43 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) 44 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), 45 EvaluationKind(TEK_Scalar), UseLibcall(true) { 46 assert(!lvalue.isGlobalReg()); 47 ASTContext &C = CGF.getContext(); 48 if (lvalue.isSimple()) { 49 AtomicTy = lvalue.getType(); 50 if (auto *ATy = AtomicTy->getAs<AtomicType>()) 51 ValueTy = ATy->getValueType(); 52 else 53 ValueTy = AtomicTy; 54 EvaluationKind = CGF.getEvaluationKind(ValueTy); 55 56 uint64_t ValueAlignInBits; 57 uint64_t AtomicAlignInBits; 58 TypeInfo ValueTI = C.getTypeInfo(ValueTy); 59 ValueSizeInBits = ValueTI.Width; 60 ValueAlignInBits = ValueTI.Align; 61 62 TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); 63 AtomicSizeInBits = AtomicTI.Width; 64 AtomicAlignInBits = AtomicTI.Align; 65 66 assert(ValueSizeInBits <= AtomicSizeInBits); 67 assert(ValueAlignInBits <= AtomicAlignInBits); 68 69 AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); 70 ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); 71 if (lvalue.getAlignment().isZero()) 72 lvalue.setAlignment(AtomicAlign); 73 74 LVal = lvalue; 75 } else if (lvalue.isBitField()) { 76 ValueTy = lvalue.getType(); 77 ValueSizeInBits = C.getTypeSize(ValueTy); 78 auto &OrigBFI = lvalue.getBitFieldInfo(); 79 auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); 80 AtomicSizeInBits = C.toBits( 81 C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) 82 .alignTo(lvalue.getAlignment())); 83 auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer()); 84 auto OffsetInChars = 85 (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * 86 lvalue.getAlignment(); 87 VoidPtrAddr = CGF.Builder.CreateConstGEP1_64( 88 CGF.Int8Ty, VoidPtrAddr, OffsetInChars.getQuantity()); 89 llvm::Type *IntTy = CGF.Builder.getIntNTy(AtomicSizeInBits); 90 auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 91 VoidPtrAddr, IntTy->getPointerTo(), "atomic_bitfield_base"); 92 BFI = OrigBFI; 93 BFI.Offset = Offset; 94 BFI.StorageSize = AtomicSizeInBits; 95 BFI.StorageOffset += OffsetInChars; 96 LVal = LValue::MakeBitfield(Address(Addr, IntTy, lvalue.getAlignment()), 97 BFI, lvalue.getType(), lvalue.getBaseInfo(), 98 lvalue.getTBAAInfo()); 99 AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); 100 if (AtomicTy.isNull()) { 101 llvm::APInt Size( 102 /*numBits=*/32, 103 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); 104 AtomicTy = 105 C.getConstantArrayType(C.CharTy, Size, nullptr, ArrayType::Normal, 106 /*IndexTypeQuals=*/0); 107 } 108 AtomicAlign = ValueAlign = lvalue.getAlignment(); 109 } else if (lvalue.isVectorElt()) { 110 ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType(); 111 ValueSizeInBits = C.getTypeSize(ValueTy); 112 AtomicTy = lvalue.getType(); 113 AtomicSizeInBits = C.getTypeSize(AtomicTy); 114 AtomicAlign = ValueAlign = lvalue.getAlignment(); 115 LVal = lvalue; 116 } else { 117 assert(lvalue.isExtVectorElt()); 118 ValueTy = lvalue.getType(); 119 ValueSizeInBits = C.getTypeSize(ValueTy); 120 AtomicTy = ValueTy = CGF.getContext().getExtVectorType( 121 lvalue.getType(), cast<llvm::FixedVectorType>( 122 lvalue.getExtVectorAddress().getElementType()) 123 ->getNumElements()); 124 AtomicSizeInBits = C.getTypeSize(AtomicTy); 125 AtomicAlign = ValueAlign = lvalue.getAlignment(); 126 LVal = lvalue; 127 } 128 UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( 129 AtomicSizeInBits, C.toBits(lvalue.getAlignment())); 130 } 131 132 QualType getAtomicType() const { return AtomicTy; } 133 QualType getValueType() const { return ValueTy; } 134 CharUnits getAtomicAlignment() const { return AtomicAlign; } 135 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } 136 uint64_t getValueSizeInBits() const { return ValueSizeInBits; } 137 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } 138 bool shouldUseLibcall() const { return UseLibcall; } 139 const LValue &getAtomicLValue() const { return LVal; } 140 llvm::Value *getAtomicPointer() const { 141 if (LVal.isSimple()) 142 return LVal.getPointer(CGF); 143 else if (LVal.isBitField()) 144 return LVal.getBitFieldPointer(); 145 else if (LVal.isVectorElt()) 146 return LVal.getVectorPointer(); 147 assert(LVal.isExtVectorElt()); 148 return LVal.getExtVectorPointer(); 149 } 150 Address getAtomicAddress() const { 151 llvm::Type *ElTy; 152 if (LVal.isSimple()) 153 ElTy = LVal.getAddress(CGF).getElementType(); 154 else if (LVal.isBitField()) 155 ElTy = LVal.getBitFieldAddress().getElementType(); 156 else if (LVal.isVectorElt()) 157 ElTy = LVal.getVectorAddress().getElementType(); 158 else 159 ElTy = LVal.getExtVectorAddress().getElementType(); 160 return Address(getAtomicPointer(), ElTy, getAtomicAlignment()); 161 } 162 163 Address getAtomicAddressAsAtomicIntPointer() const { 164 return emitCastToAtomicIntPointer(getAtomicAddress()); 165 } 166 167 /// Is the atomic size larger than the underlying value type? 168 /// 169 /// Note that the absence of padding does not mean that atomic 170 /// objects are completely interchangeable with non-atomic 171 /// objects: we might have promoted the alignment of a type 172 /// without making it bigger. 173 bool hasPadding() const { 174 return (ValueSizeInBits != AtomicSizeInBits); 175 } 176 177 bool emitMemSetZeroIfNecessary() const; 178 179 llvm::Value *getAtomicSizeValue() const { 180 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); 181 return CGF.CGM.getSize(size); 182 } 183 184 /// Cast the given pointer to an integer pointer suitable for atomic 185 /// operations if the source. 186 Address emitCastToAtomicIntPointer(Address Addr) const; 187 188 /// If Addr is compatible with the iN that will be used for an atomic 189 /// operation, bitcast it. Otherwise, create a temporary that is suitable 190 /// and copy the value across. 191 Address convertToAtomicIntPointer(Address Addr) const; 192 193 /// Turn an atomic-layout object into an r-value. 194 RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, 195 SourceLocation loc, bool AsValue) const; 196 197 /// Converts a rvalue to integer value. 198 llvm::Value *convertRValueToInt(RValue RVal) const; 199 200 RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, 201 AggValueSlot ResultSlot, 202 SourceLocation Loc, bool AsValue) const; 203 204 /// Copy an atomic r-value into atomic-layout memory. 205 void emitCopyIntoMemory(RValue rvalue) const; 206 207 /// Project an l-value down to the value field. 208 LValue projectValue() const { 209 assert(LVal.isSimple()); 210 Address addr = getAtomicAddress(); 211 if (hasPadding()) 212 addr = CGF.Builder.CreateStructGEP(addr, 0); 213 214 return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), 215 LVal.getBaseInfo(), LVal.getTBAAInfo()); 216 } 217 218 /// Emits atomic load. 219 /// \returns Loaded value. 220 RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 221 bool AsValue, llvm::AtomicOrdering AO, 222 bool IsVolatile); 223 224 /// Emits atomic compare-and-exchange sequence. 225 /// \param Expected Expected value. 226 /// \param Desired Desired value. 227 /// \param Success Atomic ordering for success operation. 228 /// \param Failure Atomic ordering for failed operation. 229 /// \param IsWeak true if atomic operation is weak, false otherwise. 230 /// \returns Pair of values: previous value from storage (value type) and 231 /// boolean flag (i1 type) with true if success and false otherwise. 232 std::pair<RValue, llvm::Value *> 233 EmitAtomicCompareExchange(RValue Expected, RValue Desired, 234 llvm::AtomicOrdering Success = 235 llvm::AtomicOrdering::SequentiallyConsistent, 236 llvm::AtomicOrdering Failure = 237 llvm::AtomicOrdering::SequentiallyConsistent, 238 bool IsWeak = false); 239 240 /// Emits atomic update. 241 /// \param AO Atomic ordering. 242 /// \param UpdateOp Update operation for the current lvalue. 243 void EmitAtomicUpdate(llvm::AtomicOrdering AO, 244 const llvm::function_ref<RValue(RValue)> &UpdateOp, 245 bool IsVolatile); 246 /// Emits atomic update. 247 /// \param AO Atomic ordering. 248 void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 249 bool IsVolatile); 250 251 /// Materialize an atomic r-value in atomic-layout memory. 252 Address materializeRValue(RValue rvalue) const; 253 254 /// Creates temp alloca for intermediate operations on atomic value. 255 Address CreateTempAlloca() const; 256 private: 257 bool requiresMemSetZero(llvm::Type *type) const; 258 259 260 /// Emits atomic load as a libcall. 261 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 262 llvm::AtomicOrdering AO, bool IsVolatile); 263 /// Emits atomic load as LLVM instruction. 264 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); 265 /// Emits atomic compare-and-exchange op as a libcall. 266 llvm::Value *EmitAtomicCompareExchangeLibcall( 267 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, 268 llvm::AtomicOrdering Success = 269 llvm::AtomicOrdering::SequentiallyConsistent, 270 llvm::AtomicOrdering Failure = 271 llvm::AtomicOrdering::SequentiallyConsistent); 272 /// Emits atomic compare-and-exchange op as LLVM instruction. 273 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( 274 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 275 llvm::AtomicOrdering Success = 276 llvm::AtomicOrdering::SequentiallyConsistent, 277 llvm::AtomicOrdering Failure = 278 llvm::AtomicOrdering::SequentiallyConsistent, 279 bool IsWeak = false); 280 /// Emit atomic update as libcalls. 281 void 282 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 283 const llvm::function_ref<RValue(RValue)> &UpdateOp, 284 bool IsVolatile); 285 /// Emit atomic update as LLVM instructions. 286 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, 287 const llvm::function_ref<RValue(RValue)> &UpdateOp, 288 bool IsVolatile); 289 /// Emit atomic update as libcalls. 290 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, 291 bool IsVolatile); 292 /// Emit atomic update as LLVM instructions. 293 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, 294 bool IsVolatile); 295 }; 296 } 297 298 Address AtomicInfo::CreateTempAlloca() const { 299 Address TempAlloca = CGF.CreateMemTemp( 300 (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy 301 : AtomicTy, 302 getAtomicAlignment(), 303 "atomic-temp"); 304 // Cast to pointer to value type for bitfields. 305 if (LVal.isBitField()) 306 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 307 TempAlloca, getAtomicAddress().getType()); 308 return TempAlloca; 309 } 310 311 static RValue emitAtomicLibcall(CodeGenFunction &CGF, 312 StringRef fnName, 313 QualType resultType, 314 CallArgList &args) { 315 const CGFunctionInfo &fnInfo = 316 CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); 317 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); 318 llvm::AttrBuilder fnAttrB(CGF.getLLVMContext()); 319 fnAttrB.addAttribute(llvm::Attribute::NoUnwind); 320 fnAttrB.addAttribute(llvm::Attribute::WillReturn); 321 llvm::AttributeList fnAttrs = llvm::AttributeList::get( 322 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, fnAttrB); 323 324 llvm::FunctionCallee fn = 325 CGF.CGM.CreateRuntimeFunction(fnTy, fnName, fnAttrs); 326 auto callee = CGCallee::forDirect(fn); 327 return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args); 328 } 329 330 /// Does a store of the given IR type modify the full expected width? 331 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, 332 uint64_t expectedSize) { 333 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); 334 } 335 336 /// Does the atomic type require memsetting to zero before initialization? 337 /// 338 /// The IR type is provided as a way of making certain queries faster. 339 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { 340 // If the atomic type has size padding, we definitely need a memset. 341 if (hasPadding()) return true; 342 343 // Otherwise, do some simple heuristics to try to avoid it: 344 switch (getEvaluationKind()) { 345 // For scalars and complexes, check whether the store size of the 346 // type uses the full size. 347 case TEK_Scalar: 348 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); 349 case TEK_Complex: 350 return !isFullSizeType(CGF.CGM, type->getStructElementType(0), 351 AtomicSizeInBits / 2); 352 353 // Padding in structs has an undefined bit pattern. User beware. 354 case TEK_Aggregate: 355 return false; 356 } 357 llvm_unreachable("bad evaluation kind"); 358 } 359 360 bool AtomicInfo::emitMemSetZeroIfNecessary() const { 361 assert(LVal.isSimple()); 362 Address addr = LVal.getAddress(CGF); 363 if (!requiresMemSetZero(addr.getElementType())) 364 return false; 365 366 CGF.Builder.CreateMemSet( 367 addr.getPointer(), llvm::ConstantInt::get(CGF.Int8Ty, 0), 368 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), 369 LVal.getAlignment().getAsAlign()); 370 return true; 371 } 372 373 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, 374 Address Dest, Address Ptr, 375 Address Val1, Address Val2, 376 uint64_t Size, 377 llvm::AtomicOrdering SuccessOrder, 378 llvm::AtomicOrdering FailureOrder, 379 llvm::SyncScope::ID Scope) { 380 // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. 381 llvm::Value *Expected = CGF.Builder.CreateLoad(Val1); 382 llvm::Value *Desired = CGF.Builder.CreateLoad(Val2); 383 384 llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( 385 Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder, 386 Scope); 387 Pair->setVolatile(E->isVolatile()); 388 Pair->setWeak(IsWeak); 389 390 // Cmp holds the result of the compare-exchange operation: true on success, 391 // false on failure. 392 llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); 393 llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); 394 395 // This basic block is used to hold the store instruction if the operation 396 // failed. 397 llvm::BasicBlock *StoreExpectedBB = 398 CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); 399 400 // This basic block is the exit point of the operation, we should end up 401 // here regardless of whether or not the operation succeeded. 402 llvm::BasicBlock *ContinueBB = 403 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 404 405 // Update Expected if Expected isn't equal to Old, otherwise branch to the 406 // exit point. 407 CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); 408 409 CGF.Builder.SetInsertPoint(StoreExpectedBB); 410 // Update the memory at Expected with Old's value. 411 CGF.Builder.CreateStore(Old, Val1); 412 // Finally, branch to the exit point. 413 CGF.Builder.CreateBr(ContinueBB); 414 415 CGF.Builder.SetInsertPoint(ContinueBB); 416 // Update the memory at Dest with Cmp's value. 417 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 418 } 419 420 /// Given an ordering required on success, emit all possible cmpxchg 421 /// instructions to cope with the provided (but possibly only dynamically known) 422 /// FailureOrder. 423 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, 424 bool IsWeak, Address Dest, Address Ptr, 425 Address Val1, Address Val2, 426 llvm::Value *FailureOrderVal, 427 uint64_t Size, 428 llvm::AtomicOrdering SuccessOrder, 429 llvm::SyncScope::ID Scope) { 430 llvm::AtomicOrdering FailureOrder; 431 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { 432 auto FOS = FO->getSExtValue(); 433 if (!llvm::isValidAtomicOrderingCABI(FOS)) 434 FailureOrder = llvm::AtomicOrdering::Monotonic; 435 else 436 switch ((llvm::AtomicOrderingCABI)FOS) { 437 case llvm::AtomicOrderingCABI::relaxed: 438 // 31.7.2.18: "The failure argument shall not be memory_order_release 439 // nor memory_order_acq_rel". Fallback to monotonic. 440 case llvm::AtomicOrderingCABI::release: 441 case llvm::AtomicOrderingCABI::acq_rel: 442 FailureOrder = llvm::AtomicOrdering::Monotonic; 443 break; 444 case llvm::AtomicOrderingCABI::consume: 445 case llvm::AtomicOrderingCABI::acquire: 446 FailureOrder = llvm::AtomicOrdering::Acquire; 447 break; 448 case llvm::AtomicOrderingCABI::seq_cst: 449 FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; 450 break; 451 } 452 // Prior to c++17, "the failure argument shall be no stronger than the 453 // success argument". This condition has been lifted and the only 454 // precondition is 31.7.2.18. Effectively treat this as a DR and skip 455 // language version checks. 456 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 457 FailureOrder, Scope); 458 return; 459 } 460 461 // Create all the relevant BB's 462 auto *MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); 463 auto *AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); 464 auto *SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); 465 auto *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); 466 467 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 468 // doesn't matter unless someone is crazy enough to use something that 469 // doesn't fold to a constant for the ordering. 470 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); 471 // Implemented as acquire, since it's the closest in LLVM. 472 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 473 AcquireBB); 474 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 475 AcquireBB); 476 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 477 SeqCstBB); 478 479 // Emit all the different atomics 480 CGF.Builder.SetInsertPoint(MonotonicBB); 481 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 482 Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope); 483 CGF.Builder.CreateBr(ContBB); 484 485 CGF.Builder.SetInsertPoint(AcquireBB); 486 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 487 llvm::AtomicOrdering::Acquire, Scope); 488 CGF.Builder.CreateBr(ContBB); 489 490 CGF.Builder.SetInsertPoint(SeqCstBB); 491 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 492 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 493 CGF.Builder.CreateBr(ContBB); 494 495 CGF.Builder.SetInsertPoint(ContBB); 496 } 497 498 /// Duplicate the atomic min/max operation in conventional IR for the builtin 499 /// variants that return the new rather than the original value. 500 static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder, 501 AtomicExpr::AtomicOp Op, 502 bool IsSigned, 503 llvm::Value *OldVal, 504 llvm::Value *RHS) { 505 llvm::CmpInst::Predicate Pred; 506 switch (Op) { 507 default: 508 llvm_unreachable("Unexpected min/max operation"); 509 case AtomicExpr::AO__atomic_max_fetch: 510 Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT; 511 break; 512 case AtomicExpr::AO__atomic_min_fetch: 513 Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT; 514 break; 515 } 516 llvm::Value *Cmp = Builder.CreateICmp(Pred, OldVal, RHS, "tst"); 517 return Builder.CreateSelect(Cmp, OldVal, RHS, "newval"); 518 } 519 520 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, 521 Address Ptr, Address Val1, Address Val2, 522 llvm::Value *IsWeak, llvm::Value *FailureOrder, 523 uint64_t Size, llvm::AtomicOrdering Order, 524 llvm::SyncScope::ID Scope) { 525 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 526 bool PostOpMinMax = false; 527 unsigned PostOp = 0; 528 529 switch (E->getOp()) { 530 case AtomicExpr::AO__c11_atomic_init: 531 case AtomicExpr::AO__opencl_atomic_init: 532 llvm_unreachable("Already handled!"); 533 534 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 535 case AtomicExpr::AO__hip_atomic_compare_exchange_strong: 536 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 537 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 538 FailureOrder, Size, Order, Scope); 539 return; 540 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 541 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 542 case AtomicExpr::AO__hip_atomic_compare_exchange_weak: 543 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 544 FailureOrder, Size, Order, Scope); 545 return; 546 case AtomicExpr::AO__atomic_compare_exchange: 547 case AtomicExpr::AO__atomic_compare_exchange_n: { 548 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { 549 emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, 550 Val1, Val2, FailureOrder, Size, Order, Scope); 551 } else { 552 // Create all the relevant BB's 553 llvm::BasicBlock *StrongBB = 554 CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); 555 llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); 556 llvm::BasicBlock *ContBB = 557 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 558 559 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); 560 SI->addCase(CGF.Builder.getInt1(false), StrongBB); 561 562 CGF.Builder.SetInsertPoint(StrongBB); 563 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 564 FailureOrder, Size, Order, Scope); 565 CGF.Builder.CreateBr(ContBB); 566 567 CGF.Builder.SetInsertPoint(WeakBB); 568 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 569 FailureOrder, Size, Order, Scope); 570 CGF.Builder.CreateBr(ContBB); 571 572 CGF.Builder.SetInsertPoint(ContBB); 573 } 574 return; 575 } 576 case AtomicExpr::AO__c11_atomic_load: 577 case AtomicExpr::AO__opencl_atomic_load: 578 case AtomicExpr::AO__hip_atomic_load: 579 case AtomicExpr::AO__atomic_load_n: 580 case AtomicExpr::AO__atomic_load: { 581 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 582 Load->setAtomic(Order, Scope); 583 Load->setVolatile(E->isVolatile()); 584 CGF.Builder.CreateStore(Load, Dest); 585 return; 586 } 587 588 case AtomicExpr::AO__c11_atomic_store: 589 case AtomicExpr::AO__opencl_atomic_store: 590 case AtomicExpr::AO__hip_atomic_store: 591 case AtomicExpr::AO__atomic_store: 592 case AtomicExpr::AO__atomic_store_n: { 593 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 594 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 595 Store->setAtomic(Order, Scope); 596 Store->setVolatile(E->isVolatile()); 597 return; 598 } 599 600 case AtomicExpr::AO__c11_atomic_exchange: 601 case AtomicExpr::AO__hip_atomic_exchange: 602 case AtomicExpr::AO__opencl_atomic_exchange: 603 case AtomicExpr::AO__atomic_exchange_n: 604 case AtomicExpr::AO__atomic_exchange: 605 Op = llvm::AtomicRMWInst::Xchg; 606 break; 607 608 case AtomicExpr::AO__atomic_add_fetch: 609 PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd 610 : llvm::Instruction::Add; 611 LLVM_FALLTHROUGH; 612 case AtomicExpr::AO__c11_atomic_fetch_add: 613 case AtomicExpr::AO__hip_atomic_fetch_add: 614 case AtomicExpr::AO__opencl_atomic_fetch_add: 615 case AtomicExpr::AO__atomic_fetch_add: 616 Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd 617 : llvm::AtomicRMWInst::Add; 618 break; 619 620 case AtomicExpr::AO__atomic_sub_fetch: 621 PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FSub 622 : llvm::Instruction::Sub; 623 LLVM_FALLTHROUGH; 624 case AtomicExpr::AO__c11_atomic_fetch_sub: 625 case AtomicExpr::AO__opencl_atomic_fetch_sub: 626 case AtomicExpr::AO__atomic_fetch_sub: 627 Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub 628 : llvm::AtomicRMWInst::Sub; 629 break; 630 631 case AtomicExpr::AO__atomic_min_fetch: 632 PostOpMinMax = true; 633 LLVM_FALLTHROUGH; 634 case AtomicExpr::AO__c11_atomic_fetch_min: 635 case AtomicExpr::AO__hip_atomic_fetch_min: 636 case AtomicExpr::AO__opencl_atomic_fetch_min: 637 case AtomicExpr::AO__atomic_fetch_min: 638 Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Min 639 : llvm::AtomicRMWInst::UMin; 640 break; 641 642 case AtomicExpr::AO__atomic_max_fetch: 643 PostOpMinMax = true; 644 LLVM_FALLTHROUGH; 645 case AtomicExpr::AO__c11_atomic_fetch_max: 646 case AtomicExpr::AO__hip_atomic_fetch_max: 647 case AtomicExpr::AO__opencl_atomic_fetch_max: 648 case AtomicExpr::AO__atomic_fetch_max: 649 Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Max 650 : llvm::AtomicRMWInst::UMax; 651 break; 652 653 case AtomicExpr::AO__atomic_and_fetch: 654 PostOp = llvm::Instruction::And; 655 LLVM_FALLTHROUGH; 656 case AtomicExpr::AO__c11_atomic_fetch_and: 657 case AtomicExpr::AO__hip_atomic_fetch_and: 658 case AtomicExpr::AO__opencl_atomic_fetch_and: 659 case AtomicExpr::AO__atomic_fetch_and: 660 Op = llvm::AtomicRMWInst::And; 661 break; 662 663 case AtomicExpr::AO__atomic_or_fetch: 664 PostOp = llvm::Instruction::Or; 665 LLVM_FALLTHROUGH; 666 case AtomicExpr::AO__c11_atomic_fetch_or: 667 case AtomicExpr::AO__hip_atomic_fetch_or: 668 case AtomicExpr::AO__opencl_atomic_fetch_or: 669 case AtomicExpr::AO__atomic_fetch_or: 670 Op = llvm::AtomicRMWInst::Or; 671 break; 672 673 case AtomicExpr::AO__atomic_xor_fetch: 674 PostOp = llvm::Instruction::Xor; 675 LLVM_FALLTHROUGH; 676 case AtomicExpr::AO__c11_atomic_fetch_xor: 677 case AtomicExpr::AO__hip_atomic_fetch_xor: 678 case AtomicExpr::AO__opencl_atomic_fetch_xor: 679 case AtomicExpr::AO__atomic_fetch_xor: 680 Op = llvm::AtomicRMWInst::Xor; 681 break; 682 683 case AtomicExpr::AO__atomic_nand_fetch: 684 PostOp = llvm::Instruction::And; // the NOT is special cased below 685 LLVM_FALLTHROUGH; 686 case AtomicExpr::AO__c11_atomic_fetch_nand: 687 case AtomicExpr::AO__atomic_fetch_nand: 688 Op = llvm::AtomicRMWInst::Nand; 689 break; 690 } 691 692 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 693 llvm::AtomicRMWInst *RMWI = 694 CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order, Scope); 695 RMWI->setVolatile(E->isVolatile()); 696 697 // For __atomic_*_fetch operations, perform the operation again to 698 // determine the value which was written. 699 llvm::Value *Result = RMWI; 700 if (PostOpMinMax) 701 Result = EmitPostAtomicMinMax(CGF.Builder, E->getOp(), 702 E->getValueType()->isSignedIntegerType(), 703 RMWI, LoadVal1); 704 else if (PostOp) 705 Result = CGF.Builder.CreateBinOp((llvm::Instruction::BinaryOps)PostOp, RMWI, 706 LoadVal1); 707 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 708 Result = CGF.Builder.CreateNot(Result); 709 CGF.Builder.CreateStore(Result, Dest); 710 } 711 712 // This function emits any expression (scalar, complex, or aggregate) 713 // into a temporary alloca. 714 static Address 715 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 716 Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 717 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 718 /*Init*/ true); 719 return DeclPtr; 720 } 721 722 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, 723 Address Ptr, Address Val1, Address Val2, 724 llvm::Value *IsWeak, llvm::Value *FailureOrder, 725 uint64_t Size, llvm::AtomicOrdering Order, 726 llvm::Value *Scope) { 727 auto ScopeModel = Expr->getScopeModel(); 728 729 // LLVM atomic instructions always have synch scope. If clang atomic 730 // expression has no scope operand, use default LLVM synch scope. 731 if (!ScopeModel) { 732 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 733 Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID("")); 734 return; 735 } 736 737 // Handle constant scope. 738 if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) { 739 auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( 740 CGF.CGM.getLangOpts(), ScopeModel->map(SC->getZExtValue()), 741 Order, CGF.CGM.getLLVMContext()); 742 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 743 Order, SCID); 744 return; 745 } 746 747 // Handle non-constant scope. 748 auto &Builder = CGF.Builder; 749 auto Scopes = ScopeModel->getRuntimeValues(); 750 llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; 751 for (auto S : Scopes) 752 BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); 753 754 llvm::BasicBlock *ContBB = 755 CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn); 756 757 auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false); 758 // If unsupported synch scope is encountered at run time, assume a fallback 759 // synch scope value. 760 auto FallBack = ScopeModel->getFallBackValue(); 761 llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]); 762 for (auto S : Scopes) { 763 auto *B = BB[S]; 764 if (S != FallBack) 765 SI->addCase(Builder.getInt32(S), B); 766 767 Builder.SetInsertPoint(B); 768 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 769 Order, 770 CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(), 771 ScopeModel->map(S), 772 Order, 773 CGF.getLLVMContext())); 774 Builder.CreateBr(ContBB); 775 } 776 777 Builder.SetInsertPoint(ContBB); 778 } 779 780 static void 781 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, 782 bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, 783 SourceLocation Loc, CharUnits SizeInChars) { 784 if (UseOptimizedLibcall) { 785 // Load value and pass it to the function directly. 786 CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy); 787 int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); 788 ValTy = 789 CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); 790 llvm::Type *ITy = llvm::IntegerType::get(CGF.getLLVMContext(), SizeInBits); 791 Address Ptr = Address(CGF.Builder.CreateBitCast(Val, ITy->getPointerTo()), 792 ITy, Align); 793 Val = CGF.EmitLoadOfScalar(Ptr, false, 794 CGF.getContext().getPointerType(ValTy), 795 Loc); 796 // Coerce the value into an appropriately sized integer type. 797 Args.add(RValue::get(Val), ValTy); 798 } else { 799 // Non-optimized functions always take a reference. 800 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), 801 CGF.getContext().VoidPtrTy); 802 } 803 } 804 805 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { 806 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 807 QualType MemTy = AtomicTy; 808 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 809 MemTy = AT->getValueType(); 810 llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; 811 812 Address Val1 = Address::invalid(); 813 Address Val2 = Address::invalid(); 814 Address Dest = Address::invalid(); 815 Address Ptr = EmitPointerWithAlignment(E->getPtr()); 816 817 if (E->getOp() == AtomicExpr::AO__c11_atomic_init || 818 E->getOp() == AtomicExpr::AO__opencl_atomic_init) { 819 LValue lvalue = MakeAddrLValue(Ptr, AtomicTy); 820 EmitAtomicInit(E->getVal1(), lvalue); 821 return RValue::get(nullptr); 822 } 823 824 auto TInfo = getContext().getTypeInfoInChars(AtomicTy); 825 uint64_t Size = TInfo.Width.getQuantity(); 826 unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); 827 828 bool Oversized = getContext().toBits(TInfo.Width) > MaxInlineWidthInBits; 829 bool Misaligned = (Ptr.getAlignment() % TInfo.Width) != 0; 830 bool UseLibcall = Misaligned | Oversized; 831 bool ShouldCastToIntPtrTy = true; 832 833 CharUnits MaxInlineWidth = 834 getContext().toCharUnitsFromBits(MaxInlineWidthInBits); 835 836 DiagnosticsEngine &Diags = CGM.getDiags(); 837 838 if (Misaligned) { 839 Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned) 840 << (int)TInfo.Width.getQuantity() 841 << (int)Ptr.getAlignment().getQuantity(); 842 } 843 844 if (Oversized) { 845 Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_oversized) 846 << (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity(); 847 } 848 849 llvm::Value *Order = EmitScalarExpr(E->getOrder()); 850 llvm::Value *Scope = 851 E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr; 852 853 switch (E->getOp()) { 854 case AtomicExpr::AO__c11_atomic_init: 855 case AtomicExpr::AO__opencl_atomic_init: 856 llvm_unreachable("Already handled above with EmitAtomicInit!"); 857 858 case AtomicExpr::AO__c11_atomic_load: 859 case AtomicExpr::AO__opencl_atomic_load: 860 case AtomicExpr::AO__hip_atomic_load: 861 case AtomicExpr::AO__atomic_load_n: 862 break; 863 864 case AtomicExpr::AO__atomic_load: 865 Dest = EmitPointerWithAlignment(E->getVal1()); 866 break; 867 868 case AtomicExpr::AO__atomic_store: 869 Val1 = EmitPointerWithAlignment(E->getVal1()); 870 break; 871 872 case AtomicExpr::AO__atomic_exchange: 873 Val1 = EmitPointerWithAlignment(E->getVal1()); 874 Dest = EmitPointerWithAlignment(E->getVal2()); 875 break; 876 877 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 878 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 879 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 880 case AtomicExpr::AO__hip_atomic_compare_exchange_strong: 881 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 882 case AtomicExpr::AO__hip_atomic_compare_exchange_weak: 883 case AtomicExpr::AO__atomic_compare_exchange_n: 884 case AtomicExpr::AO__atomic_compare_exchange: 885 Val1 = EmitPointerWithAlignment(E->getVal1()); 886 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 887 Val2 = EmitPointerWithAlignment(E->getVal2()); 888 else 889 Val2 = EmitValToTemp(*this, E->getVal2()); 890 OrderFail = EmitScalarExpr(E->getOrderFail()); 891 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || 892 E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 893 IsWeak = EmitScalarExpr(E->getWeak()); 894 break; 895 896 case AtomicExpr::AO__c11_atomic_fetch_add: 897 case AtomicExpr::AO__c11_atomic_fetch_sub: 898 case AtomicExpr::AO__hip_atomic_fetch_add: 899 case AtomicExpr::AO__opencl_atomic_fetch_add: 900 case AtomicExpr::AO__opencl_atomic_fetch_sub: 901 if (MemTy->isPointerType()) { 902 // For pointer arithmetic, we're required to do a bit of math: 903 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 904 // ... but only for the C11 builtins. The GNU builtins expect the 905 // user to multiply by sizeof(T). 906 QualType Val1Ty = E->getVal1()->getType(); 907 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 908 CharUnits PointeeIncAmt = 909 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 910 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 911 auto Temp = CreateMemTemp(Val1Ty, ".atomictmp"); 912 Val1 = Temp; 913 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty)); 914 break; 915 } 916 LLVM_FALLTHROUGH; 917 case AtomicExpr::AO__atomic_fetch_add: 918 case AtomicExpr::AO__atomic_fetch_sub: 919 case AtomicExpr::AO__atomic_add_fetch: 920 case AtomicExpr::AO__atomic_sub_fetch: 921 ShouldCastToIntPtrTy = !MemTy->isFloatingType(); 922 LLVM_FALLTHROUGH; 923 924 case AtomicExpr::AO__c11_atomic_store: 925 case AtomicExpr::AO__c11_atomic_exchange: 926 case AtomicExpr::AO__opencl_atomic_store: 927 case AtomicExpr::AO__hip_atomic_store: 928 case AtomicExpr::AO__opencl_atomic_exchange: 929 case AtomicExpr::AO__hip_atomic_exchange: 930 case AtomicExpr::AO__atomic_store_n: 931 case AtomicExpr::AO__atomic_exchange_n: 932 case AtomicExpr::AO__c11_atomic_fetch_and: 933 case AtomicExpr::AO__c11_atomic_fetch_or: 934 case AtomicExpr::AO__c11_atomic_fetch_xor: 935 case AtomicExpr::AO__c11_atomic_fetch_nand: 936 case AtomicExpr::AO__c11_atomic_fetch_max: 937 case AtomicExpr::AO__c11_atomic_fetch_min: 938 case AtomicExpr::AO__opencl_atomic_fetch_and: 939 case AtomicExpr::AO__opencl_atomic_fetch_or: 940 case AtomicExpr::AO__opencl_atomic_fetch_xor: 941 case AtomicExpr::AO__opencl_atomic_fetch_min: 942 case AtomicExpr::AO__opencl_atomic_fetch_max: 943 case AtomicExpr::AO__atomic_fetch_and: 944 case AtomicExpr::AO__hip_atomic_fetch_and: 945 case AtomicExpr::AO__atomic_fetch_or: 946 case AtomicExpr::AO__hip_atomic_fetch_or: 947 case AtomicExpr::AO__atomic_fetch_xor: 948 case AtomicExpr::AO__hip_atomic_fetch_xor: 949 case AtomicExpr::AO__atomic_fetch_nand: 950 case AtomicExpr::AO__atomic_and_fetch: 951 case AtomicExpr::AO__atomic_or_fetch: 952 case AtomicExpr::AO__atomic_xor_fetch: 953 case AtomicExpr::AO__atomic_nand_fetch: 954 case AtomicExpr::AO__atomic_max_fetch: 955 case AtomicExpr::AO__atomic_min_fetch: 956 case AtomicExpr::AO__atomic_fetch_max: 957 case AtomicExpr::AO__hip_atomic_fetch_max: 958 case AtomicExpr::AO__atomic_fetch_min: 959 case AtomicExpr::AO__hip_atomic_fetch_min: 960 Val1 = EmitValToTemp(*this, E->getVal1()); 961 break; 962 } 963 964 QualType RValTy = E->getType().getUnqualifiedType(); 965 966 // The inlined atomics only function on iN types, where N is a power of 2. We 967 // need to make sure (via temporaries if necessary) that all incoming values 968 // are compatible. 969 LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy); 970 AtomicInfo Atomics(*this, AtomicVal); 971 972 if (ShouldCastToIntPtrTy) { 973 Ptr = Atomics.emitCastToAtomicIntPointer(Ptr); 974 if (Val1.isValid()) 975 Val1 = Atomics.convertToAtomicIntPointer(Val1); 976 if (Val2.isValid()) 977 Val2 = Atomics.convertToAtomicIntPointer(Val2); 978 } 979 if (Dest.isValid()) { 980 if (ShouldCastToIntPtrTy) 981 Dest = Atomics.emitCastToAtomicIntPointer(Dest); 982 } else if (E->isCmpXChg()) 983 Dest = CreateMemTemp(RValTy, "cmpxchg.bool"); 984 else if (!RValTy->isVoidType()) { 985 Dest = Atomics.CreateTempAlloca(); 986 if (ShouldCastToIntPtrTy) 987 Dest = Atomics.emitCastToAtomicIntPointer(Dest); 988 } 989 990 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 991 if (UseLibcall) { 992 bool UseOptimizedLibcall = false; 993 switch (E->getOp()) { 994 case AtomicExpr::AO__c11_atomic_init: 995 case AtomicExpr::AO__opencl_atomic_init: 996 llvm_unreachable("Already handled above with EmitAtomicInit!"); 997 998 case AtomicExpr::AO__c11_atomic_fetch_add: 999 case AtomicExpr::AO__opencl_atomic_fetch_add: 1000 case AtomicExpr::AO__atomic_fetch_add: 1001 case AtomicExpr::AO__hip_atomic_fetch_add: 1002 case AtomicExpr::AO__c11_atomic_fetch_and: 1003 case AtomicExpr::AO__opencl_atomic_fetch_and: 1004 case AtomicExpr::AO__hip_atomic_fetch_and: 1005 case AtomicExpr::AO__atomic_fetch_and: 1006 case AtomicExpr::AO__c11_atomic_fetch_or: 1007 case AtomicExpr::AO__opencl_atomic_fetch_or: 1008 case AtomicExpr::AO__hip_atomic_fetch_or: 1009 case AtomicExpr::AO__atomic_fetch_or: 1010 case AtomicExpr::AO__c11_atomic_fetch_nand: 1011 case AtomicExpr::AO__atomic_fetch_nand: 1012 case AtomicExpr::AO__c11_atomic_fetch_sub: 1013 case AtomicExpr::AO__opencl_atomic_fetch_sub: 1014 case AtomicExpr::AO__atomic_fetch_sub: 1015 case AtomicExpr::AO__c11_atomic_fetch_xor: 1016 case AtomicExpr::AO__opencl_atomic_fetch_xor: 1017 case AtomicExpr::AO__opencl_atomic_fetch_min: 1018 case AtomicExpr::AO__opencl_atomic_fetch_max: 1019 case AtomicExpr::AO__atomic_fetch_xor: 1020 case AtomicExpr::AO__hip_atomic_fetch_xor: 1021 case AtomicExpr::AO__c11_atomic_fetch_max: 1022 case AtomicExpr::AO__c11_atomic_fetch_min: 1023 case AtomicExpr::AO__atomic_add_fetch: 1024 case AtomicExpr::AO__atomic_and_fetch: 1025 case AtomicExpr::AO__atomic_nand_fetch: 1026 case AtomicExpr::AO__atomic_or_fetch: 1027 case AtomicExpr::AO__atomic_sub_fetch: 1028 case AtomicExpr::AO__atomic_xor_fetch: 1029 case AtomicExpr::AO__atomic_fetch_max: 1030 case AtomicExpr::AO__hip_atomic_fetch_max: 1031 case AtomicExpr::AO__atomic_fetch_min: 1032 case AtomicExpr::AO__hip_atomic_fetch_min: 1033 case AtomicExpr::AO__atomic_max_fetch: 1034 case AtomicExpr::AO__atomic_min_fetch: 1035 // For these, only library calls for certain sizes exist. 1036 UseOptimizedLibcall = true; 1037 break; 1038 1039 case AtomicExpr::AO__atomic_load: 1040 case AtomicExpr::AO__atomic_store: 1041 case AtomicExpr::AO__atomic_exchange: 1042 case AtomicExpr::AO__atomic_compare_exchange: 1043 // Use the generic version if we don't know that the operand will be 1044 // suitably aligned for the optimized version. 1045 if (Misaligned) 1046 break; 1047 LLVM_FALLTHROUGH; 1048 case AtomicExpr::AO__c11_atomic_load: 1049 case AtomicExpr::AO__c11_atomic_store: 1050 case AtomicExpr::AO__c11_atomic_exchange: 1051 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 1052 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 1053 case AtomicExpr::AO__hip_atomic_compare_exchange_strong: 1054 case AtomicExpr::AO__opencl_atomic_load: 1055 case AtomicExpr::AO__hip_atomic_load: 1056 case AtomicExpr::AO__opencl_atomic_store: 1057 case AtomicExpr::AO__hip_atomic_store: 1058 case AtomicExpr::AO__opencl_atomic_exchange: 1059 case AtomicExpr::AO__hip_atomic_exchange: 1060 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 1061 case AtomicExpr::AO__hip_atomic_compare_exchange_weak: 1062 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 1063 case AtomicExpr::AO__atomic_load_n: 1064 case AtomicExpr::AO__atomic_store_n: 1065 case AtomicExpr::AO__atomic_exchange_n: 1066 case AtomicExpr::AO__atomic_compare_exchange_n: 1067 // Only use optimized library calls for sizes for which they exist. 1068 // FIXME: Size == 16 optimized library functions exist too. 1069 if (Size == 1 || Size == 2 || Size == 4 || Size == 8) 1070 UseOptimizedLibcall = true; 1071 break; 1072 } 1073 1074 CallArgList Args; 1075 if (!UseOptimizedLibcall) { 1076 // For non-optimized library calls, the size is the first parameter 1077 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 1078 getContext().getSizeType()); 1079 } 1080 // Atomic address is the first or second parameter 1081 // The OpenCL atomic library functions only accept pointer arguments to 1082 // generic address space. 1083 auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { 1084 if (!E->isOpenCL()) 1085 return V; 1086 auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace(); 1087 if (AS == LangAS::opencl_generic) 1088 return V; 1089 auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); 1090 auto T = llvm::cast<llvm::PointerType>(V->getType()); 1091 auto *DestType = llvm::PointerType::getWithSamePointeeType(T, DestAS); 1092 1093 return getTargetHooks().performAddrSpaceCast( 1094 *this, V, AS, LangAS::opencl_generic, DestType, false); 1095 }; 1096 1097 Args.add(RValue::get(CastToGenericAddrSpace( 1098 EmitCastToVoidPtr(Ptr.getPointer()), E->getPtr()->getType())), 1099 getContext().VoidPtrTy); 1100 1101 std::string LibCallName; 1102 QualType LoweredMemTy = 1103 MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; 1104 QualType RetTy; 1105 bool HaveRetTy = false; 1106 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 1107 bool PostOpMinMax = false; 1108 switch (E->getOp()) { 1109 case AtomicExpr::AO__c11_atomic_init: 1110 case AtomicExpr::AO__opencl_atomic_init: 1111 llvm_unreachable("Already handled!"); 1112 1113 // There is only one libcall for compare an exchange, because there is no 1114 // optimisation benefit possible from a libcall version of a weak compare 1115 // and exchange. 1116 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, 1117 // void *desired, int success, int failure) 1118 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, 1119 // int success, int failure) 1120 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 1121 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 1122 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 1123 case AtomicExpr::AO__hip_atomic_compare_exchange_weak: 1124 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 1125 case AtomicExpr::AO__hip_atomic_compare_exchange_strong: 1126 case AtomicExpr::AO__atomic_compare_exchange: 1127 case AtomicExpr::AO__atomic_compare_exchange_n: 1128 LibCallName = "__atomic_compare_exchange"; 1129 RetTy = getContext().BoolTy; 1130 HaveRetTy = true; 1131 Args.add( 1132 RValue::get(CastToGenericAddrSpace( 1133 EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())), 1134 getContext().VoidPtrTy); 1135 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(), 1136 MemTy, E->getExprLoc(), TInfo.Width); 1137 Args.add(RValue::get(Order), getContext().IntTy); 1138 Order = OrderFail; 1139 break; 1140 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 1141 // int order) 1142 // T __atomic_exchange_N(T *mem, T val, int order) 1143 case AtomicExpr::AO__c11_atomic_exchange: 1144 case AtomicExpr::AO__opencl_atomic_exchange: 1145 case AtomicExpr::AO__atomic_exchange_n: 1146 case AtomicExpr::AO__atomic_exchange: 1147 case AtomicExpr::AO__hip_atomic_exchange: 1148 LibCallName = "__atomic_exchange"; 1149 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1150 MemTy, E->getExprLoc(), TInfo.Width); 1151 break; 1152 // void __atomic_store(size_t size, void *mem, void *val, int order) 1153 // void __atomic_store_N(T *mem, T val, int order) 1154 case AtomicExpr::AO__c11_atomic_store: 1155 case AtomicExpr::AO__opencl_atomic_store: 1156 case AtomicExpr::AO__hip_atomic_store: 1157 case AtomicExpr::AO__atomic_store: 1158 case AtomicExpr::AO__atomic_store_n: 1159 LibCallName = "__atomic_store"; 1160 RetTy = getContext().VoidTy; 1161 HaveRetTy = true; 1162 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1163 MemTy, E->getExprLoc(), TInfo.Width); 1164 break; 1165 // void __atomic_load(size_t size, void *mem, void *return, int order) 1166 // T __atomic_load_N(T *mem, int order) 1167 case AtomicExpr::AO__c11_atomic_load: 1168 case AtomicExpr::AO__opencl_atomic_load: 1169 case AtomicExpr::AO__hip_atomic_load: 1170 case AtomicExpr::AO__atomic_load: 1171 case AtomicExpr::AO__atomic_load_n: 1172 LibCallName = "__atomic_load"; 1173 break; 1174 // T __atomic_add_fetch_N(T *mem, T val, int order) 1175 // T __atomic_fetch_add_N(T *mem, T val, int order) 1176 case AtomicExpr::AO__atomic_add_fetch: 1177 PostOp = llvm::Instruction::Add; 1178 LLVM_FALLTHROUGH; 1179 case AtomicExpr::AO__c11_atomic_fetch_add: 1180 case AtomicExpr::AO__opencl_atomic_fetch_add: 1181 case AtomicExpr::AO__atomic_fetch_add: 1182 case AtomicExpr::AO__hip_atomic_fetch_add: 1183 LibCallName = "__atomic_fetch_add"; 1184 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1185 LoweredMemTy, E->getExprLoc(), TInfo.Width); 1186 break; 1187 // T __atomic_and_fetch_N(T *mem, T val, int order) 1188 // T __atomic_fetch_and_N(T *mem, T val, int order) 1189 case AtomicExpr::AO__atomic_and_fetch: 1190 PostOp = llvm::Instruction::And; 1191 LLVM_FALLTHROUGH; 1192 case AtomicExpr::AO__c11_atomic_fetch_and: 1193 case AtomicExpr::AO__opencl_atomic_fetch_and: 1194 case AtomicExpr::AO__hip_atomic_fetch_and: 1195 case AtomicExpr::AO__atomic_fetch_and: 1196 LibCallName = "__atomic_fetch_and"; 1197 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1198 MemTy, E->getExprLoc(), TInfo.Width); 1199 break; 1200 // T __atomic_or_fetch_N(T *mem, T val, int order) 1201 // T __atomic_fetch_or_N(T *mem, T val, int order) 1202 case AtomicExpr::AO__atomic_or_fetch: 1203 PostOp = llvm::Instruction::Or; 1204 LLVM_FALLTHROUGH; 1205 case AtomicExpr::AO__c11_atomic_fetch_or: 1206 case AtomicExpr::AO__opencl_atomic_fetch_or: 1207 case AtomicExpr::AO__hip_atomic_fetch_or: 1208 case AtomicExpr::AO__atomic_fetch_or: 1209 LibCallName = "__atomic_fetch_or"; 1210 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1211 MemTy, E->getExprLoc(), TInfo.Width); 1212 break; 1213 // T __atomic_sub_fetch_N(T *mem, T val, int order) 1214 // T __atomic_fetch_sub_N(T *mem, T val, int order) 1215 case AtomicExpr::AO__atomic_sub_fetch: 1216 PostOp = llvm::Instruction::Sub; 1217 LLVM_FALLTHROUGH; 1218 case AtomicExpr::AO__c11_atomic_fetch_sub: 1219 case AtomicExpr::AO__opencl_atomic_fetch_sub: 1220 case AtomicExpr::AO__atomic_fetch_sub: 1221 LibCallName = "__atomic_fetch_sub"; 1222 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1223 LoweredMemTy, E->getExprLoc(), TInfo.Width); 1224 break; 1225 // T __atomic_xor_fetch_N(T *mem, T val, int order) 1226 // T __atomic_fetch_xor_N(T *mem, T val, int order) 1227 case AtomicExpr::AO__atomic_xor_fetch: 1228 PostOp = llvm::Instruction::Xor; 1229 LLVM_FALLTHROUGH; 1230 case AtomicExpr::AO__c11_atomic_fetch_xor: 1231 case AtomicExpr::AO__opencl_atomic_fetch_xor: 1232 case AtomicExpr::AO__hip_atomic_fetch_xor: 1233 case AtomicExpr::AO__atomic_fetch_xor: 1234 LibCallName = "__atomic_fetch_xor"; 1235 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1236 MemTy, E->getExprLoc(), TInfo.Width); 1237 break; 1238 case AtomicExpr::AO__atomic_min_fetch: 1239 PostOpMinMax = true; 1240 LLVM_FALLTHROUGH; 1241 case AtomicExpr::AO__c11_atomic_fetch_min: 1242 case AtomicExpr::AO__atomic_fetch_min: 1243 case AtomicExpr::AO__hip_atomic_fetch_min: 1244 case AtomicExpr::AO__opencl_atomic_fetch_min: 1245 LibCallName = E->getValueType()->isSignedIntegerType() 1246 ? "__atomic_fetch_min" 1247 : "__atomic_fetch_umin"; 1248 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1249 LoweredMemTy, E->getExprLoc(), TInfo.Width); 1250 break; 1251 case AtomicExpr::AO__atomic_max_fetch: 1252 PostOpMinMax = true; 1253 LLVM_FALLTHROUGH; 1254 case AtomicExpr::AO__c11_atomic_fetch_max: 1255 case AtomicExpr::AO__atomic_fetch_max: 1256 case AtomicExpr::AO__hip_atomic_fetch_max: 1257 case AtomicExpr::AO__opencl_atomic_fetch_max: 1258 LibCallName = E->getValueType()->isSignedIntegerType() 1259 ? "__atomic_fetch_max" 1260 : "__atomic_fetch_umax"; 1261 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1262 LoweredMemTy, E->getExprLoc(), TInfo.Width); 1263 break; 1264 // T __atomic_nand_fetch_N(T *mem, T val, int order) 1265 // T __atomic_fetch_nand_N(T *mem, T val, int order) 1266 case AtomicExpr::AO__atomic_nand_fetch: 1267 PostOp = llvm::Instruction::And; // the NOT is special cased below 1268 LLVM_FALLTHROUGH; 1269 case AtomicExpr::AO__c11_atomic_fetch_nand: 1270 case AtomicExpr::AO__atomic_fetch_nand: 1271 LibCallName = "__atomic_fetch_nand"; 1272 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1273 MemTy, E->getExprLoc(), TInfo.Width); 1274 break; 1275 } 1276 1277 if (E->isOpenCL()) { 1278 LibCallName = std::string("__opencl") + 1279 StringRef(LibCallName).drop_front(1).str(); 1280 1281 } 1282 // Optimized functions have the size in their name. 1283 if (UseOptimizedLibcall) 1284 LibCallName += "_" + llvm::utostr(Size); 1285 // By default, assume we return a value of the atomic type. 1286 if (!HaveRetTy) { 1287 if (UseOptimizedLibcall) { 1288 // Value is returned directly. 1289 // The function returns an appropriately sized integer type. 1290 RetTy = getContext().getIntTypeForBitwidth( 1291 getContext().toBits(TInfo.Width), /*Signed=*/false); 1292 } else { 1293 // Value is returned through parameter before the order. 1294 RetTy = getContext().VoidTy; 1295 Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())), 1296 getContext().VoidPtrTy); 1297 } 1298 } 1299 // order is always the last parameter 1300 Args.add(RValue::get(Order), 1301 getContext().IntTy); 1302 if (E->isOpenCL()) 1303 Args.add(RValue::get(Scope), getContext().IntTy); 1304 1305 // PostOp is only needed for the atomic_*_fetch operations, and 1306 // thus is only needed for and implemented in the 1307 // UseOptimizedLibcall codepath. 1308 assert(UseOptimizedLibcall || (!PostOp && !PostOpMinMax)); 1309 1310 RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); 1311 // The value is returned directly from the libcall. 1312 if (E->isCmpXChg()) 1313 return Res; 1314 1315 // The value is returned directly for optimized libcalls but the expr 1316 // provided an out-param. 1317 if (UseOptimizedLibcall && Res.getScalarVal()) { 1318 llvm::Value *ResVal = Res.getScalarVal(); 1319 if (PostOpMinMax) { 1320 llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal(); 1321 ResVal = EmitPostAtomicMinMax(Builder, E->getOp(), 1322 E->getValueType()->isSignedIntegerType(), 1323 ResVal, LoadVal1); 1324 } else if (PostOp) { 1325 llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal(); 1326 ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1); 1327 } 1328 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 1329 ResVal = Builder.CreateNot(ResVal); 1330 1331 Builder.CreateStore( 1332 ResVal, Builder.CreateElementBitCast(Dest, ResVal->getType())); 1333 } 1334 1335 if (RValTy->isVoidType()) 1336 return RValue::get(nullptr); 1337 1338 return convertTempToRValue( 1339 Builder.CreateElementBitCast(Dest, ConvertTypeForMem(RValTy)), 1340 RValTy, E->getExprLoc()); 1341 } 1342 1343 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 1344 E->getOp() == AtomicExpr::AO__opencl_atomic_store || 1345 E->getOp() == AtomicExpr::AO__hip_atomic_store || 1346 E->getOp() == AtomicExpr::AO__atomic_store || 1347 E->getOp() == AtomicExpr::AO__atomic_store_n; 1348 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 1349 E->getOp() == AtomicExpr::AO__opencl_atomic_load || 1350 E->getOp() == AtomicExpr::AO__hip_atomic_load || 1351 E->getOp() == AtomicExpr::AO__atomic_load || 1352 E->getOp() == AtomicExpr::AO__atomic_load_n; 1353 1354 if (isa<llvm::ConstantInt>(Order)) { 1355 auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1356 // We should not ever get to a case where the ordering isn't a valid C ABI 1357 // value, but it's hard to enforce that in general. 1358 if (llvm::isValidAtomicOrderingCABI(ord)) 1359 switch ((llvm::AtomicOrderingCABI)ord) { 1360 case llvm::AtomicOrderingCABI::relaxed: 1361 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1362 llvm::AtomicOrdering::Monotonic, Scope); 1363 break; 1364 case llvm::AtomicOrderingCABI::consume: 1365 case llvm::AtomicOrderingCABI::acquire: 1366 if (IsStore) 1367 break; // Avoid crashing on code with undefined behavior 1368 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1369 llvm::AtomicOrdering::Acquire, Scope); 1370 break; 1371 case llvm::AtomicOrderingCABI::release: 1372 if (IsLoad) 1373 break; // Avoid crashing on code with undefined behavior 1374 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1375 llvm::AtomicOrdering::Release, Scope); 1376 break; 1377 case llvm::AtomicOrderingCABI::acq_rel: 1378 if (IsLoad || IsStore) 1379 break; // Avoid crashing on code with undefined behavior 1380 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1381 llvm::AtomicOrdering::AcquireRelease, Scope); 1382 break; 1383 case llvm::AtomicOrderingCABI::seq_cst: 1384 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1385 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 1386 break; 1387 } 1388 if (RValTy->isVoidType()) 1389 return RValue::get(nullptr); 1390 1391 return convertTempToRValue( 1392 Builder.CreateElementBitCast(Dest, ConvertTypeForMem(RValTy)), 1393 RValTy, E->getExprLoc()); 1394 } 1395 1396 // Long case, when Order isn't obviously constant. 1397 1398 // Create all the relevant BB's 1399 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 1400 *ReleaseBB = nullptr, *AcqRelBB = nullptr, 1401 *SeqCstBB = nullptr; 1402 MonotonicBB = createBasicBlock("monotonic", CurFn); 1403 if (!IsStore) 1404 AcquireBB = createBasicBlock("acquire", CurFn); 1405 if (!IsLoad) 1406 ReleaseBB = createBasicBlock("release", CurFn); 1407 if (!IsLoad && !IsStore) 1408 AcqRelBB = createBasicBlock("acqrel", CurFn); 1409 SeqCstBB = createBasicBlock("seqcst", CurFn); 1410 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1411 1412 // Create the switch for the split 1413 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 1414 // doesn't matter unless someone is crazy enough to use something that 1415 // doesn't fold to a constant for the ordering. 1416 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1417 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 1418 1419 // Emit all the different atomics 1420 Builder.SetInsertPoint(MonotonicBB); 1421 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1422 llvm::AtomicOrdering::Monotonic, Scope); 1423 Builder.CreateBr(ContBB); 1424 if (!IsStore) { 1425 Builder.SetInsertPoint(AcquireBB); 1426 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1427 llvm::AtomicOrdering::Acquire, Scope); 1428 Builder.CreateBr(ContBB); 1429 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 1430 AcquireBB); 1431 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 1432 AcquireBB); 1433 } 1434 if (!IsLoad) { 1435 Builder.SetInsertPoint(ReleaseBB); 1436 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1437 llvm::AtomicOrdering::Release, Scope); 1438 Builder.CreateBr(ContBB); 1439 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release), 1440 ReleaseBB); 1441 } 1442 if (!IsLoad && !IsStore) { 1443 Builder.SetInsertPoint(AcqRelBB); 1444 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1445 llvm::AtomicOrdering::AcquireRelease, Scope); 1446 Builder.CreateBr(ContBB); 1447 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel), 1448 AcqRelBB); 1449 } 1450 Builder.SetInsertPoint(SeqCstBB); 1451 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1452 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 1453 Builder.CreateBr(ContBB); 1454 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 1455 SeqCstBB); 1456 1457 // Cleanup and return 1458 Builder.SetInsertPoint(ContBB); 1459 if (RValTy->isVoidType()) 1460 return RValue::get(nullptr); 1461 1462 assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); 1463 return convertTempToRValue( 1464 Builder.CreateElementBitCast(Dest, ConvertTypeForMem(RValTy)), 1465 RValTy, E->getExprLoc()); 1466 } 1467 1468 Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const { 1469 llvm::IntegerType *ty = 1470 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); 1471 return CGF.Builder.CreateElementBitCast(addr, ty); 1472 } 1473 1474 Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { 1475 llvm::Type *Ty = Addr.getElementType(); 1476 uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); 1477 if (SourceSizeInBits != AtomicSizeInBits) { 1478 Address Tmp = CreateTempAlloca(); 1479 CGF.Builder.CreateMemCpy(Tmp, Addr, 1480 std::min(AtomicSizeInBits, SourceSizeInBits) / 8); 1481 Addr = Tmp; 1482 } 1483 1484 return emitCastToAtomicIntPointer(Addr); 1485 } 1486 1487 RValue AtomicInfo::convertAtomicTempToRValue(Address addr, 1488 AggValueSlot resultSlot, 1489 SourceLocation loc, 1490 bool asValue) const { 1491 if (LVal.isSimple()) { 1492 if (EvaluationKind == TEK_Aggregate) 1493 return resultSlot.asRValue(); 1494 1495 // Drill into the padding structure if we have one. 1496 if (hasPadding()) 1497 addr = CGF.Builder.CreateStructGEP(addr, 0); 1498 1499 // Otherwise, just convert the temporary to an r-value using the 1500 // normal conversion routine. 1501 return CGF.convertTempToRValue(addr, getValueType(), loc); 1502 } 1503 if (!asValue) 1504 // Get RValue from temp memory as atomic for non-simple lvalues 1505 return RValue::get(CGF.Builder.CreateLoad(addr)); 1506 if (LVal.isBitField()) 1507 return CGF.EmitLoadOfBitfieldLValue( 1508 LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), 1509 LVal.getBaseInfo(), TBAAAccessInfo()), loc); 1510 if (LVal.isVectorElt()) 1511 return CGF.EmitLoadOfLValue( 1512 LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), 1513 LVal.getBaseInfo(), TBAAAccessInfo()), loc); 1514 assert(LVal.isExtVectorElt()); 1515 return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( 1516 addr, LVal.getExtVectorElts(), LVal.getType(), 1517 LVal.getBaseInfo(), TBAAAccessInfo())); 1518 } 1519 1520 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, 1521 AggValueSlot ResultSlot, 1522 SourceLocation Loc, 1523 bool AsValue) const { 1524 // Try not to in some easy cases. 1525 assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); 1526 if (getEvaluationKind() == TEK_Scalar && 1527 (((!LVal.isBitField() || 1528 LVal.getBitFieldInfo().Size == ValueSizeInBits) && 1529 !hasPadding()) || 1530 !AsValue)) { 1531 auto *ValTy = AsValue 1532 ? CGF.ConvertTypeForMem(ValueTy) 1533 : getAtomicAddress().getElementType(); 1534 if (ValTy->isIntegerTy()) { 1535 assert(IntVal->getType() == ValTy && "Different integer types."); 1536 return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); 1537 } else if (ValTy->isPointerTy()) 1538 return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); 1539 else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) 1540 return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); 1541 } 1542 1543 // Create a temporary. This needs to be big enough to hold the 1544 // atomic integer. 1545 Address Temp = Address::invalid(); 1546 bool TempIsVolatile = false; 1547 if (AsValue && getEvaluationKind() == TEK_Aggregate) { 1548 assert(!ResultSlot.isIgnored()); 1549 Temp = ResultSlot.getAddress(); 1550 TempIsVolatile = ResultSlot.isVolatile(); 1551 } else { 1552 Temp = CreateTempAlloca(); 1553 } 1554 1555 // Slam the integer into the temporary. 1556 Address CastTemp = emitCastToAtomicIntPointer(Temp); 1557 CGF.Builder.CreateStore(IntVal, CastTemp) 1558 ->setVolatile(TempIsVolatile); 1559 1560 return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue); 1561 } 1562 1563 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 1564 llvm::AtomicOrdering AO, bool) { 1565 // void __atomic_load(size_t size, void *mem, void *return, int order); 1566 CallArgList Args; 1567 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1568 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1569 CGF.getContext().VoidPtrTy); 1570 Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)), 1571 CGF.getContext().VoidPtrTy); 1572 Args.add( 1573 RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))), 1574 CGF.getContext().IntTy); 1575 emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); 1576 } 1577 1578 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, 1579 bool IsVolatile) { 1580 // Okay, we're doing this natively. 1581 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1582 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); 1583 Load->setAtomic(AO); 1584 1585 // Other decoration. 1586 if (IsVolatile) 1587 Load->setVolatile(true); 1588 CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); 1589 return Load; 1590 } 1591 1592 /// An LValue is a candidate for having its loads and stores be made atomic if 1593 /// we are operating under /volatile:ms *and* the LValue itself is volatile and 1594 /// performing such an operation can be performed without a libcall. 1595 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { 1596 if (!CGM.getCodeGenOpts().MSVolatile) return false; 1597 AtomicInfo AI(*this, LV); 1598 bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); 1599 // An atomic is inline if we don't need to use a libcall. 1600 bool AtomicIsInline = !AI.shouldUseLibcall(); 1601 // MSVC doesn't seem to do this for types wider than a pointer. 1602 if (getContext().getTypeSize(LV.getType()) > 1603 getContext().getTypeSize(getContext().getIntPtrType())) 1604 return false; 1605 return IsVolatile && AtomicIsInline; 1606 } 1607 1608 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, 1609 AggValueSlot Slot) { 1610 llvm::AtomicOrdering AO; 1611 bool IsVolatile = LV.isVolatileQualified(); 1612 if (LV.getType()->isAtomicType()) { 1613 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1614 } else { 1615 AO = llvm::AtomicOrdering::Acquire; 1616 IsVolatile = true; 1617 } 1618 return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); 1619 } 1620 1621 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 1622 bool AsValue, llvm::AtomicOrdering AO, 1623 bool IsVolatile) { 1624 // Check whether we should use a library call. 1625 if (shouldUseLibcall()) { 1626 Address TempAddr = Address::invalid(); 1627 if (LVal.isSimple() && !ResultSlot.isIgnored()) { 1628 assert(getEvaluationKind() == TEK_Aggregate); 1629 TempAddr = ResultSlot.getAddress(); 1630 } else 1631 TempAddr = CreateTempAlloca(); 1632 1633 EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile); 1634 1635 // Okay, turn that back into the original value or whole atomic (for 1636 // non-simple lvalues) type. 1637 return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue); 1638 } 1639 1640 // Okay, we're doing this natively. 1641 auto *Load = EmitAtomicLoadOp(AO, IsVolatile); 1642 1643 // If we're ignoring an aggregate return, don't do anything. 1644 if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) 1645 return RValue::getAggregate(Address::invalid(), false); 1646 1647 // Okay, turn that back into the original value or atomic (for non-simple 1648 // lvalues) type. 1649 return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); 1650 } 1651 1652 /// Emit a load from an l-value of atomic type. Note that the r-value 1653 /// we produce is an r-value of the atomic *value* type. 1654 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, 1655 llvm::AtomicOrdering AO, bool IsVolatile, 1656 AggValueSlot resultSlot) { 1657 AtomicInfo Atomics(*this, src); 1658 return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, 1659 IsVolatile); 1660 } 1661 1662 /// Copy an r-value into memory as part of storing to an atomic type. 1663 /// This needs to create a bit-pattern suitable for atomic operations. 1664 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { 1665 assert(LVal.isSimple()); 1666 // If we have an r-value, the rvalue should be of the atomic type, 1667 // which means that the caller is responsible for having zeroed 1668 // any padding. Just do an aggregate copy of that type. 1669 if (rvalue.isAggregate()) { 1670 LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType()); 1671 LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(), 1672 getAtomicType()); 1673 bool IsVolatile = rvalue.isVolatileQualified() || 1674 LVal.isVolatileQualified(); 1675 CGF.EmitAggregateCopy(Dest, Src, getAtomicType(), 1676 AggValueSlot::DoesNotOverlap, IsVolatile); 1677 return; 1678 } 1679 1680 // Okay, otherwise we're copying stuff. 1681 1682 // Zero out the buffer if necessary. 1683 emitMemSetZeroIfNecessary(); 1684 1685 // Drill past the padding if present. 1686 LValue TempLVal = projectValue(); 1687 1688 // Okay, store the rvalue in. 1689 if (rvalue.isScalar()) { 1690 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); 1691 } else { 1692 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); 1693 } 1694 } 1695 1696 1697 /// Materialize an r-value into memory for the purposes of storing it 1698 /// to an atomic type. 1699 Address AtomicInfo::materializeRValue(RValue rvalue) const { 1700 // Aggregate r-values are already in memory, and EmitAtomicStore 1701 // requires them to be values of the atomic type. 1702 if (rvalue.isAggregate()) 1703 return rvalue.getAggregateAddress(); 1704 1705 // Otherwise, make a temporary and materialize into it. 1706 LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType()); 1707 AtomicInfo Atomics(CGF, TempLV); 1708 Atomics.emitCopyIntoMemory(rvalue); 1709 return TempLV.getAddress(CGF); 1710 } 1711 1712 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { 1713 // If we've got a scalar value of the right size, try to avoid going 1714 // through memory. 1715 if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { 1716 llvm::Value *Value = RVal.getScalarVal(); 1717 if (isa<llvm::IntegerType>(Value->getType())) 1718 return CGF.EmitToMemory(Value, ValueTy); 1719 else { 1720 llvm::IntegerType *InputIntTy = llvm::IntegerType::get( 1721 CGF.getLLVMContext(), 1722 LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); 1723 if (isa<llvm::PointerType>(Value->getType())) 1724 return CGF.Builder.CreatePtrToInt(Value, InputIntTy); 1725 else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) 1726 return CGF.Builder.CreateBitCast(Value, InputIntTy); 1727 } 1728 } 1729 // Otherwise, we need to go through memory. 1730 // Put the r-value in memory. 1731 Address Addr = materializeRValue(RVal); 1732 1733 // Cast the temporary to the atomic int type and pull a value out. 1734 Addr = emitCastToAtomicIntPointer(Addr); 1735 return CGF.Builder.CreateLoad(Addr); 1736 } 1737 1738 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( 1739 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 1740 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { 1741 // Do the atomic store. 1742 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1743 auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(), 1744 ExpectedVal, DesiredVal, 1745 Success, Failure); 1746 // Other decoration. 1747 Inst->setVolatile(LVal.isVolatileQualified()); 1748 Inst->setWeak(IsWeak); 1749 1750 // Okay, turn that back into the original value type. 1751 auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); 1752 auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); 1753 return std::make_pair(PreviousVal, SuccessFailureVal); 1754 } 1755 1756 llvm::Value * 1757 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, 1758 llvm::Value *DesiredAddr, 1759 llvm::AtomicOrdering Success, 1760 llvm::AtomicOrdering Failure) { 1761 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 1762 // void *desired, int success, int failure); 1763 CallArgList Args; 1764 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1765 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1766 CGF.getContext().VoidPtrTy); 1767 Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)), 1768 CGF.getContext().VoidPtrTy); 1769 Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)), 1770 CGF.getContext().VoidPtrTy); 1771 Args.add(RValue::get( 1772 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))), 1773 CGF.getContext().IntTy); 1774 Args.add(RValue::get( 1775 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))), 1776 CGF.getContext().IntTy); 1777 auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", 1778 CGF.getContext().BoolTy, Args); 1779 1780 return SuccessFailureRVal.getScalarVal(); 1781 } 1782 1783 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( 1784 RValue Expected, RValue Desired, llvm::AtomicOrdering Success, 1785 llvm::AtomicOrdering Failure, bool IsWeak) { 1786 // Check whether we should use a library call. 1787 if (shouldUseLibcall()) { 1788 // Produce a source address. 1789 Address ExpectedAddr = materializeRValue(Expected); 1790 Address DesiredAddr = materializeRValue(Desired); 1791 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1792 DesiredAddr.getPointer(), 1793 Success, Failure); 1794 return std::make_pair( 1795 convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(), 1796 SourceLocation(), /*AsValue=*/false), 1797 Res); 1798 } 1799 1800 // If we've got a scalar value of the right size, try to avoid going 1801 // through memory. 1802 auto *ExpectedVal = convertRValueToInt(Expected); 1803 auto *DesiredVal = convertRValueToInt(Desired); 1804 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, 1805 Failure, IsWeak); 1806 return std::make_pair( 1807 ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), 1808 SourceLocation(), /*AsValue=*/false), 1809 Res.second); 1810 } 1811 1812 static void 1813 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, 1814 const llvm::function_ref<RValue(RValue)> &UpdateOp, 1815 Address DesiredAddr) { 1816 RValue UpRVal; 1817 LValue AtomicLVal = Atomics.getAtomicLValue(); 1818 LValue DesiredLVal; 1819 if (AtomicLVal.isSimple()) { 1820 UpRVal = OldRVal; 1821 DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType()); 1822 } else { 1823 // Build new lvalue for temp address. 1824 Address Ptr = Atomics.materializeRValue(OldRVal); 1825 LValue UpdateLVal; 1826 if (AtomicLVal.isBitField()) { 1827 UpdateLVal = 1828 LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), 1829 AtomicLVal.getType(), 1830 AtomicLVal.getBaseInfo(), 1831 AtomicLVal.getTBAAInfo()); 1832 DesiredLVal = 1833 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1834 AtomicLVal.getType(), AtomicLVal.getBaseInfo(), 1835 AtomicLVal.getTBAAInfo()); 1836 } else if (AtomicLVal.isVectorElt()) { 1837 UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), 1838 AtomicLVal.getType(), 1839 AtomicLVal.getBaseInfo(), 1840 AtomicLVal.getTBAAInfo()); 1841 DesiredLVal = LValue::MakeVectorElt( 1842 DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), 1843 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); 1844 } else { 1845 assert(AtomicLVal.isExtVectorElt()); 1846 UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), 1847 AtomicLVal.getType(), 1848 AtomicLVal.getBaseInfo(), 1849 AtomicLVal.getTBAAInfo()); 1850 DesiredLVal = LValue::MakeExtVectorElt( 1851 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1852 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); 1853 } 1854 UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); 1855 } 1856 // Store new value in the corresponding memory area. 1857 RValue NewRVal = UpdateOp(UpRVal); 1858 if (NewRVal.isScalar()) { 1859 CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); 1860 } else { 1861 assert(NewRVal.isComplex()); 1862 CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, 1863 /*isInit=*/false); 1864 } 1865 } 1866 1867 void AtomicInfo::EmitAtomicUpdateLibcall( 1868 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1869 bool IsVolatile) { 1870 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1871 1872 Address ExpectedAddr = CreateTempAlloca(); 1873 1874 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1875 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1876 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1877 CGF.EmitBlock(ContBB); 1878 Address DesiredAddr = CreateTempAlloca(); 1879 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1880 requiresMemSetZero(getAtomicAddress().getElementType())) { 1881 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1882 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1883 } 1884 auto OldRVal = convertAtomicTempToRValue(ExpectedAddr, 1885 AggValueSlot::ignored(), 1886 SourceLocation(), /*AsValue=*/false); 1887 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); 1888 auto *Res = 1889 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1890 DesiredAddr.getPointer(), 1891 AO, Failure); 1892 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1893 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1894 } 1895 1896 void AtomicInfo::EmitAtomicUpdateOp( 1897 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1898 bool IsVolatile) { 1899 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1900 1901 // Do the atomic load. 1902 auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile); 1903 // For non-simple lvalues perform compare-and-swap procedure. 1904 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1905 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1906 auto *CurBB = CGF.Builder.GetInsertBlock(); 1907 CGF.EmitBlock(ContBB); 1908 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1909 /*NumReservedValues=*/2); 1910 PHI->addIncoming(OldVal, CurBB); 1911 Address NewAtomicAddr = CreateTempAlloca(); 1912 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1913 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1914 requiresMemSetZero(getAtomicAddress().getElementType())) { 1915 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1916 } 1917 auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), 1918 SourceLocation(), /*AsValue=*/false); 1919 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); 1920 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1921 // Try to write new value using cmpxchg operation. 1922 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1923 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1924 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1925 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1926 } 1927 1928 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, 1929 RValue UpdateRVal, Address DesiredAddr) { 1930 LValue AtomicLVal = Atomics.getAtomicLValue(); 1931 LValue DesiredLVal; 1932 // Build new lvalue for temp address. 1933 if (AtomicLVal.isBitField()) { 1934 DesiredLVal = 1935 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1936 AtomicLVal.getType(), AtomicLVal.getBaseInfo(), 1937 AtomicLVal.getTBAAInfo()); 1938 } else if (AtomicLVal.isVectorElt()) { 1939 DesiredLVal = 1940 LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), 1941 AtomicLVal.getType(), AtomicLVal.getBaseInfo(), 1942 AtomicLVal.getTBAAInfo()); 1943 } else { 1944 assert(AtomicLVal.isExtVectorElt()); 1945 DesiredLVal = LValue::MakeExtVectorElt( 1946 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1947 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); 1948 } 1949 // Store new value in the corresponding memory area. 1950 assert(UpdateRVal.isScalar()); 1951 CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); 1952 } 1953 1954 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 1955 RValue UpdateRVal, bool IsVolatile) { 1956 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1957 1958 Address ExpectedAddr = CreateTempAlloca(); 1959 1960 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1961 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1962 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1963 CGF.EmitBlock(ContBB); 1964 Address DesiredAddr = CreateTempAlloca(); 1965 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1966 requiresMemSetZero(getAtomicAddress().getElementType())) { 1967 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1968 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1969 } 1970 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); 1971 auto *Res = 1972 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1973 DesiredAddr.getPointer(), 1974 AO, Failure); 1975 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1976 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1977 } 1978 1979 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, 1980 bool IsVolatile) { 1981 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1982 1983 // Do the atomic load. 1984 auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile); 1985 // For non-simple lvalues perform compare-and-swap procedure. 1986 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1987 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1988 auto *CurBB = CGF.Builder.GetInsertBlock(); 1989 CGF.EmitBlock(ContBB); 1990 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1991 /*NumReservedValues=*/2); 1992 PHI->addIncoming(OldVal, CurBB); 1993 Address NewAtomicAddr = CreateTempAlloca(); 1994 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1995 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1996 requiresMemSetZero(getAtomicAddress().getElementType())) { 1997 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1998 } 1999 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); 2000 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 2001 // Try to write new value using cmpxchg operation. 2002 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 2003 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 2004 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 2005 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2006 } 2007 2008 void AtomicInfo::EmitAtomicUpdate( 2009 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 2010 bool IsVolatile) { 2011 if (shouldUseLibcall()) { 2012 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); 2013 } else { 2014 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); 2015 } 2016 } 2017 2018 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 2019 bool IsVolatile) { 2020 if (shouldUseLibcall()) { 2021 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); 2022 } else { 2023 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); 2024 } 2025 } 2026 2027 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, 2028 bool isInit) { 2029 bool IsVolatile = lvalue.isVolatileQualified(); 2030 llvm::AtomicOrdering AO; 2031 if (lvalue.getType()->isAtomicType()) { 2032 AO = llvm::AtomicOrdering::SequentiallyConsistent; 2033 } else { 2034 AO = llvm::AtomicOrdering::Release; 2035 IsVolatile = true; 2036 } 2037 return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); 2038 } 2039 2040 /// Emit a store to an l-value of atomic type. 2041 /// 2042 /// Note that the r-value is expected to be an r-value *of the atomic 2043 /// type*; this means that for aggregate r-values, it should include 2044 /// storage for any padding that was necessary. 2045 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, 2046 llvm::AtomicOrdering AO, bool IsVolatile, 2047 bool isInit) { 2048 // If this is an aggregate r-value, it should agree in type except 2049 // maybe for address-space qualification. 2050 assert(!rvalue.isAggregate() || 2051 rvalue.getAggregateAddress().getElementType() == 2052 dest.getAddress(*this).getElementType()); 2053 2054 AtomicInfo atomics(*this, dest); 2055 LValue LVal = atomics.getAtomicLValue(); 2056 2057 // If this is an initialization, just put the value there normally. 2058 if (LVal.isSimple()) { 2059 if (isInit) { 2060 atomics.emitCopyIntoMemory(rvalue); 2061 return; 2062 } 2063 2064 // Check whether we should use a library call. 2065 if (atomics.shouldUseLibcall()) { 2066 // Produce a source address. 2067 Address srcAddr = atomics.materializeRValue(rvalue); 2068 2069 // void __atomic_store(size_t size, void *mem, void *val, int order) 2070 CallArgList args; 2071 args.add(RValue::get(atomics.getAtomicSizeValue()), 2072 getContext().getSizeType()); 2073 args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())), 2074 getContext().VoidPtrTy); 2075 args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())), 2076 getContext().VoidPtrTy); 2077 args.add( 2078 RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))), 2079 getContext().IntTy); 2080 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); 2081 return; 2082 } 2083 2084 // Okay, we're doing this natively. 2085 llvm::Value *intValue = atomics.convertRValueToInt(rvalue); 2086 2087 // Do the atomic store. 2088 Address addr = 2089 atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress()); 2090 intValue = Builder.CreateIntCast( 2091 intValue, addr.getElementType(), /*isSigned=*/false); 2092 llvm::StoreInst *store = Builder.CreateStore(intValue, addr); 2093 2094 if (AO == llvm::AtomicOrdering::Acquire) 2095 AO = llvm::AtomicOrdering::Monotonic; 2096 else if (AO == llvm::AtomicOrdering::AcquireRelease) 2097 AO = llvm::AtomicOrdering::Release; 2098 // Initializations don't need to be atomic. 2099 if (!isInit) 2100 store->setAtomic(AO); 2101 2102 // Other decoration. 2103 if (IsVolatile) 2104 store->setVolatile(true); 2105 CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo()); 2106 return; 2107 } 2108 2109 // Emit simple atomic update operation. 2110 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); 2111 } 2112 2113 /// Emit a compare-and-exchange op for atomic type. 2114 /// 2115 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( 2116 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2117 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, 2118 AggValueSlot Slot) { 2119 // If this is an aggregate r-value, it should agree in type except 2120 // maybe for address-space qualification. 2121 assert(!Expected.isAggregate() || 2122 Expected.getAggregateAddress().getElementType() == 2123 Obj.getAddress(*this).getElementType()); 2124 assert(!Desired.isAggregate() || 2125 Desired.getAggregateAddress().getElementType() == 2126 Obj.getAddress(*this).getElementType()); 2127 AtomicInfo Atomics(*this, Obj); 2128 2129 return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, 2130 IsWeak); 2131 } 2132 2133 void CodeGenFunction::EmitAtomicUpdate( 2134 LValue LVal, llvm::AtomicOrdering AO, 2135 const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { 2136 AtomicInfo Atomics(*this, LVal); 2137 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); 2138 } 2139 2140 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { 2141 AtomicInfo atomics(*this, dest); 2142 2143 switch (atomics.getEvaluationKind()) { 2144 case TEK_Scalar: { 2145 llvm::Value *value = EmitScalarExpr(init); 2146 atomics.emitCopyIntoMemory(RValue::get(value)); 2147 return; 2148 } 2149 2150 case TEK_Complex: { 2151 ComplexPairTy value = EmitComplexExpr(init); 2152 atomics.emitCopyIntoMemory(RValue::getComplex(value)); 2153 return; 2154 } 2155 2156 case TEK_Aggregate: { 2157 // Fix up the destination if the initializer isn't an expression 2158 // of atomic type. 2159 bool Zeroed = false; 2160 if (!init->getType()->isAtomicType()) { 2161 Zeroed = atomics.emitMemSetZeroIfNecessary(); 2162 dest = atomics.projectValue(); 2163 } 2164 2165 // Evaluate the expression directly into the destination. 2166 AggValueSlot slot = AggValueSlot::forLValue( 2167 dest, *this, AggValueSlot::IsNotDestructed, 2168 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2169 AggValueSlot::DoesNotOverlap, 2170 Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed); 2171 2172 EmitAggExpr(init, slot); 2173 return; 2174 } 2175 } 2176 llvm_unreachable("bad evaluation kind"); 2177 } 2178