1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the code for emitting atomic operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCall.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Operator.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 class AtomicInfo { 30 CodeGenFunction &CGF; 31 QualType AtomicTy; 32 QualType ValueTy; 33 uint64_t AtomicSizeInBits; 34 uint64_t ValueSizeInBits; 35 CharUnits AtomicAlign; 36 CharUnits ValueAlign; 37 CharUnits LValueAlign; 38 TypeEvaluationKind EvaluationKind; 39 bool UseLibcall; 40 LValue LVal; 41 CGBitFieldInfo BFI; 42 public: 43 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) 44 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), 45 EvaluationKind(TEK_Scalar), UseLibcall(true) { 46 assert(!lvalue.isGlobalReg()); 47 ASTContext &C = CGF.getContext(); 48 if (lvalue.isSimple()) { 49 AtomicTy = lvalue.getType(); 50 if (auto *ATy = AtomicTy->getAs<AtomicType>()) 51 ValueTy = ATy->getValueType(); 52 else 53 ValueTy = AtomicTy; 54 EvaluationKind = CGF.getEvaluationKind(ValueTy); 55 56 uint64_t ValueAlignInBits; 57 uint64_t AtomicAlignInBits; 58 TypeInfo ValueTI = C.getTypeInfo(ValueTy); 59 ValueSizeInBits = ValueTI.Width; 60 ValueAlignInBits = ValueTI.Align; 61 62 TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); 63 AtomicSizeInBits = AtomicTI.Width; 64 AtomicAlignInBits = AtomicTI.Align; 65 66 assert(ValueSizeInBits <= AtomicSizeInBits); 67 assert(ValueAlignInBits <= AtomicAlignInBits); 68 69 AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); 70 ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); 71 if (lvalue.getAlignment().isZero()) 72 lvalue.setAlignment(AtomicAlign); 73 74 LVal = lvalue; 75 } else if (lvalue.isBitField()) { 76 ValueTy = lvalue.getType(); 77 ValueSizeInBits = C.getTypeSize(ValueTy); 78 auto &OrigBFI = lvalue.getBitFieldInfo(); 79 auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); 80 AtomicSizeInBits = C.toBits( 81 C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) 82 .alignTo(lvalue.getAlignment())); 83 auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer()); 84 auto OffsetInChars = 85 (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * 86 lvalue.getAlignment(); 87 VoidPtrAddr = CGF.Builder.CreateConstGEP1_64( 88 VoidPtrAddr, OffsetInChars.getQuantity()); 89 auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 90 VoidPtrAddr, 91 CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(), 92 "atomic_bitfield_base"); 93 BFI = OrigBFI; 94 BFI.Offset = Offset; 95 BFI.StorageSize = AtomicSizeInBits; 96 BFI.StorageOffset += OffsetInChars; 97 LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()), 98 BFI, lvalue.getType(), 99 lvalue.getAlignmentSource()); 100 LVal.setTBAAInfo(lvalue.getTBAAInfo()); 101 AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); 102 if (AtomicTy.isNull()) { 103 llvm::APInt Size( 104 /*numBits=*/32, 105 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); 106 AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal, 107 /*IndexTypeQuals=*/0); 108 } 109 AtomicAlign = ValueAlign = lvalue.getAlignment(); 110 } else if (lvalue.isVectorElt()) { 111 ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType(); 112 ValueSizeInBits = C.getTypeSize(ValueTy); 113 AtomicTy = lvalue.getType(); 114 AtomicSizeInBits = C.getTypeSize(AtomicTy); 115 AtomicAlign = ValueAlign = lvalue.getAlignment(); 116 LVal = lvalue; 117 } else { 118 assert(lvalue.isExtVectorElt()); 119 ValueTy = lvalue.getType(); 120 ValueSizeInBits = C.getTypeSize(ValueTy); 121 AtomicTy = ValueTy = CGF.getContext().getExtVectorType( 122 lvalue.getType(), lvalue.getExtVectorAddress() 123 .getElementType()->getVectorNumElements()); 124 AtomicSizeInBits = C.getTypeSize(AtomicTy); 125 AtomicAlign = ValueAlign = lvalue.getAlignment(); 126 LVal = lvalue; 127 } 128 UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( 129 AtomicSizeInBits, C.toBits(lvalue.getAlignment())); 130 } 131 132 QualType getAtomicType() const { return AtomicTy; } 133 QualType getValueType() const { return ValueTy; } 134 CharUnits getAtomicAlignment() const { return AtomicAlign; } 135 CharUnits getValueAlignment() const { return ValueAlign; } 136 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } 137 uint64_t getValueSizeInBits() const { return ValueSizeInBits; } 138 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } 139 bool shouldUseLibcall() const { return UseLibcall; } 140 const LValue &getAtomicLValue() const { return LVal; } 141 llvm::Value *getAtomicPointer() const { 142 if (LVal.isSimple()) 143 return LVal.getPointer(); 144 else if (LVal.isBitField()) 145 return LVal.getBitFieldPointer(); 146 else if (LVal.isVectorElt()) 147 return LVal.getVectorPointer(); 148 assert(LVal.isExtVectorElt()); 149 return LVal.getExtVectorPointer(); 150 } 151 Address getAtomicAddress() const { 152 return Address(getAtomicPointer(), getAtomicAlignment()); 153 } 154 155 Address getAtomicAddressAsAtomicIntPointer() const { 156 return emitCastToAtomicIntPointer(getAtomicAddress()); 157 } 158 159 /// Is the atomic size larger than the underlying value type? 160 /// 161 /// Note that the absence of padding does not mean that atomic 162 /// objects are completely interchangeable with non-atomic 163 /// objects: we might have promoted the alignment of a type 164 /// without making it bigger. 165 bool hasPadding() const { 166 return (ValueSizeInBits != AtomicSizeInBits); 167 } 168 169 bool emitMemSetZeroIfNecessary() const; 170 171 llvm::Value *getAtomicSizeValue() const { 172 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); 173 return CGF.CGM.getSize(size); 174 } 175 176 /// Cast the given pointer to an integer pointer suitable for atomic 177 /// operations if the source. 178 Address emitCastToAtomicIntPointer(Address Addr) const; 179 180 /// If Addr is compatible with the iN that will be used for an atomic 181 /// operation, bitcast it. Otherwise, create a temporary that is suitable 182 /// and copy the value across. 183 Address convertToAtomicIntPointer(Address Addr) const; 184 185 /// Turn an atomic-layout object into an r-value. 186 RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, 187 SourceLocation loc, bool AsValue) const; 188 189 /// \brief Converts a rvalue to integer value. 190 llvm::Value *convertRValueToInt(RValue RVal) const; 191 192 RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, 193 AggValueSlot ResultSlot, 194 SourceLocation Loc, bool AsValue) const; 195 196 /// Copy an atomic r-value into atomic-layout memory. 197 void emitCopyIntoMemory(RValue rvalue) const; 198 199 /// Project an l-value down to the value field. 200 LValue projectValue() const { 201 assert(LVal.isSimple()); 202 Address addr = getAtomicAddress(); 203 if (hasPadding()) 204 addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits()); 205 206 return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), 207 LVal.getAlignmentSource(), LVal.getTBAAInfo()); 208 } 209 210 /// \brief Emits atomic load. 211 /// \returns Loaded value. 212 RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 213 bool AsValue, llvm::AtomicOrdering AO, 214 bool IsVolatile); 215 216 /// \brief Emits atomic compare-and-exchange sequence. 217 /// \param Expected Expected value. 218 /// \param Desired Desired value. 219 /// \param Success Atomic ordering for success operation. 220 /// \param Failure Atomic ordering for failed operation. 221 /// \param IsWeak true if atomic operation is weak, false otherwise. 222 /// \returns Pair of values: previous value from storage (value type) and 223 /// boolean flag (i1 type) with true if success and false otherwise. 224 std::pair<RValue, llvm::Value *> 225 EmitAtomicCompareExchange(RValue Expected, RValue Desired, 226 llvm::AtomicOrdering Success = 227 llvm::AtomicOrdering::SequentiallyConsistent, 228 llvm::AtomicOrdering Failure = 229 llvm::AtomicOrdering::SequentiallyConsistent, 230 bool IsWeak = false); 231 232 /// \brief Emits atomic update. 233 /// \param AO Atomic ordering. 234 /// \param UpdateOp Update operation for the current lvalue. 235 void EmitAtomicUpdate(llvm::AtomicOrdering AO, 236 const llvm::function_ref<RValue(RValue)> &UpdateOp, 237 bool IsVolatile); 238 /// \brief Emits atomic update. 239 /// \param AO Atomic ordering. 240 void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 241 bool IsVolatile); 242 243 /// Materialize an atomic r-value in atomic-layout memory. 244 Address materializeRValue(RValue rvalue) const; 245 246 /// \brief Creates temp alloca for intermediate operations on atomic value. 247 Address CreateTempAlloca() const; 248 private: 249 bool requiresMemSetZero(llvm::Type *type) const; 250 251 252 /// \brief Emits atomic load as a libcall. 253 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 254 llvm::AtomicOrdering AO, bool IsVolatile); 255 /// \brief Emits atomic load as LLVM instruction. 256 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); 257 /// \brief Emits atomic compare-and-exchange op as a libcall. 258 llvm::Value *EmitAtomicCompareExchangeLibcall( 259 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, 260 llvm::AtomicOrdering Success = 261 llvm::AtomicOrdering::SequentiallyConsistent, 262 llvm::AtomicOrdering Failure = 263 llvm::AtomicOrdering::SequentiallyConsistent); 264 /// \brief Emits atomic compare-and-exchange op as LLVM instruction. 265 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( 266 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 267 llvm::AtomicOrdering Success = 268 llvm::AtomicOrdering::SequentiallyConsistent, 269 llvm::AtomicOrdering Failure = 270 llvm::AtomicOrdering::SequentiallyConsistent, 271 bool IsWeak = false); 272 /// \brief Emit atomic update as libcalls. 273 void 274 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 275 const llvm::function_ref<RValue(RValue)> &UpdateOp, 276 bool IsVolatile); 277 /// \brief Emit atomic update as LLVM instructions. 278 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, 279 const llvm::function_ref<RValue(RValue)> &UpdateOp, 280 bool IsVolatile); 281 /// \brief Emit atomic update as libcalls. 282 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, 283 bool IsVolatile); 284 /// \brief Emit atomic update as LLVM instructions. 285 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, 286 bool IsVolatile); 287 }; 288 } 289 290 Address AtomicInfo::CreateTempAlloca() const { 291 Address TempAlloca = CGF.CreateMemTemp( 292 (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy 293 : AtomicTy, 294 getAtomicAlignment(), 295 "atomic-temp"); 296 // Cast to pointer to value type for bitfields. 297 if (LVal.isBitField()) 298 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 299 TempAlloca, getAtomicAddress().getType()); 300 return TempAlloca; 301 } 302 303 static RValue emitAtomicLibcall(CodeGenFunction &CGF, 304 StringRef fnName, 305 QualType resultType, 306 CallArgList &args) { 307 const CGFunctionInfo &fnInfo = 308 CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); 309 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); 310 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); 311 return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args); 312 } 313 314 /// Does a store of the given IR type modify the full expected width? 315 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, 316 uint64_t expectedSize) { 317 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); 318 } 319 320 /// Does the atomic type require memsetting to zero before initialization? 321 /// 322 /// The IR type is provided as a way of making certain queries faster. 323 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { 324 // If the atomic type has size padding, we definitely need a memset. 325 if (hasPadding()) return true; 326 327 // Otherwise, do some simple heuristics to try to avoid it: 328 switch (getEvaluationKind()) { 329 // For scalars and complexes, check whether the store size of the 330 // type uses the full size. 331 case TEK_Scalar: 332 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); 333 case TEK_Complex: 334 return !isFullSizeType(CGF.CGM, type->getStructElementType(0), 335 AtomicSizeInBits / 2); 336 337 // Padding in structs has an undefined bit pattern. User beware. 338 case TEK_Aggregate: 339 return false; 340 } 341 llvm_unreachable("bad evaluation kind"); 342 } 343 344 bool AtomicInfo::emitMemSetZeroIfNecessary() const { 345 assert(LVal.isSimple()); 346 llvm::Value *addr = LVal.getPointer(); 347 if (!requiresMemSetZero(addr->getType()->getPointerElementType())) 348 return false; 349 350 CGF.Builder.CreateMemSet( 351 addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), 352 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), 353 LVal.getAlignment().getQuantity()); 354 return true; 355 } 356 357 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, 358 Address Dest, Address Ptr, 359 Address Val1, Address Val2, 360 uint64_t Size, 361 llvm::AtomicOrdering SuccessOrder, 362 llvm::AtomicOrdering FailureOrder) { 363 // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. 364 llvm::Value *Expected = CGF.Builder.CreateLoad(Val1); 365 llvm::Value *Desired = CGF.Builder.CreateLoad(Val2); 366 367 llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( 368 Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder); 369 Pair->setVolatile(E->isVolatile()); 370 Pair->setWeak(IsWeak); 371 372 // Cmp holds the result of the compare-exchange operation: true on success, 373 // false on failure. 374 llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); 375 llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); 376 377 // This basic block is used to hold the store instruction if the operation 378 // failed. 379 llvm::BasicBlock *StoreExpectedBB = 380 CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); 381 382 // This basic block is the exit point of the operation, we should end up 383 // here regardless of whether or not the operation succeeded. 384 llvm::BasicBlock *ContinueBB = 385 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 386 387 // Update Expected if Expected isn't equal to Old, otherwise branch to the 388 // exit point. 389 CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); 390 391 CGF.Builder.SetInsertPoint(StoreExpectedBB); 392 // Update the memory at Expected with Old's value. 393 CGF.Builder.CreateStore(Old, Val1); 394 // Finally, branch to the exit point. 395 CGF.Builder.CreateBr(ContinueBB); 396 397 CGF.Builder.SetInsertPoint(ContinueBB); 398 // Update the memory at Dest with Cmp's value. 399 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 400 } 401 402 /// Given an ordering required on success, emit all possible cmpxchg 403 /// instructions to cope with the provided (but possibly only dynamically known) 404 /// FailureOrder. 405 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, 406 bool IsWeak, Address Dest, Address Ptr, 407 Address Val1, Address Val2, 408 llvm::Value *FailureOrderVal, 409 uint64_t Size, 410 llvm::AtomicOrdering SuccessOrder) { 411 llvm::AtomicOrdering FailureOrder; 412 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { 413 auto FOS = FO->getSExtValue(); 414 if (!llvm::isValidAtomicOrderingCABI(FOS)) 415 FailureOrder = llvm::AtomicOrdering::Monotonic; 416 else 417 switch ((llvm::AtomicOrderingCABI)FOS) { 418 case llvm::AtomicOrderingCABI::relaxed: 419 case llvm::AtomicOrderingCABI::release: 420 case llvm::AtomicOrderingCABI::acq_rel: 421 FailureOrder = llvm::AtomicOrdering::Monotonic; 422 break; 423 case llvm::AtomicOrderingCABI::consume: 424 case llvm::AtomicOrderingCABI::acquire: 425 FailureOrder = llvm::AtomicOrdering::Acquire; 426 break; 427 case llvm::AtomicOrderingCABI::seq_cst: 428 FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; 429 break; 430 } 431 if (isStrongerThan(FailureOrder, SuccessOrder)) { 432 // Don't assert on undefined behavior "failure argument shall be no 433 // stronger than the success argument". 434 FailureOrder = 435 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder); 436 } 437 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 438 FailureOrder); 439 return; 440 } 441 442 // Create all the relevant BB's 443 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 444 *SeqCstBB = nullptr; 445 MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); 446 if (SuccessOrder != llvm::AtomicOrdering::Monotonic && 447 SuccessOrder != llvm::AtomicOrdering::Release) 448 AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); 449 if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent) 450 SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); 451 452 llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); 453 454 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); 455 456 // Emit all the different atomics 457 458 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 459 // doesn't matter unless someone is crazy enough to use something that 460 // doesn't fold to a constant for the ordering. 461 CGF.Builder.SetInsertPoint(MonotonicBB); 462 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 463 Size, SuccessOrder, llvm::AtomicOrdering::Monotonic); 464 CGF.Builder.CreateBr(ContBB); 465 466 if (AcquireBB) { 467 CGF.Builder.SetInsertPoint(AcquireBB); 468 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 469 Size, SuccessOrder, llvm::AtomicOrdering::Acquire); 470 CGF.Builder.CreateBr(ContBB); 471 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 472 AcquireBB); 473 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 474 AcquireBB); 475 } 476 if (SeqCstBB) { 477 CGF.Builder.SetInsertPoint(SeqCstBB); 478 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 479 llvm::AtomicOrdering::SequentiallyConsistent); 480 CGF.Builder.CreateBr(ContBB); 481 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 482 SeqCstBB); 483 } 484 485 CGF.Builder.SetInsertPoint(ContBB); 486 } 487 488 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, 489 Address Ptr, Address Val1, Address Val2, 490 llvm::Value *IsWeak, llvm::Value *FailureOrder, 491 uint64_t Size, llvm::AtomicOrdering Order) { 492 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 493 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 494 495 switch (E->getOp()) { 496 case AtomicExpr::AO__c11_atomic_init: 497 llvm_unreachable("Already handled!"); 498 499 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 500 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 501 FailureOrder, Size, Order); 502 return; 503 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 504 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 505 FailureOrder, Size, Order); 506 return; 507 case AtomicExpr::AO__atomic_compare_exchange: 508 case AtomicExpr::AO__atomic_compare_exchange_n: { 509 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { 510 emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, 511 Val1, Val2, FailureOrder, Size, Order); 512 } else { 513 // Create all the relevant BB's 514 llvm::BasicBlock *StrongBB = 515 CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); 516 llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); 517 llvm::BasicBlock *ContBB = 518 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 519 520 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); 521 SI->addCase(CGF.Builder.getInt1(false), StrongBB); 522 523 CGF.Builder.SetInsertPoint(StrongBB); 524 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 525 FailureOrder, Size, Order); 526 CGF.Builder.CreateBr(ContBB); 527 528 CGF.Builder.SetInsertPoint(WeakBB); 529 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 530 FailureOrder, Size, Order); 531 CGF.Builder.CreateBr(ContBB); 532 533 CGF.Builder.SetInsertPoint(ContBB); 534 } 535 return; 536 } 537 case AtomicExpr::AO__c11_atomic_load: 538 case AtomicExpr::AO__atomic_load_n: 539 case AtomicExpr::AO__atomic_load: { 540 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 541 Load->setAtomic(Order); 542 Load->setVolatile(E->isVolatile()); 543 CGF.Builder.CreateStore(Load, Dest); 544 return; 545 } 546 547 case AtomicExpr::AO__c11_atomic_store: 548 case AtomicExpr::AO__atomic_store: 549 case AtomicExpr::AO__atomic_store_n: { 550 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 551 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 552 Store->setAtomic(Order); 553 Store->setVolatile(E->isVolatile()); 554 return; 555 } 556 557 case AtomicExpr::AO__c11_atomic_exchange: 558 case AtomicExpr::AO__atomic_exchange_n: 559 case AtomicExpr::AO__atomic_exchange: 560 Op = llvm::AtomicRMWInst::Xchg; 561 break; 562 563 case AtomicExpr::AO__atomic_add_fetch: 564 PostOp = llvm::Instruction::Add; 565 // Fall through. 566 case AtomicExpr::AO__c11_atomic_fetch_add: 567 case AtomicExpr::AO__atomic_fetch_add: 568 Op = llvm::AtomicRMWInst::Add; 569 break; 570 571 case AtomicExpr::AO__atomic_sub_fetch: 572 PostOp = llvm::Instruction::Sub; 573 // Fall through. 574 case AtomicExpr::AO__c11_atomic_fetch_sub: 575 case AtomicExpr::AO__atomic_fetch_sub: 576 Op = llvm::AtomicRMWInst::Sub; 577 break; 578 579 case AtomicExpr::AO__atomic_and_fetch: 580 PostOp = llvm::Instruction::And; 581 // Fall through. 582 case AtomicExpr::AO__c11_atomic_fetch_and: 583 case AtomicExpr::AO__atomic_fetch_and: 584 Op = llvm::AtomicRMWInst::And; 585 break; 586 587 case AtomicExpr::AO__atomic_or_fetch: 588 PostOp = llvm::Instruction::Or; 589 // Fall through. 590 case AtomicExpr::AO__c11_atomic_fetch_or: 591 case AtomicExpr::AO__atomic_fetch_or: 592 Op = llvm::AtomicRMWInst::Or; 593 break; 594 595 case AtomicExpr::AO__atomic_xor_fetch: 596 PostOp = llvm::Instruction::Xor; 597 // Fall through. 598 case AtomicExpr::AO__c11_atomic_fetch_xor: 599 case AtomicExpr::AO__atomic_fetch_xor: 600 Op = llvm::AtomicRMWInst::Xor; 601 break; 602 603 case AtomicExpr::AO__atomic_nand_fetch: 604 PostOp = llvm::Instruction::And; // the NOT is special cased below 605 // Fall through. 606 case AtomicExpr::AO__atomic_fetch_nand: 607 Op = llvm::AtomicRMWInst::Nand; 608 break; 609 } 610 611 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 612 llvm::AtomicRMWInst *RMWI = 613 CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order); 614 RMWI->setVolatile(E->isVolatile()); 615 616 // For __atomic_*_fetch operations, perform the operation again to 617 // determine the value which was written. 618 llvm::Value *Result = RMWI; 619 if (PostOp) 620 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 621 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 622 Result = CGF.Builder.CreateNot(Result); 623 CGF.Builder.CreateStore(Result, Dest); 624 } 625 626 // This function emits any expression (scalar, complex, or aggregate) 627 // into a temporary alloca. 628 static Address 629 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 630 Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 631 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 632 /*Init*/ true); 633 return DeclPtr; 634 } 635 636 static void 637 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, 638 bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, 639 SourceLocation Loc, CharUnits SizeInChars) { 640 if (UseOptimizedLibcall) { 641 // Load value and pass it to the function directly. 642 CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy); 643 int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); 644 ValTy = 645 CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); 646 llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(), 647 SizeInBits)->getPointerTo(); 648 Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align); 649 Val = CGF.EmitLoadOfScalar(Ptr, false, 650 CGF.getContext().getPointerType(ValTy), 651 Loc); 652 // Coerce the value into an appropriately sized integer type. 653 Args.add(RValue::get(Val), ValTy); 654 } else { 655 // Non-optimized functions always take a reference. 656 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), 657 CGF.getContext().VoidPtrTy); 658 } 659 } 660 661 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { 662 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 663 QualType MemTy = AtomicTy; 664 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 665 MemTy = AT->getValueType(); 666 CharUnits sizeChars, alignChars; 667 std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy); 668 uint64_t Size = sizeChars.getQuantity(); 669 unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); 670 bool UseLibcall = (sizeChars != alignChars || 671 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 672 673 llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; 674 675 Address Val1 = Address::invalid(); 676 Address Val2 = Address::invalid(); 677 Address Dest = Address::invalid(); 678 Address Ptr(EmitScalarExpr(E->getPtr()), alignChars); 679 680 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 681 LValue lvalue = MakeAddrLValue(Ptr, AtomicTy); 682 EmitAtomicInit(E->getVal1(), lvalue); 683 return RValue::get(nullptr); 684 } 685 686 llvm::Value *Order = EmitScalarExpr(E->getOrder()); 687 688 switch (E->getOp()) { 689 case AtomicExpr::AO__c11_atomic_init: 690 llvm_unreachable("Already handled above with EmitAtomicInit!"); 691 692 case AtomicExpr::AO__c11_atomic_load: 693 case AtomicExpr::AO__atomic_load_n: 694 break; 695 696 case AtomicExpr::AO__atomic_load: 697 Dest = EmitPointerWithAlignment(E->getVal1()); 698 break; 699 700 case AtomicExpr::AO__atomic_store: 701 Val1 = EmitPointerWithAlignment(E->getVal1()); 702 break; 703 704 case AtomicExpr::AO__atomic_exchange: 705 Val1 = EmitPointerWithAlignment(E->getVal1()); 706 Dest = EmitPointerWithAlignment(E->getVal2()); 707 break; 708 709 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 710 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 711 case AtomicExpr::AO__atomic_compare_exchange_n: 712 case AtomicExpr::AO__atomic_compare_exchange: 713 Val1 = EmitPointerWithAlignment(E->getVal1()); 714 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 715 Val2 = EmitPointerWithAlignment(E->getVal2()); 716 else 717 Val2 = EmitValToTemp(*this, E->getVal2()); 718 OrderFail = EmitScalarExpr(E->getOrderFail()); 719 if (E->getNumSubExprs() == 6) 720 IsWeak = EmitScalarExpr(E->getWeak()); 721 break; 722 723 case AtomicExpr::AO__c11_atomic_fetch_add: 724 case AtomicExpr::AO__c11_atomic_fetch_sub: 725 if (MemTy->isPointerType()) { 726 // For pointer arithmetic, we're required to do a bit of math: 727 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 728 // ... but only for the C11 builtins. The GNU builtins expect the 729 // user to multiply by sizeof(T). 730 QualType Val1Ty = E->getVal1()->getType(); 731 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 732 CharUnits PointeeIncAmt = 733 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 734 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 735 auto Temp = CreateMemTemp(Val1Ty, ".atomictmp"); 736 Val1 = Temp; 737 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty)); 738 break; 739 } 740 // Fall through. 741 case AtomicExpr::AO__atomic_fetch_add: 742 case AtomicExpr::AO__atomic_fetch_sub: 743 case AtomicExpr::AO__atomic_add_fetch: 744 case AtomicExpr::AO__atomic_sub_fetch: 745 case AtomicExpr::AO__c11_atomic_store: 746 case AtomicExpr::AO__c11_atomic_exchange: 747 case AtomicExpr::AO__atomic_store_n: 748 case AtomicExpr::AO__atomic_exchange_n: 749 case AtomicExpr::AO__c11_atomic_fetch_and: 750 case AtomicExpr::AO__c11_atomic_fetch_or: 751 case AtomicExpr::AO__c11_atomic_fetch_xor: 752 case AtomicExpr::AO__atomic_fetch_and: 753 case AtomicExpr::AO__atomic_fetch_or: 754 case AtomicExpr::AO__atomic_fetch_xor: 755 case AtomicExpr::AO__atomic_fetch_nand: 756 case AtomicExpr::AO__atomic_and_fetch: 757 case AtomicExpr::AO__atomic_or_fetch: 758 case AtomicExpr::AO__atomic_xor_fetch: 759 case AtomicExpr::AO__atomic_nand_fetch: 760 Val1 = EmitValToTemp(*this, E->getVal1()); 761 break; 762 } 763 764 QualType RValTy = E->getType().getUnqualifiedType(); 765 766 // The inlined atomics only function on iN types, where N is a power of 2. We 767 // need to make sure (via temporaries if necessary) that all incoming values 768 // are compatible. 769 LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy); 770 AtomicInfo Atomics(*this, AtomicVal); 771 772 Ptr = Atomics.emitCastToAtomicIntPointer(Ptr); 773 if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1); 774 if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2); 775 if (Dest.isValid()) 776 Dest = Atomics.emitCastToAtomicIntPointer(Dest); 777 else if (E->isCmpXChg()) 778 Dest = CreateMemTemp(RValTy, "cmpxchg.bool"); 779 else if (!RValTy->isVoidType()) 780 Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca()); 781 782 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 783 if (UseLibcall) { 784 bool UseOptimizedLibcall = false; 785 switch (E->getOp()) { 786 case AtomicExpr::AO__c11_atomic_init: 787 llvm_unreachable("Already handled above with EmitAtomicInit!"); 788 789 case AtomicExpr::AO__c11_atomic_fetch_add: 790 case AtomicExpr::AO__atomic_fetch_add: 791 case AtomicExpr::AO__c11_atomic_fetch_and: 792 case AtomicExpr::AO__atomic_fetch_and: 793 case AtomicExpr::AO__c11_atomic_fetch_or: 794 case AtomicExpr::AO__atomic_fetch_or: 795 case AtomicExpr::AO__atomic_fetch_nand: 796 case AtomicExpr::AO__c11_atomic_fetch_sub: 797 case AtomicExpr::AO__atomic_fetch_sub: 798 case AtomicExpr::AO__c11_atomic_fetch_xor: 799 case AtomicExpr::AO__atomic_fetch_xor: 800 case AtomicExpr::AO__atomic_add_fetch: 801 case AtomicExpr::AO__atomic_and_fetch: 802 case AtomicExpr::AO__atomic_nand_fetch: 803 case AtomicExpr::AO__atomic_or_fetch: 804 case AtomicExpr::AO__atomic_sub_fetch: 805 case AtomicExpr::AO__atomic_xor_fetch: 806 // For these, only library calls for certain sizes exist. 807 UseOptimizedLibcall = true; 808 break; 809 810 case AtomicExpr::AO__c11_atomic_load: 811 case AtomicExpr::AO__c11_atomic_store: 812 case AtomicExpr::AO__c11_atomic_exchange: 813 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 814 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 815 case AtomicExpr::AO__atomic_load_n: 816 case AtomicExpr::AO__atomic_load: 817 case AtomicExpr::AO__atomic_store_n: 818 case AtomicExpr::AO__atomic_store: 819 case AtomicExpr::AO__atomic_exchange_n: 820 case AtomicExpr::AO__atomic_exchange: 821 case AtomicExpr::AO__atomic_compare_exchange_n: 822 case AtomicExpr::AO__atomic_compare_exchange: 823 // Only use optimized library calls for sizes for which they exist. 824 if (Size == 1 || Size == 2 || Size == 4 || Size == 8) 825 UseOptimizedLibcall = true; 826 break; 827 } 828 829 CallArgList Args; 830 if (!UseOptimizedLibcall) { 831 // For non-optimized library calls, the size is the first parameter 832 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 833 getContext().getSizeType()); 834 } 835 // Atomic address is the first or second parameter 836 Args.add(RValue::get(EmitCastToVoidPtr(Ptr.getPointer())), 837 getContext().VoidPtrTy); 838 839 std::string LibCallName; 840 QualType LoweredMemTy = 841 MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; 842 QualType RetTy; 843 bool HaveRetTy = false; 844 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 845 switch (E->getOp()) { 846 case AtomicExpr::AO__c11_atomic_init: 847 llvm_unreachable("Already handled!"); 848 849 // There is only one libcall for compare an exchange, because there is no 850 // optimisation benefit possible from a libcall version of a weak compare 851 // and exchange. 852 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, 853 // void *desired, int success, int failure) 854 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, 855 // int success, int failure) 856 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 857 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 858 case AtomicExpr::AO__atomic_compare_exchange: 859 case AtomicExpr::AO__atomic_compare_exchange_n: 860 LibCallName = "__atomic_compare_exchange"; 861 RetTy = getContext().BoolTy; 862 HaveRetTy = true; 863 Args.add(RValue::get(EmitCastToVoidPtr(Val1.getPointer())), 864 getContext().VoidPtrTy); 865 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(), 866 MemTy, E->getExprLoc(), sizeChars); 867 Args.add(RValue::get(Order), getContext().IntTy); 868 Order = OrderFail; 869 break; 870 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 871 // int order) 872 // T __atomic_exchange_N(T *mem, T val, int order) 873 case AtomicExpr::AO__c11_atomic_exchange: 874 case AtomicExpr::AO__atomic_exchange_n: 875 case AtomicExpr::AO__atomic_exchange: 876 LibCallName = "__atomic_exchange"; 877 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 878 MemTy, E->getExprLoc(), sizeChars); 879 break; 880 // void __atomic_store(size_t size, void *mem, void *val, int order) 881 // void __atomic_store_N(T *mem, T val, int order) 882 case AtomicExpr::AO__c11_atomic_store: 883 case AtomicExpr::AO__atomic_store: 884 case AtomicExpr::AO__atomic_store_n: 885 LibCallName = "__atomic_store"; 886 RetTy = getContext().VoidTy; 887 HaveRetTy = true; 888 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 889 MemTy, E->getExprLoc(), sizeChars); 890 break; 891 // void __atomic_load(size_t size, void *mem, void *return, int order) 892 // T __atomic_load_N(T *mem, int order) 893 case AtomicExpr::AO__c11_atomic_load: 894 case AtomicExpr::AO__atomic_load: 895 case AtomicExpr::AO__atomic_load_n: 896 LibCallName = "__atomic_load"; 897 break; 898 // T __atomic_add_fetch_N(T *mem, T val, int order) 899 // T __atomic_fetch_add_N(T *mem, T val, int order) 900 case AtomicExpr::AO__atomic_add_fetch: 901 PostOp = llvm::Instruction::Add; 902 // Fall through. 903 case AtomicExpr::AO__c11_atomic_fetch_add: 904 case AtomicExpr::AO__atomic_fetch_add: 905 LibCallName = "__atomic_fetch_add"; 906 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 907 LoweredMemTy, E->getExprLoc(), sizeChars); 908 break; 909 // T __atomic_and_fetch_N(T *mem, T val, int order) 910 // T __atomic_fetch_and_N(T *mem, T val, int order) 911 case AtomicExpr::AO__atomic_and_fetch: 912 PostOp = llvm::Instruction::And; 913 // Fall through. 914 case AtomicExpr::AO__c11_atomic_fetch_and: 915 case AtomicExpr::AO__atomic_fetch_and: 916 LibCallName = "__atomic_fetch_and"; 917 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 918 MemTy, E->getExprLoc(), sizeChars); 919 break; 920 // T __atomic_or_fetch_N(T *mem, T val, int order) 921 // T __atomic_fetch_or_N(T *mem, T val, int order) 922 case AtomicExpr::AO__atomic_or_fetch: 923 PostOp = llvm::Instruction::Or; 924 // Fall through. 925 case AtomicExpr::AO__c11_atomic_fetch_or: 926 case AtomicExpr::AO__atomic_fetch_or: 927 LibCallName = "__atomic_fetch_or"; 928 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 929 MemTy, E->getExprLoc(), sizeChars); 930 break; 931 // T __atomic_sub_fetch_N(T *mem, T val, int order) 932 // T __atomic_fetch_sub_N(T *mem, T val, int order) 933 case AtomicExpr::AO__atomic_sub_fetch: 934 PostOp = llvm::Instruction::Sub; 935 // Fall through. 936 case AtomicExpr::AO__c11_atomic_fetch_sub: 937 case AtomicExpr::AO__atomic_fetch_sub: 938 LibCallName = "__atomic_fetch_sub"; 939 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 940 LoweredMemTy, E->getExprLoc(), sizeChars); 941 break; 942 // T __atomic_xor_fetch_N(T *mem, T val, int order) 943 // T __atomic_fetch_xor_N(T *mem, T val, int order) 944 case AtomicExpr::AO__atomic_xor_fetch: 945 PostOp = llvm::Instruction::Xor; 946 // Fall through. 947 case AtomicExpr::AO__c11_atomic_fetch_xor: 948 case AtomicExpr::AO__atomic_fetch_xor: 949 LibCallName = "__atomic_fetch_xor"; 950 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 951 MemTy, E->getExprLoc(), sizeChars); 952 break; 953 // T __atomic_nand_fetch_N(T *mem, T val, int order) 954 // T __atomic_fetch_nand_N(T *mem, T val, int order) 955 case AtomicExpr::AO__atomic_nand_fetch: 956 PostOp = llvm::Instruction::And; // the NOT is special cased below 957 // Fall through. 958 case AtomicExpr::AO__atomic_fetch_nand: 959 LibCallName = "__atomic_fetch_nand"; 960 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 961 MemTy, E->getExprLoc(), sizeChars); 962 break; 963 } 964 965 // Optimized functions have the size in their name. 966 if (UseOptimizedLibcall) 967 LibCallName += "_" + llvm::utostr(Size); 968 // By default, assume we return a value of the atomic type. 969 if (!HaveRetTy) { 970 if (UseOptimizedLibcall) { 971 // Value is returned directly. 972 // The function returns an appropriately sized integer type. 973 RetTy = getContext().getIntTypeForBitwidth( 974 getContext().toBits(sizeChars), /*Signed=*/false); 975 } else { 976 // Value is returned through parameter before the order. 977 RetTy = getContext().VoidTy; 978 Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())), 979 getContext().VoidPtrTy); 980 } 981 } 982 // order is always the last parameter 983 Args.add(RValue::get(Order), 984 getContext().IntTy); 985 986 // PostOp is only needed for the atomic_*_fetch operations, and 987 // thus is only needed for and implemented in the 988 // UseOptimizedLibcall codepath. 989 assert(UseOptimizedLibcall || !PostOp); 990 991 RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); 992 // The value is returned directly from the libcall. 993 if (E->isCmpXChg()) 994 return Res; 995 996 // The value is returned directly for optimized libcalls but the expr 997 // provided an out-param. 998 if (UseOptimizedLibcall && Res.getScalarVal()) { 999 llvm::Value *ResVal = Res.getScalarVal(); 1000 if (PostOp) { 1001 llvm::Value *LoadVal1 = Args[1].RV.getScalarVal(); 1002 ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1); 1003 } 1004 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 1005 ResVal = Builder.CreateNot(ResVal); 1006 1007 Builder.CreateStore( 1008 ResVal, 1009 Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo())); 1010 } 1011 1012 if (RValTy->isVoidType()) 1013 return RValue::get(nullptr); 1014 1015 return convertTempToRValue( 1016 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1017 RValTy, E->getExprLoc()); 1018 } 1019 1020 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 1021 E->getOp() == AtomicExpr::AO__atomic_store || 1022 E->getOp() == AtomicExpr::AO__atomic_store_n; 1023 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 1024 E->getOp() == AtomicExpr::AO__atomic_load || 1025 E->getOp() == AtomicExpr::AO__atomic_load_n; 1026 1027 if (isa<llvm::ConstantInt>(Order)) { 1028 auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1029 // We should not ever get to a case where the ordering isn't a valid C ABI 1030 // value, but it's hard to enforce that in general. 1031 if (llvm::isValidAtomicOrderingCABI(ord)) 1032 switch ((llvm::AtomicOrderingCABI)ord) { 1033 case llvm::AtomicOrderingCABI::relaxed: 1034 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1035 llvm::AtomicOrdering::Monotonic); 1036 break; 1037 case llvm::AtomicOrderingCABI::consume: 1038 case llvm::AtomicOrderingCABI::acquire: 1039 if (IsStore) 1040 break; // Avoid crashing on code with undefined behavior 1041 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1042 llvm::AtomicOrdering::Acquire); 1043 break; 1044 case llvm::AtomicOrderingCABI::release: 1045 if (IsLoad) 1046 break; // Avoid crashing on code with undefined behavior 1047 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1048 llvm::AtomicOrdering::Release); 1049 break; 1050 case llvm::AtomicOrderingCABI::acq_rel: 1051 if (IsLoad || IsStore) 1052 break; // Avoid crashing on code with undefined behavior 1053 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1054 llvm::AtomicOrdering::AcquireRelease); 1055 break; 1056 case llvm::AtomicOrderingCABI::seq_cst: 1057 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1058 llvm::AtomicOrdering::SequentiallyConsistent); 1059 break; 1060 } 1061 if (RValTy->isVoidType()) 1062 return RValue::get(nullptr); 1063 1064 return convertTempToRValue( 1065 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1066 RValTy, E->getExprLoc()); 1067 } 1068 1069 // Long case, when Order isn't obviously constant. 1070 1071 // Create all the relevant BB's 1072 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 1073 *ReleaseBB = nullptr, *AcqRelBB = nullptr, 1074 *SeqCstBB = nullptr; 1075 MonotonicBB = createBasicBlock("monotonic", CurFn); 1076 if (!IsStore) 1077 AcquireBB = createBasicBlock("acquire", CurFn); 1078 if (!IsLoad) 1079 ReleaseBB = createBasicBlock("release", CurFn); 1080 if (!IsLoad && !IsStore) 1081 AcqRelBB = createBasicBlock("acqrel", CurFn); 1082 SeqCstBB = createBasicBlock("seqcst", CurFn); 1083 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1084 1085 // Create the switch for the split 1086 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 1087 // doesn't matter unless someone is crazy enough to use something that 1088 // doesn't fold to a constant for the ordering. 1089 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1090 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 1091 1092 // Emit all the different atomics 1093 Builder.SetInsertPoint(MonotonicBB); 1094 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1095 Size, llvm::AtomicOrdering::Monotonic); 1096 Builder.CreateBr(ContBB); 1097 if (!IsStore) { 1098 Builder.SetInsertPoint(AcquireBB); 1099 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1100 Size, llvm::AtomicOrdering::Acquire); 1101 Builder.CreateBr(ContBB); 1102 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 1103 AcquireBB); 1104 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 1105 AcquireBB); 1106 } 1107 if (!IsLoad) { 1108 Builder.SetInsertPoint(ReleaseBB); 1109 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1110 Size, llvm::AtomicOrdering::Release); 1111 Builder.CreateBr(ContBB); 1112 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release), 1113 ReleaseBB); 1114 } 1115 if (!IsLoad && !IsStore) { 1116 Builder.SetInsertPoint(AcqRelBB); 1117 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1118 Size, llvm::AtomicOrdering::AcquireRelease); 1119 Builder.CreateBr(ContBB); 1120 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel), 1121 AcqRelBB); 1122 } 1123 Builder.SetInsertPoint(SeqCstBB); 1124 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1125 Size, llvm::AtomicOrdering::SequentiallyConsistent); 1126 Builder.CreateBr(ContBB); 1127 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 1128 SeqCstBB); 1129 1130 // Cleanup and return 1131 Builder.SetInsertPoint(ContBB); 1132 if (RValTy->isVoidType()) 1133 return RValue::get(nullptr); 1134 1135 assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); 1136 return convertTempToRValue( 1137 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1138 RValTy, E->getExprLoc()); 1139 } 1140 1141 Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const { 1142 unsigned addrspace = 1143 cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace(); 1144 llvm::IntegerType *ty = 1145 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); 1146 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); 1147 } 1148 1149 Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { 1150 llvm::Type *Ty = Addr.getElementType(); 1151 uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); 1152 if (SourceSizeInBits != AtomicSizeInBits) { 1153 Address Tmp = CreateTempAlloca(); 1154 CGF.Builder.CreateMemCpy(Tmp, Addr, 1155 std::min(AtomicSizeInBits, SourceSizeInBits) / 8); 1156 Addr = Tmp; 1157 } 1158 1159 return emitCastToAtomicIntPointer(Addr); 1160 } 1161 1162 RValue AtomicInfo::convertAtomicTempToRValue(Address addr, 1163 AggValueSlot resultSlot, 1164 SourceLocation loc, 1165 bool asValue) const { 1166 if (LVal.isSimple()) { 1167 if (EvaluationKind == TEK_Aggregate) 1168 return resultSlot.asRValue(); 1169 1170 // Drill into the padding structure if we have one. 1171 if (hasPadding()) 1172 addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits()); 1173 1174 // Otherwise, just convert the temporary to an r-value using the 1175 // normal conversion routine. 1176 return CGF.convertTempToRValue(addr, getValueType(), loc); 1177 } 1178 if (!asValue) 1179 // Get RValue from temp memory as atomic for non-simple lvalues 1180 return RValue::get(CGF.Builder.CreateLoad(addr)); 1181 if (LVal.isBitField()) 1182 return CGF.EmitLoadOfBitfieldLValue( 1183 LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), 1184 LVal.getAlignmentSource())); 1185 if (LVal.isVectorElt()) 1186 return CGF.EmitLoadOfLValue( 1187 LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), 1188 LVal.getAlignmentSource()), loc); 1189 assert(LVal.isExtVectorElt()); 1190 return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( 1191 addr, LVal.getExtVectorElts(), LVal.getType(), 1192 LVal.getAlignmentSource())); 1193 } 1194 1195 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, 1196 AggValueSlot ResultSlot, 1197 SourceLocation Loc, 1198 bool AsValue) const { 1199 // Try not to in some easy cases. 1200 assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); 1201 if (getEvaluationKind() == TEK_Scalar && 1202 (((!LVal.isBitField() || 1203 LVal.getBitFieldInfo().Size == ValueSizeInBits) && 1204 !hasPadding()) || 1205 !AsValue)) { 1206 auto *ValTy = AsValue 1207 ? CGF.ConvertTypeForMem(ValueTy) 1208 : getAtomicAddress().getType()->getPointerElementType(); 1209 if (ValTy->isIntegerTy()) { 1210 assert(IntVal->getType() == ValTy && "Different integer types."); 1211 return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); 1212 } else if (ValTy->isPointerTy()) 1213 return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); 1214 else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) 1215 return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); 1216 } 1217 1218 // Create a temporary. This needs to be big enough to hold the 1219 // atomic integer. 1220 Address Temp = Address::invalid(); 1221 bool TempIsVolatile = false; 1222 if (AsValue && getEvaluationKind() == TEK_Aggregate) { 1223 assert(!ResultSlot.isIgnored()); 1224 Temp = ResultSlot.getAddress(); 1225 TempIsVolatile = ResultSlot.isVolatile(); 1226 } else { 1227 Temp = CreateTempAlloca(); 1228 } 1229 1230 // Slam the integer into the temporary. 1231 Address CastTemp = emitCastToAtomicIntPointer(Temp); 1232 CGF.Builder.CreateStore(IntVal, CastTemp) 1233 ->setVolatile(TempIsVolatile); 1234 1235 return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue); 1236 } 1237 1238 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 1239 llvm::AtomicOrdering AO, bool) { 1240 // void __atomic_load(size_t size, void *mem, void *return, int order); 1241 CallArgList Args; 1242 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1243 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1244 CGF.getContext().VoidPtrTy); 1245 Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)), 1246 CGF.getContext().VoidPtrTy); 1247 Args.add( 1248 RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))), 1249 CGF.getContext().IntTy); 1250 emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); 1251 } 1252 1253 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, 1254 bool IsVolatile) { 1255 // Okay, we're doing this natively. 1256 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1257 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); 1258 Load->setAtomic(AO); 1259 1260 // Other decoration. 1261 if (IsVolatile) 1262 Load->setVolatile(true); 1263 if (LVal.getTBAAInfo()) 1264 CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); 1265 return Load; 1266 } 1267 1268 /// An LValue is a candidate for having its loads and stores be made atomic if 1269 /// we are operating under /volatile:ms *and* the LValue itself is volatile and 1270 /// performing such an operation can be performed without a libcall. 1271 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { 1272 if (!CGM.getCodeGenOpts().MSVolatile) return false; 1273 AtomicInfo AI(*this, LV); 1274 bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); 1275 // An atomic is inline if we don't need to use a libcall. 1276 bool AtomicIsInline = !AI.shouldUseLibcall(); 1277 return IsVolatile && AtomicIsInline; 1278 } 1279 1280 /// An type is a candidate for having its loads and stores be made atomic if 1281 /// we are operating under /volatile:ms *and* we know the access is volatile and 1282 /// performing such an operation can be performed without a libcall. 1283 bool CodeGenFunction::typeIsSuitableForInlineAtomic(QualType Ty, 1284 bool IsVolatile) const { 1285 // The operation must be volatile for us to make it atomic. 1286 if (!IsVolatile) 1287 return false; 1288 // The -fms-volatile flag must be passed for us to adopt this behavior. 1289 if (!CGM.getCodeGenOpts().MSVolatile) 1290 return false; 1291 1292 // An atomic is inline if we don't need to use a libcall (e.g. it is builtin). 1293 if (!getContext().getTargetInfo().hasBuiltinAtomic( 1294 getContext().getTypeSize(Ty), getContext().getTypeAlign(Ty))) 1295 return false; 1296 1297 // MSVC doesn't seem to do this for types wider than a pointer. 1298 if (getContext().getTypeSize(Ty) > 1299 getContext().getTypeSize(getContext().getIntPtrType())) 1300 return false; 1301 return true; 1302 } 1303 1304 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, 1305 AggValueSlot Slot) { 1306 llvm::AtomicOrdering AO; 1307 bool IsVolatile = LV.isVolatileQualified(); 1308 if (LV.getType()->isAtomicType()) { 1309 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1310 } else { 1311 AO = llvm::AtomicOrdering::Acquire; 1312 IsVolatile = true; 1313 } 1314 return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); 1315 } 1316 1317 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 1318 bool AsValue, llvm::AtomicOrdering AO, 1319 bool IsVolatile) { 1320 // Check whether we should use a library call. 1321 if (shouldUseLibcall()) { 1322 Address TempAddr = Address::invalid(); 1323 if (LVal.isSimple() && !ResultSlot.isIgnored()) { 1324 assert(getEvaluationKind() == TEK_Aggregate); 1325 TempAddr = ResultSlot.getAddress(); 1326 } else 1327 TempAddr = CreateTempAlloca(); 1328 1329 EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile); 1330 1331 // Okay, turn that back into the original value or whole atomic (for 1332 // non-simple lvalues) type. 1333 return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue); 1334 } 1335 1336 // Okay, we're doing this natively. 1337 auto *Load = EmitAtomicLoadOp(AO, IsVolatile); 1338 1339 // If we're ignoring an aggregate return, don't do anything. 1340 if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) 1341 return RValue::getAggregate(Address::invalid(), false); 1342 1343 // Okay, turn that back into the original value or atomic (for non-simple 1344 // lvalues) type. 1345 return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); 1346 } 1347 1348 /// Emit a load from an l-value of atomic type. Note that the r-value 1349 /// we produce is an r-value of the atomic *value* type. 1350 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, 1351 llvm::AtomicOrdering AO, bool IsVolatile, 1352 AggValueSlot resultSlot) { 1353 AtomicInfo Atomics(*this, src); 1354 return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, 1355 IsVolatile); 1356 } 1357 1358 /// Copy an r-value into memory as part of storing to an atomic type. 1359 /// This needs to create a bit-pattern suitable for atomic operations. 1360 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { 1361 assert(LVal.isSimple()); 1362 // If we have an r-value, the rvalue should be of the atomic type, 1363 // which means that the caller is responsible for having zeroed 1364 // any padding. Just do an aggregate copy of that type. 1365 if (rvalue.isAggregate()) { 1366 CGF.EmitAggregateCopy(getAtomicAddress(), 1367 rvalue.getAggregateAddress(), 1368 getAtomicType(), 1369 (rvalue.isVolatileQualified() 1370 || LVal.isVolatileQualified())); 1371 return; 1372 } 1373 1374 // Okay, otherwise we're copying stuff. 1375 1376 // Zero out the buffer if necessary. 1377 emitMemSetZeroIfNecessary(); 1378 1379 // Drill past the padding if present. 1380 LValue TempLVal = projectValue(); 1381 1382 // Okay, store the rvalue in. 1383 if (rvalue.isScalar()) { 1384 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); 1385 } else { 1386 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); 1387 } 1388 } 1389 1390 1391 /// Materialize an r-value into memory for the purposes of storing it 1392 /// to an atomic type. 1393 Address AtomicInfo::materializeRValue(RValue rvalue) const { 1394 // Aggregate r-values are already in memory, and EmitAtomicStore 1395 // requires them to be values of the atomic type. 1396 if (rvalue.isAggregate()) 1397 return rvalue.getAggregateAddress(); 1398 1399 // Otherwise, make a temporary and materialize into it. 1400 LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType()); 1401 AtomicInfo Atomics(CGF, TempLV); 1402 Atomics.emitCopyIntoMemory(rvalue); 1403 return TempLV.getAddress(); 1404 } 1405 1406 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { 1407 // If we've got a scalar value of the right size, try to avoid going 1408 // through memory. 1409 if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { 1410 llvm::Value *Value = RVal.getScalarVal(); 1411 if (isa<llvm::IntegerType>(Value->getType())) 1412 return CGF.EmitToMemory(Value, ValueTy); 1413 else { 1414 llvm::IntegerType *InputIntTy = llvm::IntegerType::get( 1415 CGF.getLLVMContext(), 1416 LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); 1417 if (isa<llvm::PointerType>(Value->getType())) 1418 return CGF.Builder.CreatePtrToInt(Value, InputIntTy); 1419 else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) 1420 return CGF.Builder.CreateBitCast(Value, InputIntTy); 1421 } 1422 } 1423 // Otherwise, we need to go through memory. 1424 // Put the r-value in memory. 1425 Address Addr = materializeRValue(RVal); 1426 1427 // Cast the temporary to the atomic int type and pull a value out. 1428 Addr = emitCastToAtomicIntPointer(Addr); 1429 return CGF.Builder.CreateLoad(Addr); 1430 } 1431 1432 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( 1433 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 1434 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { 1435 // Do the atomic store. 1436 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1437 auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(), 1438 ExpectedVal, DesiredVal, 1439 Success, Failure); 1440 // Other decoration. 1441 Inst->setVolatile(LVal.isVolatileQualified()); 1442 Inst->setWeak(IsWeak); 1443 1444 // Okay, turn that back into the original value type. 1445 auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); 1446 auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); 1447 return std::make_pair(PreviousVal, SuccessFailureVal); 1448 } 1449 1450 llvm::Value * 1451 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, 1452 llvm::Value *DesiredAddr, 1453 llvm::AtomicOrdering Success, 1454 llvm::AtomicOrdering Failure) { 1455 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 1456 // void *desired, int success, int failure); 1457 CallArgList Args; 1458 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1459 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1460 CGF.getContext().VoidPtrTy); 1461 Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)), 1462 CGF.getContext().VoidPtrTy); 1463 Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)), 1464 CGF.getContext().VoidPtrTy); 1465 Args.add(RValue::get( 1466 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))), 1467 CGF.getContext().IntTy); 1468 Args.add(RValue::get( 1469 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))), 1470 CGF.getContext().IntTy); 1471 auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", 1472 CGF.getContext().BoolTy, Args); 1473 1474 return SuccessFailureRVal.getScalarVal(); 1475 } 1476 1477 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( 1478 RValue Expected, RValue Desired, llvm::AtomicOrdering Success, 1479 llvm::AtomicOrdering Failure, bool IsWeak) { 1480 if (isStrongerThan(Failure, Success)) 1481 // Don't assert on undefined behavior "failure argument shall be no stronger 1482 // than the success argument". 1483 Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success); 1484 1485 // Check whether we should use a library call. 1486 if (shouldUseLibcall()) { 1487 // Produce a source address. 1488 Address ExpectedAddr = materializeRValue(Expected); 1489 Address DesiredAddr = materializeRValue(Desired); 1490 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1491 DesiredAddr.getPointer(), 1492 Success, Failure); 1493 return std::make_pair( 1494 convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(), 1495 SourceLocation(), /*AsValue=*/false), 1496 Res); 1497 } 1498 1499 // If we've got a scalar value of the right size, try to avoid going 1500 // through memory. 1501 auto *ExpectedVal = convertRValueToInt(Expected); 1502 auto *DesiredVal = convertRValueToInt(Desired); 1503 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, 1504 Failure, IsWeak); 1505 return std::make_pair( 1506 ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), 1507 SourceLocation(), /*AsValue=*/false), 1508 Res.second); 1509 } 1510 1511 static void 1512 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, 1513 const llvm::function_ref<RValue(RValue)> &UpdateOp, 1514 Address DesiredAddr) { 1515 RValue UpRVal; 1516 LValue AtomicLVal = Atomics.getAtomicLValue(); 1517 LValue DesiredLVal; 1518 if (AtomicLVal.isSimple()) { 1519 UpRVal = OldRVal; 1520 DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType()); 1521 } else { 1522 // Build new lvalue for temp address 1523 Address Ptr = Atomics.materializeRValue(OldRVal); 1524 LValue UpdateLVal; 1525 if (AtomicLVal.isBitField()) { 1526 UpdateLVal = 1527 LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), 1528 AtomicLVal.getType(), 1529 AtomicLVal.getAlignmentSource()); 1530 DesiredLVal = 1531 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1532 AtomicLVal.getType(), 1533 AtomicLVal.getAlignmentSource()); 1534 } else if (AtomicLVal.isVectorElt()) { 1535 UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), 1536 AtomicLVal.getType(), 1537 AtomicLVal.getAlignmentSource()); 1538 DesiredLVal = LValue::MakeVectorElt( 1539 DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), 1540 AtomicLVal.getAlignmentSource()); 1541 } else { 1542 assert(AtomicLVal.isExtVectorElt()); 1543 UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), 1544 AtomicLVal.getType(), 1545 AtomicLVal.getAlignmentSource()); 1546 DesiredLVal = LValue::MakeExtVectorElt( 1547 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1548 AtomicLVal.getAlignmentSource()); 1549 } 1550 UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1551 DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1552 UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); 1553 } 1554 // Store new value in the corresponding memory area 1555 RValue NewRVal = UpdateOp(UpRVal); 1556 if (NewRVal.isScalar()) { 1557 CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); 1558 } else { 1559 assert(NewRVal.isComplex()); 1560 CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, 1561 /*isInit=*/false); 1562 } 1563 } 1564 1565 void AtomicInfo::EmitAtomicUpdateLibcall( 1566 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1567 bool IsVolatile) { 1568 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1569 1570 Address ExpectedAddr = CreateTempAlloca(); 1571 1572 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1573 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1574 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1575 CGF.EmitBlock(ContBB); 1576 Address DesiredAddr = CreateTempAlloca(); 1577 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1578 requiresMemSetZero(getAtomicAddress().getElementType())) { 1579 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1580 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1581 } 1582 auto OldRVal = convertAtomicTempToRValue(ExpectedAddr, 1583 AggValueSlot::ignored(), 1584 SourceLocation(), /*AsValue=*/false); 1585 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); 1586 auto *Res = 1587 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1588 DesiredAddr.getPointer(), 1589 AO, Failure); 1590 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1591 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1592 } 1593 1594 void AtomicInfo::EmitAtomicUpdateOp( 1595 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1596 bool IsVolatile) { 1597 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1598 1599 // Do the atomic load. 1600 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1601 // For non-simple lvalues perform compare-and-swap procedure. 1602 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1603 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1604 auto *CurBB = CGF.Builder.GetInsertBlock(); 1605 CGF.EmitBlock(ContBB); 1606 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1607 /*NumReservedValues=*/2); 1608 PHI->addIncoming(OldVal, CurBB); 1609 Address NewAtomicAddr = CreateTempAlloca(); 1610 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1611 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1612 requiresMemSetZero(getAtomicAddress().getElementType())) { 1613 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1614 } 1615 auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), 1616 SourceLocation(), /*AsValue=*/false); 1617 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); 1618 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1619 // Try to write new value using cmpxchg operation 1620 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1621 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1622 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1623 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1624 } 1625 1626 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, 1627 RValue UpdateRVal, Address DesiredAddr) { 1628 LValue AtomicLVal = Atomics.getAtomicLValue(); 1629 LValue DesiredLVal; 1630 // Build new lvalue for temp address 1631 if (AtomicLVal.isBitField()) { 1632 DesiredLVal = 1633 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1634 AtomicLVal.getType(), 1635 AtomicLVal.getAlignmentSource()); 1636 } else if (AtomicLVal.isVectorElt()) { 1637 DesiredLVal = 1638 LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), 1639 AtomicLVal.getType(), 1640 AtomicLVal.getAlignmentSource()); 1641 } else { 1642 assert(AtomicLVal.isExtVectorElt()); 1643 DesiredLVal = LValue::MakeExtVectorElt( 1644 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1645 AtomicLVal.getAlignmentSource()); 1646 } 1647 DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1648 // Store new value in the corresponding memory area 1649 assert(UpdateRVal.isScalar()); 1650 CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); 1651 } 1652 1653 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 1654 RValue UpdateRVal, bool IsVolatile) { 1655 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1656 1657 Address ExpectedAddr = CreateTempAlloca(); 1658 1659 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1660 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1661 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1662 CGF.EmitBlock(ContBB); 1663 Address DesiredAddr = CreateTempAlloca(); 1664 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1665 requiresMemSetZero(getAtomicAddress().getElementType())) { 1666 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1667 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1668 } 1669 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); 1670 auto *Res = 1671 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1672 DesiredAddr.getPointer(), 1673 AO, Failure); 1674 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1675 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1676 } 1677 1678 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, 1679 bool IsVolatile) { 1680 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1681 1682 // Do the atomic load. 1683 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1684 // For non-simple lvalues perform compare-and-swap procedure. 1685 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1686 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1687 auto *CurBB = CGF.Builder.GetInsertBlock(); 1688 CGF.EmitBlock(ContBB); 1689 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1690 /*NumReservedValues=*/2); 1691 PHI->addIncoming(OldVal, CurBB); 1692 Address NewAtomicAddr = CreateTempAlloca(); 1693 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1694 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1695 requiresMemSetZero(getAtomicAddress().getElementType())) { 1696 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1697 } 1698 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); 1699 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1700 // Try to write new value using cmpxchg operation 1701 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1702 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1703 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1704 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1705 } 1706 1707 void AtomicInfo::EmitAtomicUpdate( 1708 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1709 bool IsVolatile) { 1710 if (shouldUseLibcall()) { 1711 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); 1712 } else { 1713 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); 1714 } 1715 } 1716 1717 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 1718 bool IsVolatile) { 1719 if (shouldUseLibcall()) { 1720 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); 1721 } else { 1722 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); 1723 } 1724 } 1725 1726 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, 1727 bool isInit) { 1728 bool IsVolatile = lvalue.isVolatileQualified(); 1729 llvm::AtomicOrdering AO; 1730 if (lvalue.getType()->isAtomicType()) { 1731 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1732 } else { 1733 AO = llvm::AtomicOrdering::Release; 1734 IsVolatile = true; 1735 } 1736 return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); 1737 } 1738 1739 /// Emit a store to an l-value of atomic type. 1740 /// 1741 /// Note that the r-value is expected to be an r-value *of the atomic 1742 /// type*; this means that for aggregate r-values, it should include 1743 /// storage for any padding that was necessary. 1744 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, 1745 llvm::AtomicOrdering AO, bool IsVolatile, 1746 bool isInit) { 1747 // If this is an aggregate r-value, it should agree in type except 1748 // maybe for address-space qualification. 1749 assert(!rvalue.isAggregate() || 1750 rvalue.getAggregateAddress().getElementType() 1751 == dest.getAddress().getElementType()); 1752 1753 AtomicInfo atomics(*this, dest); 1754 LValue LVal = atomics.getAtomicLValue(); 1755 1756 // If this is an initialization, just put the value there normally. 1757 if (LVal.isSimple()) { 1758 if (isInit) { 1759 atomics.emitCopyIntoMemory(rvalue); 1760 return; 1761 } 1762 1763 // Check whether we should use a library call. 1764 if (atomics.shouldUseLibcall()) { 1765 // Produce a source address. 1766 Address srcAddr = atomics.materializeRValue(rvalue); 1767 1768 // void __atomic_store(size_t size, void *mem, void *val, int order) 1769 CallArgList args; 1770 args.add(RValue::get(atomics.getAtomicSizeValue()), 1771 getContext().getSizeType()); 1772 args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())), 1773 getContext().VoidPtrTy); 1774 args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())), 1775 getContext().VoidPtrTy); 1776 args.add( 1777 RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))), 1778 getContext().IntTy); 1779 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); 1780 return; 1781 } 1782 1783 // Okay, we're doing this natively. 1784 llvm::Value *intValue = atomics.convertRValueToInt(rvalue); 1785 1786 // Do the atomic store. 1787 Address addr = 1788 atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress()); 1789 intValue = Builder.CreateIntCast( 1790 intValue, addr.getElementType(), /*isSigned=*/false); 1791 llvm::StoreInst *store = Builder.CreateStore(intValue, addr); 1792 1793 // Initializations don't need to be atomic. 1794 if (!isInit) 1795 store->setAtomic(AO); 1796 1797 // Other decoration. 1798 if (IsVolatile) 1799 store->setVolatile(true); 1800 if (dest.getTBAAInfo()) 1801 CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo()); 1802 return; 1803 } 1804 1805 // Emit simple atomic update operation. 1806 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); 1807 } 1808 1809 /// Emit a compare-and-exchange op for atomic type. 1810 /// 1811 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( 1812 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 1813 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, 1814 AggValueSlot Slot) { 1815 // If this is an aggregate r-value, it should agree in type except 1816 // maybe for address-space qualification. 1817 assert(!Expected.isAggregate() || 1818 Expected.getAggregateAddress().getElementType() == 1819 Obj.getAddress().getElementType()); 1820 assert(!Desired.isAggregate() || 1821 Desired.getAggregateAddress().getElementType() == 1822 Obj.getAddress().getElementType()); 1823 AtomicInfo Atomics(*this, Obj); 1824 1825 return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, 1826 IsWeak); 1827 } 1828 1829 void CodeGenFunction::EmitAtomicUpdate( 1830 LValue LVal, llvm::AtomicOrdering AO, 1831 const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { 1832 AtomicInfo Atomics(*this, LVal); 1833 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); 1834 } 1835 1836 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { 1837 AtomicInfo atomics(*this, dest); 1838 1839 switch (atomics.getEvaluationKind()) { 1840 case TEK_Scalar: { 1841 llvm::Value *value = EmitScalarExpr(init); 1842 atomics.emitCopyIntoMemory(RValue::get(value)); 1843 return; 1844 } 1845 1846 case TEK_Complex: { 1847 ComplexPairTy value = EmitComplexExpr(init); 1848 atomics.emitCopyIntoMemory(RValue::getComplex(value)); 1849 return; 1850 } 1851 1852 case TEK_Aggregate: { 1853 // Fix up the destination if the initializer isn't an expression 1854 // of atomic type. 1855 bool Zeroed = false; 1856 if (!init->getType()->isAtomicType()) { 1857 Zeroed = atomics.emitMemSetZeroIfNecessary(); 1858 dest = atomics.projectValue(); 1859 } 1860 1861 // Evaluate the expression directly into the destination. 1862 AggValueSlot slot = AggValueSlot::forLValue(dest, 1863 AggValueSlot::IsNotDestructed, 1864 AggValueSlot::DoesNotNeedGCBarriers, 1865 AggValueSlot::IsNotAliased, 1866 Zeroed ? AggValueSlot::IsZeroed : 1867 AggValueSlot::IsNotZeroed); 1868 1869 EmitAggExpr(init, slot); 1870 return; 1871 } 1872 } 1873 llvm_unreachable("bad evaluation kind"); 1874 } 1875