1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the code for emitting atomic operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Operator.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 namespace { 30 class AtomicInfo { 31 CodeGenFunction &CGF; 32 QualType AtomicTy; 33 QualType ValueTy; 34 uint64_t AtomicSizeInBits; 35 uint64_t ValueSizeInBits; 36 CharUnits AtomicAlign; 37 CharUnits ValueAlign; 38 CharUnits LValueAlign; 39 TypeEvaluationKind EvaluationKind; 40 bool UseLibcall; 41 LValue LVal; 42 CGBitFieldInfo BFI; 43 public: 44 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) 45 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), 46 EvaluationKind(TEK_Scalar), UseLibcall(true) { 47 assert(!lvalue.isGlobalReg()); 48 ASTContext &C = CGF.getContext(); 49 if (lvalue.isSimple()) { 50 AtomicTy = lvalue.getType(); 51 if (auto *ATy = AtomicTy->getAs<AtomicType>()) 52 ValueTy = ATy->getValueType(); 53 else 54 ValueTy = AtomicTy; 55 EvaluationKind = CGF.getEvaluationKind(ValueTy); 56 57 uint64_t ValueAlignInBits; 58 uint64_t AtomicAlignInBits; 59 TypeInfo ValueTI = C.getTypeInfo(ValueTy); 60 ValueSizeInBits = ValueTI.Width; 61 ValueAlignInBits = ValueTI.Align; 62 63 TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); 64 AtomicSizeInBits = AtomicTI.Width; 65 AtomicAlignInBits = AtomicTI.Align; 66 67 assert(ValueSizeInBits <= AtomicSizeInBits); 68 assert(ValueAlignInBits <= AtomicAlignInBits); 69 70 AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); 71 ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); 72 if (lvalue.getAlignment().isZero()) 73 lvalue.setAlignment(AtomicAlign); 74 75 LVal = lvalue; 76 } else if (lvalue.isBitField()) { 77 ValueTy = lvalue.getType(); 78 ValueSizeInBits = C.getTypeSize(ValueTy); 79 auto &OrigBFI = lvalue.getBitFieldInfo(); 80 auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); 81 AtomicSizeInBits = C.toBits( 82 C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) 83 .alignTo(lvalue.getAlignment())); 84 auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer()); 85 auto OffsetInChars = 86 (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * 87 lvalue.getAlignment(); 88 VoidPtrAddr = CGF.Builder.CreateConstGEP1_64( 89 VoidPtrAddr, OffsetInChars.getQuantity()); 90 auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 91 VoidPtrAddr, 92 CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(), 93 "atomic_bitfield_base"); 94 BFI = OrigBFI; 95 BFI.Offset = Offset; 96 BFI.StorageSize = AtomicSizeInBits; 97 BFI.StorageOffset += OffsetInChars; 98 LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()), 99 BFI, lvalue.getType(), 100 lvalue.getBaseInfo()); 101 LVal.setTBAAInfo(lvalue.getTBAAInfo()); 102 AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); 103 if (AtomicTy.isNull()) { 104 llvm::APInt Size( 105 /*numBits=*/32, 106 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); 107 AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal, 108 /*IndexTypeQuals=*/0); 109 } 110 AtomicAlign = ValueAlign = lvalue.getAlignment(); 111 } else if (lvalue.isVectorElt()) { 112 ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType(); 113 ValueSizeInBits = C.getTypeSize(ValueTy); 114 AtomicTy = lvalue.getType(); 115 AtomicSizeInBits = C.getTypeSize(AtomicTy); 116 AtomicAlign = ValueAlign = lvalue.getAlignment(); 117 LVal = lvalue; 118 } else { 119 assert(lvalue.isExtVectorElt()); 120 ValueTy = lvalue.getType(); 121 ValueSizeInBits = C.getTypeSize(ValueTy); 122 AtomicTy = ValueTy = CGF.getContext().getExtVectorType( 123 lvalue.getType(), lvalue.getExtVectorAddress() 124 .getElementType()->getVectorNumElements()); 125 AtomicSizeInBits = C.getTypeSize(AtomicTy); 126 AtomicAlign = ValueAlign = lvalue.getAlignment(); 127 LVal = lvalue; 128 } 129 UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( 130 AtomicSizeInBits, C.toBits(lvalue.getAlignment())); 131 } 132 133 QualType getAtomicType() const { return AtomicTy; } 134 QualType getValueType() const { return ValueTy; } 135 CharUnits getAtomicAlignment() const { return AtomicAlign; } 136 CharUnits getValueAlignment() const { return ValueAlign; } 137 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } 138 uint64_t getValueSizeInBits() const { return ValueSizeInBits; } 139 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } 140 bool shouldUseLibcall() const { return UseLibcall; } 141 const LValue &getAtomicLValue() const { return LVal; } 142 llvm::Value *getAtomicPointer() const { 143 if (LVal.isSimple()) 144 return LVal.getPointer(); 145 else if (LVal.isBitField()) 146 return LVal.getBitFieldPointer(); 147 else if (LVal.isVectorElt()) 148 return LVal.getVectorPointer(); 149 assert(LVal.isExtVectorElt()); 150 return LVal.getExtVectorPointer(); 151 } 152 Address getAtomicAddress() const { 153 return Address(getAtomicPointer(), getAtomicAlignment()); 154 } 155 156 Address getAtomicAddressAsAtomicIntPointer() const { 157 return emitCastToAtomicIntPointer(getAtomicAddress()); 158 } 159 160 /// Is the atomic size larger than the underlying value type? 161 /// 162 /// Note that the absence of padding does not mean that atomic 163 /// objects are completely interchangeable with non-atomic 164 /// objects: we might have promoted the alignment of a type 165 /// without making it bigger. 166 bool hasPadding() const { 167 return (ValueSizeInBits != AtomicSizeInBits); 168 } 169 170 bool emitMemSetZeroIfNecessary() const; 171 172 llvm::Value *getAtomicSizeValue() const { 173 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); 174 return CGF.CGM.getSize(size); 175 } 176 177 /// Cast the given pointer to an integer pointer suitable for atomic 178 /// operations if the source. 179 Address emitCastToAtomicIntPointer(Address Addr) const; 180 181 /// If Addr is compatible with the iN that will be used for an atomic 182 /// operation, bitcast it. Otherwise, create a temporary that is suitable 183 /// and copy the value across. 184 Address convertToAtomicIntPointer(Address Addr) const; 185 186 /// Turn an atomic-layout object into an r-value. 187 RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, 188 SourceLocation loc, bool AsValue) const; 189 190 /// \brief Converts a rvalue to integer value. 191 llvm::Value *convertRValueToInt(RValue RVal) const; 192 193 RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, 194 AggValueSlot ResultSlot, 195 SourceLocation Loc, bool AsValue) const; 196 197 /// Copy an atomic r-value into atomic-layout memory. 198 void emitCopyIntoMemory(RValue rvalue) const; 199 200 /// Project an l-value down to the value field. 201 LValue projectValue() const { 202 assert(LVal.isSimple()); 203 Address addr = getAtomicAddress(); 204 if (hasPadding()) 205 addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits()); 206 207 return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), 208 LVal.getBaseInfo(), LVal.getTBAAInfo()); 209 } 210 211 /// \brief Emits atomic load. 212 /// \returns Loaded value. 213 RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 214 bool AsValue, llvm::AtomicOrdering AO, 215 bool IsVolatile); 216 217 /// \brief Emits atomic compare-and-exchange sequence. 218 /// \param Expected Expected value. 219 /// \param Desired Desired value. 220 /// \param Success Atomic ordering for success operation. 221 /// \param Failure Atomic ordering for failed operation. 222 /// \param IsWeak true if atomic operation is weak, false otherwise. 223 /// \returns Pair of values: previous value from storage (value type) and 224 /// boolean flag (i1 type) with true if success and false otherwise. 225 std::pair<RValue, llvm::Value *> 226 EmitAtomicCompareExchange(RValue Expected, RValue Desired, 227 llvm::AtomicOrdering Success = 228 llvm::AtomicOrdering::SequentiallyConsistent, 229 llvm::AtomicOrdering Failure = 230 llvm::AtomicOrdering::SequentiallyConsistent, 231 bool IsWeak = false); 232 233 /// \brief Emits atomic update. 234 /// \param AO Atomic ordering. 235 /// \param UpdateOp Update operation for the current lvalue. 236 void EmitAtomicUpdate(llvm::AtomicOrdering AO, 237 const llvm::function_ref<RValue(RValue)> &UpdateOp, 238 bool IsVolatile); 239 /// \brief Emits atomic update. 240 /// \param AO Atomic ordering. 241 void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 242 bool IsVolatile); 243 244 /// Materialize an atomic r-value in atomic-layout memory. 245 Address materializeRValue(RValue rvalue) const; 246 247 /// \brief Creates temp alloca for intermediate operations on atomic value. 248 Address CreateTempAlloca() const; 249 private: 250 bool requiresMemSetZero(llvm::Type *type) const; 251 252 253 /// \brief Emits atomic load as a libcall. 254 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 255 llvm::AtomicOrdering AO, bool IsVolatile); 256 /// \brief Emits atomic load as LLVM instruction. 257 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); 258 /// \brief Emits atomic compare-and-exchange op as a libcall. 259 llvm::Value *EmitAtomicCompareExchangeLibcall( 260 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, 261 llvm::AtomicOrdering Success = 262 llvm::AtomicOrdering::SequentiallyConsistent, 263 llvm::AtomicOrdering Failure = 264 llvm::AtomicOrdering::SequentiallyConsistent); 265 /// \brief Emits atomic compare-and-exchange op as LLVM instruction. 266 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( 267 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 268 llvm::AtomicOrdering Success = 269 llvm::AtomicOrdering::SequentiallyConsistent, 270 llvm::AtomicOrdering Failure = 271 llvm::AtomicOrdering::SequentiallyConsistent, 272 bool IsWeak = false); 273 /// \brief Emit atomic update as libcalls. 274 void 275 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 276 const llvm::function_ref<RValue(RValue)> &UpdateOp, 277 bool IsVolatile); 278 /// \brief Emit atomic update as LLVM instructions. 279 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, 280 const llvm::function_ref<RValue(RValue)> &UpdateOp, 281 bool IsVolatile); 282 /// \brief Emit atomic update as libcalls. 283 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, 284 bool IsVolatile); 285 /// \brief Emit atomic update as LLVM instructions. 286 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, 287 bool IsVolatile); 288 }; 289 } 290 291 Address AtomicInfo::CreateTempAlloca() const { 292 Address TempAlloca = CGF.CreateMemTemp( 293 (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy 294 : AtomicTy, 295 getAtomicAlignment(), 296 "atomic-temp"); 297 // Cast to pointer to value type for bitfields. 298 if (LVal.isBitField()) 299 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 300 TempAlloca, getAtomicAddress().getType()); 301 return TempAlloca; 302 } 303 304 static RValue emitAtomicLibcall(CodeGenFunction &CGF, 305 StringRef fnName, 306 QualType resultType, 307 CallArgList &args) { 308 const CGFunctionInfo &fnInfo = 309 CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); 310 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); 311 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); 312 auto callee = CGCallee::forDirect(fn); 313 return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args); 314 } 315 316 /// Does a store of the given IR type modify the full expected width? 317 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, 318 uint64_t expectedSize) { 319 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); 320 } 321 322 /// Does the atomic type require memsetting to zero before initialization? 323 /// 324 /// The IR type is provided as a way of making certain queries faster. 325 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { 326 // If the atomic type has size padding, we definitely need a memset. 327 if (hasPadding()) return true; 328 329 // Otherwise, do some simple heuristics to try to avoid it: 330 switch (getEvaluationKind()) { 331 // For scalars and complexes, check whether the store size of the 332 // type uses the full size. 333 case TEK_Scalar: 334 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); 335 case TEK_Complex: 336 return !isFullSizeType(CGF.CGM, type->getStructElementType(0), 337 AtomicSizeInBits / 2); 338 339 // Padding in structs has an undefined bit pattern. User beware. 340 case TEK_Aggregate: 341 return false; 342 } 343 llvm_unreachable("bad evaluation kind"); 344 } 345 346 bool AtomicInfo::emitMemSetZeroIfNecessary() const { 347 assert(LVal.isSimple()); 348 llvm::Value *addr = LVal.getPointer(); 349 if (!requiresMemSetZero(addr->getType()->getPointerElementType())) 350 return false; 351 352 CGF.Builder.CreateMemSet( 353 addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), 354 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), 355 LVal.getAlignment().getQuantity()); 356 return true; 357 } 358 359 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, 360 Address Dest, Address Ptr, 361 Address Val1, Address Val2, 362 uint64_t Size, 363 llvm::AtomicOrdering SuccessOrder, 364 llvm::AtomicOrdering FailureOrder, 365 llvm::SyncScope::ID Scope) { 366 // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. 367 llvm::Value *Expected = CGF.Builder.CreateLoad(Val1); 368 llvm::Value *Desired = CGF.Builder.CreateLoad(Val2); 369 370 llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( 371 Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder, 372 Scope); 373 Pair->setVolatile(E->isVolatile()); 374 Pair->setWeak(IsWeak); 375 376 // Cmp holds the result of the compare-exchange operation: true on success, 377 // false on failure. 378 llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); 379 llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); 380 381 // This basic block is used to hold the store instruction if the operation 382 // failed. 383 llvm::BasicBlock *StoreExpectedBB = 384 CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); 385 386 // This basic block is the exit point of the operation, we should end up 387 // here regardless of whether or not the operation succeeded. 388 llvm::BasicBlock *ContinueBB = 389 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 390 391 // Update Expected if Expected isn't equal to Old, otherwise branch to the 392 // exit point. 393 CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); 394 395 CGF.Builder.SetInsertPoint(StoreExpectedBB); 396 // Update the memory at Expected with Old's value. 397 CGF.Builder.CreateStore(Old, Val1); 398 // Finally, branch to the exit point. 399 CGF.Builder.CreateBr(ContinueBB); 400 401 CGF.Builder.SetInsertPoint(ContinueBB); 402 // Update the memory at Dest with Cmp's value. 403 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 404 } 405 406 /// Given an ordering required on success, emit all possible cmpxchg 407 /// instructions to cope with the provided (but possibly only dynamically known) 408 /// FailureOrder. 409 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, 410 bool IsWeak, Address Dest, Address Ptr, 411 Address Val1, Address Val2, 412 llvm::Value *FailureOrderVal, 413 uint64_t Size, 414 llvm::AtomicOrdering SuccessOrder, 415 llvm::SyncScope::ID Scope) { 416 llvm::AtomicOrdering FailureOrder; 417 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { 418 auto FOS = FO->getSExtValue(); 419 if (!llvm::isValidAtomicOrderingCABI(FOS)) 420 FailureOrder = llvm::AtomicOrdering::Monotonic; 421 else 422 switch ((llvm::AtomicOrderingCABI)FOS) { 423 case llvm::AtomicOrderingCABI::relaxed: 424 case llvm::AtomicOrderingCABI::release: 425 case llvm::AtomicOrderingCABI::acq_rel: 426 FailureOrder = llvm::AtomicOrdering::Monotonic; 427 break; 428 case llvm::AtomicOrderingCABI::consume: 429 case llvm::AtomicOrderingCABI::acquire: 430 FailureOrder = llvm::AtomicOrdering::Acquire; 431 break; 432 case llvm::AtomicOrderingCABI::seq_cst: 433 FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; 434 break; 435 } 436 if (isStrongerThan(FailureOrder, SuccessOrder)) { 437 // Don't assert on undefined behavior "failure argument shall be no 438 // stronger than the success argument". 439 FailureOrder = 440 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder); 441 } 442 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 443 FailureOrder, Scope); 444 return; 445 } 446 447 // Create all the relevant BB's 448 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 449 *SeqCstBB = nullptr; 450 MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); 451 if (SuccessOrder != llvm::AtomicOrdering::Monotonic && 452 SuccessOrder != llvm::AtomicOrdering::Release) 453 AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); 454 if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent) 455 SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); 456 457 llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); 458 459 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); 460 461 // Emit all the different atomics 462 463 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 464 // doesn't matter unless someone is crazy enough to use something that 465 // doesn't fold to a constant for the ordering. 466 CGF.Builder.SetInsertPoint(MonotonicBB); 467 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 468 Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope); 469 CGF.Builder.CreateBr(ContBB); 470 471 if (AcquireBB) { 472 CGF.Builder.SetInsertPoint(AcquireBB); 473 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 474 Size, SuccessOrder, llvm::AtomicOrdering::Acquire, Scope); 475 CGF.Builder.CreateBr(ContBB); 476 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 477 AcquireBB); 478 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 479 AcquireBB); 480 } 481 if (SeqCstBB) { 482 CGF.Builder.SetInsertPoint(SeqCstBB); 483 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 484 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 485 CGF.Builder.CreateBr(ContBB); 486 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 487 SeqCstBB); 488 } 489 490 CGF.Builder.SetInsertPoint(ContBB); 491 } 492 493 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, 494 Address Ptr, Address Val1, Address Val2, 495 llvm::Value *IsWeak, llvm::Value *FailureOrder, 496 uint64_t Size, llvm::AtomicOrdering Order, 497 llvm::SyncScope::ID Scope) { 498 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 499 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 500 501 switch (E->getOp()) { 502 case AtomicExpr::AO__c11_atomic_init: 503 case AtomicExpr::AO__opencl_atomic_init: 504 llvm_unreachable("Already handled!"); 505 506 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 507 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 508 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 509 FailureOrder, Size, Order, Scope); 510 return; 511 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 512 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 513 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 514 FailureOrder, Size, Order, Scope); 515 return; 516 case AtomicExpr::AO__atomic_compare_exchange: 517 case AtomicExpr::AO__atomic_compare_exchange_n: { 518 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { 519 emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, 520 Val1, Val2, FailureOrder, Size, Order, Scope); 521 } else { 522 // Create all the relevant BB's 523 llvm::BasicBlock *StrongBB = 524 CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); 525 llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); 526 llvm::BasicBlock *ContBB = 527 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 528 529 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); 530 SI->addCase(CGF.Builder.getInt1(false), StrongBB); 531 532 CGF.Builder.SetInsertPoint(StrongBB); 533 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 534 FailureOrder, Size, Order, Scope); 535 CGF.Builder.CreateBr(ContBB); 536 537 CGF.Builder.SetInsertPoint(WeakBB); 538 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 539 FailureOrder, Size, Order, Scope); 540 CGF.Builder.CreateBr(ContBB); 541 542 CGF.Builder.SetInsertPoint(ContBB); 543 } 544 return; 545 } 546 case AtomicExpr::AO__c11_atomic_load: 547 case AtomicExpr::AO__opencl_atomic_load: 548 case AtomicExpr::AO__atomic_load_n: 549 case AtomicExpr::AO__atomic_load: { 550 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 551 Load->setAtomic(Order, Scope); 552 Load->setVolatile(E->isVolatile()); 553 CGF.Builder.CreateStore(Load, Dest); 554 return; 555 } 556 557 case AtomicExpr::AO__c11_atomic_store: 558 case AtomicExpr::AO__opencl_atomic_store: 559 case AtomicExpr::AO__atomic_store: 560 case AtomicExpr::AO__atomic_store_n: { 561 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 562 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 563 Store->setAtomic(Order, Scope); 564 Store->setVolatile(E->isVolatile()); 565 return; 566 } 567 568 case AtomicExpr::AO__c11_atomic_exchange: 569 case AtomicExpr::AO__opencl_atomic_exchange: 570 case AtomicExpr::AO__atomic_exchange_n: 571 case AtomicExpr::AO__atomic_exchange: 572 Op = llvm::AtomicRMWInst::Xchg; 573 break; 574 575 case AtomicExpr::AO__atomic_add_fetch: 576 PostOp = llvm::Instruction::Add; 577 // Fall through. 578 case AtomicExpr::AO__c11_atomic_fetch_add: 579 case AtomicExpr::AO__opencl_atomic_fetch_add: 580 case AtomicExpr::AO__atomic_fetch_add: 581 Op = llvm::AtomicRMWInst::Add; 582 break; 583 584 case AtomicExpr::AO__atomic_sub_fetch: 585 PostOp = llvm::Instruction::Sub; 586 // Fall through. 587 case AtomicExpr::AO__c11_atomic_fetch_sub: 588 case AtomicExpr::AO__opencl_atomic_fetch_sub: 589 case AtomicExpr::AO__atomic_fetch_sub: 590 Op = llvm::AtomicRMWInst::Sub; 591 break; 592 593 case AtomicExpr::AO__opencl_atomic_fetch_min: 594 Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Min 595 : llvm::AtomicRMWInst::UMin; 596 break; 597 598 case AtomicExpr::AO__opencl_atomic_fetch_max: 599 Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Max 600 : llvm::AtomicRMWInst::UMax; 601 break; 602 603 case AtomicExpr::AO__atomic_and_fetch: 604 PostOp = llvm::Instruction::And; 605 // Fall through. 606 case AtomicExpr::AO__c11_atomic_fetch_and: 607 case AtomicExpr::AO__opencl_atomic_fetch_and: 608 case AtomicExpr::AO__atomic_fetch_and: 609 Op = llvm::AtomicRMWInst::And; 610 break; 611 612 case AtomicExpr::AO__atomic_or_fetch: 613 PostOp = llvm::Instruction::Or; 614 // Fall through. 615 case AtomicExpr::AO__c11_atomic_fetch_or: 616 case AtomicExpr::AO__opencl_atomic_fetch_or: 617 case AtomicExpr::AO__atomic_fetch_or: 618 Op = llvm::AtomicRMWInst::Or; 619 break; 620 621 case AtomicExpr::AO__atomic_xor_fetch: 622 PostOp = llvm::Instruction::Xor; 623 // Fall through. 624 case AtomicExpr::AO__c11_atomic_fetch_xor: 625 case AtomicExpr::AO__opencl_atomic_fetch_xor: 626 case AtomicExpr::AO__atomic_fetch_xor: 627 Op = llvm::AtomicRMWInst::Xor; 628 break; 629 630 case AtomicExpr::AO__atomic_nand_fetch: 631 PostOp = llvm::Instruction::And; // the NOT is special cased below 632 // Fall through. 633 case AtomicExpr::AO__atomic_fetch_nand: 634 Op = llvm::AtomicRMWInst::Nand; 635 break; 636 } 637 638 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 639 llvm::AtomicRMWInst *RMWI = 640 CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order, Scope); 641 RMWI->setVolatile(E->isVolatile()); 642 643 // For __atomic_*_fetch operations, perform the operation again to 644 // determine the value which was written. 645 llvm::Value *Result = RMWI; 646 if (PostOp) 647 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 648 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 649 Result = CGF.Builder.CreateNot(Result); 650 CGF.Builder.CreateStore(Result, Dest); 651 } 652 653 // This function emits any expression (scalar, complex, or aggregate) 654 // into a temporary alloca. 655 static Address 656 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 657 Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 658 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 659 /*Init*/ true); 660 return DeclPtr; 661 } 662 663 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, 664 Address Ptr, Address Val1, Address Val2, 665 llvm::Value *IsWeak, llvm::Value *FailureOrder, 666 uint64_t Size, llvm::AtomicOrdering Order, 667 llvm::Value *Scope) { 668 auto ScopeModel = Expr->getScopeModel(); 669 670 // LLVM atomic instructions always have synch scope. If clang atomic 671 // expression has no scope operand, use default LLVM synch scope. 672 if (!ScopeModel) { 673 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 674 Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID("")); 675 return; 676 } 677 678 // Handle constant scope. 679 if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) { 680 auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( 681 ScopeModel->map(SC->getZExtValue()), CGF.CGM.getLLVMContext()); 682 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 683 Order, SCID); 684 return; 685 } 686 687 // Handle non-constant scope. 688 auto &Builder = CGF.Builder; 689 auto Scopes = ScopeModel->getRuntimeValues(); 690 llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; 691 for (auto S : Scopes) 692 BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); 693 694 llvm::BasicBlock *ContBB = 695 CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn); 696 697 auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false); 698 // If unsupported synch scope is encountered at run time, assume a fallback 699 // synch scope value. 700 auto FallBack = ScopeModel->getFallBackValue(); 701 llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]); 702 for (auto S : Scopes) { 703 auto *B = BB[S]; 704 if (S != FallBack) 705 SI->addCase(Builder.getInt32(S), B); 706 707 Builder.SetInsertPoint(B); 708 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 709 Order, 710 CGF.getTargetHooks().getLLVMSyncScopeID(ScopeModel->map(S), 711 CGF.getLLVMContext())); 712 Builder.CreateBr(ContBB); 713 } 714 715 Builder.SetInsertPoint(ContBB); 716 } 717 718 static void 719 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, 720 bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, 721 SourceLocation Loc, CharUnits SizeInChars) { 722 if (UseOptimizedLibcall) { 723 // Load value and pass it to the function directly. 724 CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy); 725 int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); 726 ValTy = 727 CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); 728 llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(), 729 SizeInBits)->getPointerTo(); 730 Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align); 731 Val = CGF.EmitLoadOfScalar(Ptr, false, 732 CGF.getContext().getPointerType(ValTy), 733 Loc); 734 // Coerce the value into an appropriately sized integer type. 735 Args.add(RValue::get(Val), ValTy); 736 } else { 737 // Non-optimized functions always take a reference. 738 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), 739 CGF.getContext().VoidPtrTy); 740 } 741 } 742 743 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { 744 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 745 QualType MemTy = AtomicTy; 746 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 747 MemTy = AT->getValueType(); 748 CharUnits sizeChars, alignChars; 749 std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy); 750 uint64_t Size = sizeChars.getQuantity(); 751 unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); 752 bool UseLibcall = (sizeChars != alignChars || 753 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 754 755 llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; 756 757 Address Val1 = Address::invalid(); 758 Address Val2 = Address::invalid(); 759 Address Dest = Address::invalid(); 760 Address Ptr(EmitScalarExpr(E->getPtr()), alignChars); 761 762 if (E->getOp() == AtomicExpr::AO__c11_atomic_init || 763 E->getOp() == AtomicExpr::AO__opencl_atomic_init) { 764 LValue lvalue = MakeAddrLValue(Ptr, AtomicTy); 765 EmitAtomicInit(E->getVal1(), lvalue); 766 return RValue::get(nullptr); 767 } 768 769 llvm::Value *Order = EmitScalarExpr(E->getOrder()); 770 llvm::Value *Scope = 771 E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr; 772 773 switch (E->getOp()) { 774 case AtomicExpr::AO__c11_atomic_init: 775 case AtomicExpr::AO__opencl_atomic_init: 776 llvm_unreachable("Already handled above with EmitAtomicInit!"); 777 778 case AtomicExpr::AO__c11_atomic_load: 779 case AtomicExpr::AO__opencl_atomic_load: 780 case AtomicExpr::AO__atomic_load_n: 781 break; 782 783 case AtomicExpr::AO__atomic_load: 784 Dest = EmitPointerWithAlignment(E->getVal1()); 785 break; 786 787 case AtomicExpr::AO__atomic_store: 788 Val1 = EmitPointerWithAlignment(E->getVal1()); 789 break; 790 791 case AtomicExpr::AO__atomic_exchange: 792 Val1 = EmitPointerWithAlignment(E->getVal1()); 793 Dest = EmitPointerWithAlignment(E->getVal2()); 794 break; 795 796 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 797 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 798 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 799 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 800 case AtomicExpr::AO__atomic_compare_exchange_n: 801 case AtomicExpr::AO__atomic_compare_exchange: 802 Val1 = EmitPointerWithAlignment(E->getVal1()); 803 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 804 Val2 = EmitPointerWithAlignment(E->getVal2()); 805 else 806 Val2 = EmitValToTemp(*this, E->getVal2()); 807 OrderFail = EmitScalarExpr(E->getOrderFail()); 808 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || 809 E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 810 IsWeak = EmitScalarExpr(E->getWeak()); 811 break; 812 813 case AtomicExpr::AO__c11_atomic_fetch_add: 814 case AtomicExpr::AO__c11_atomic_fetch_sub: 815 case AtomicExpr::AO__opencl_atomic_fetch_add: 816 case AtomicExpr::AO__opencl_atomic_fetch_sub: 817 if (MemTy->isPointerType()) { 818 // For pointer arithmetic, we're required to do a bit of math: 819 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 820 // ... but only for the C11 builtins. The GNU builtins expect the 821 // user to multiply by sizeof(T). 822 QualType Val1Ty = E->getVal1()->getType(); 823 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 824 CharUnits PointeeIncAmt = 825 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 826 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 827 auto Temp = CreateMemTemp(Val1Ty, ".atomictmp"); 828 Val1 = Temp; 829 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty)); 830 break; 831 } 832 // Fall through. 833 case AtomicExpr::AO__atomic_fetch_add: 834 case AtomicExpr::AO__atomic_fetch_sub: 835 case AtomicExpr::AO__atomic_add_fetch: 836 case AtomicExpr::AO__atomic_sub_fetch: 837 case AtomicExpr::AO__c11_atomic_store: 838 case AtomicExpr::AO__c11_atomic_exchange: 839 case AtomicExpr::AO__opencl_atomic_store: 840 case AtomicExpr::AO__opencl_atomic_exchange: 841 case AtomicExpr::AO__atomic_store_n: 842 case AtomicExpr::AO__atomic_exchange_n: 843 case AtomicExpr::AO__c11_atomic_fetch_and: 844 case AtomicExpr::AO__c11_atomic_fetch_or: 845 case AtomicExpr::AO__c11_atomic_fetch_xor: 846 case AtomicExpr::AO__opencl_atomic_fetch_and: 847 case AtomicExpr::AO__opencl_atomic_fetch_or: 848 case AtomicExpr::AO__opencl_atomic_fetch_xor: 849 case AtomicExpr::AO__opencl_atomic_fetch_min: 850 case AtomicExpr::AO__opencl_atomic_fetch_max: 851 case AtomicExpr::AO__atomic_fetch_and: 852 case AtomicExpr::AO__atomic_fetch_or: 853 case AtomicExpr::AO__atomic_fetch_xor: 854 case AtomicExpr::AO__atomic_fetch_nand: 855 case AtomicExpr::AO__atomic_and_fetch: 856 case AtomicExpr::AO__atomic_or_fetch: 857 case AtomicExpr::AO__atomic_xor_fetch: 858 case AtomicExpr::AO__atomic_nand_fetch: 859 Val1 = EmitValToTemp(*this, E->getVal1()); 860 break; 861 } 862 863 QualType RValTy = E->getType().getUnqualifiedType(); 864 865 // The inlined atomics only function on iN types, where N is a power of 2. We 866 // need to make sure (via temporaries if necessary) that all incoming values 867 // are compatible. 868 LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy); 869 AtomicInfo Atomics(*this, AtomicVal); 870 871 Ptr = Atomics.emitCastToAtomicIntPointer(Ptr); 872 if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1); 873 if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2); 874 if (Dest.isValid()) 875 Dest = Atomics.emitCastToAtomicIntPointer(Dest); 876 else if (E->isCmpXChg()) 877 Dest = CreateMemTemp(RValTy, "cmpxchg.bool"); 878 else if (!RValTy->isVoidType()) 879 Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca()); 880 881 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 882 if (UseLibcall) { 883 bool UseOptimizedLibcall = false; 884 switch (E->getOp()) { 885 case AtomicExpr::AO__c11_atomic_init: 886 case AtomicExpr::AO__opencl_atomic_init: 887 llvm_unreachable("Already handled above with EmitAtomicInit!"); 888 889 case AtomicExpr::AO__c11_atomic_fetch_add: 890 case AtomicExpr::AO__opencl_atomic_fetch_add: 891 case AtomicExpr::AO__atomic_fetch_add: 892 case AtomicExpr::AO__c11_atomic_fetch_and: 893 case AtomicExpr::AO__opencl_atomic_fetch_and: 894 case AtomicExpr::AO__atomic_fetch_and: 895 case AtomicExpr::AO__c11_atomic_fetch_or: 896 case AtomicExpr::AO__opencl_atomic_fetch_or: 897 case AtomicExpr::AO__atomic_fetch_or: 898 case AtomicExpr::AO__atomic_fetch_nand: 899 case AtomicExpr::AO__c11_atomic_fetch_sub: 900 case AtomicExpr::AO__opencl_atomic_fetch_sub: 901 case AtomicExpr::AO__atomic_fetch_sub: 902 case AtomicExpr::AO__c11_atomic_fetch_xor: 903 case AtomicExpr::AO__opencl_atomic_fetch_xor: 904 case AtomicExpr::AO__opencl_atomic_fetch_min: 905 case AtomicExpr::AO__opencl_atomic_fetch_max: 906 case AtomicExpr::AO__atomic_fetch_xor: 907 case AtomicExpr::AO__atomic_add_fetch: 908 case AtomicExpr::AO__atomic_and_fetch: 909 case AtomicExpr::AO__atomic_nand_fetch: 910 case AtomicExpr::AO__atomic_or_fetch: 911 case AtomicExpr::AO__atomic_sub_fetch: 912 case AtomicExpr::AO__atomic_xor_fetch: 913 // For these, only library calls for certain sizes exist. 914 UseOptimizedLibcall = true; 915 break; 916 917 case AtomicExpr::AO__c11_atomic_load: 918 case AtomicExpr::AO__c11_atomic_store: 919 case AtomicExpr::AO__c11_atomic_exchange: 920 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 921 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 922 case AtomicExpr::AO__opencl_atomic_load: 923 case AtomicExpr::AO__opencl_atomic_store: 924 case AtomicExpr::AO__opencl_atomic_exchange: 925 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 926 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 927 case AtomicExpr::AO__atomic_load_n: 928 case AtomicExpr::AO__atomic_load: 929 case AtomicExpr::AO__atomic_store_n: 930 case AtomicExpr::AO__atomic_store: 931 case AtomicExpr::AO__atomic_exchange_n: 932 case AtomicExpr::AO__atomic_exchange: 933 case AtomicExpr::AO__atomic_compare_exchange_n: 934 case AtomicExpr::AO__atomic_compare_exchange: 935 // Only use optimized library calls for sizes for which they exist. 936 if (Size == 1 || Size == 2 || Size == 4 || Size == 8) 937 UseOptimizedLibcall = true; 938 break; 939 } 940 941 CallArgList Args; 942 if (!UseOptimizedLibcall) { 943 // For non-optimized library calls, the size is the first parameter 944 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 945 getContext().getSizeType()); 946 } 947 // Atomic address is the first or second parameter 948 // The OpenCL atomic library functions only accept pointer arguments to 949 // generic address space. 950 auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { 951 if (!E->isOpenCL()) 952 return V; 953 auto AS = PT->getAs<PointerType>()->getPointeeType().getAddressSpace(); 954 if (AS == LangAS::opencl_generic) 955 return V; 956 auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); 957 auto T = V->getType(); 958 auto *DestType = T->getPointerElementType()->getPointerTo(DestAS); 959 960 return getTargetHooks().performAddrSpaceCast( 961 *this, V, AS, LangAS::opencl_generic, DestType, false); 962 }; 963 964 Args.add(RValue::get(CastToGenericAddrSpace( 965 EmitCastToVoidPtr(Ptr.getPointer()), E->getPtr()->getType())), 966 getContext().VoidPtrTy); 967 968 std::string LibCallName; 969 QualType LoweredMemTy = 970 MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; 971 QualType RetTy; 972 bool HaveRetTy = false; 973 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 974 switch (E->getOp()) { 975 case AtomicExpr::AO__c11_atomic_init: 976 case AtomicExpr::AO__opencl_atomic_init: 977 llvm_unreachable("Already handled!"); 978 979 // There is only one libcall for compare an exchange, because there is no 980 // optimisation benefit possible from a libcall version of a weak compare 981 // and exchange. 982 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, 983 // void *desired, int success, int failure) 984 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, 985 // int success, int failure) 986 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 987 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 988 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 989 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 990 case AtomicExpr::AO__atomic_compare_exchange: 991 case AtomicExpr::AO__atomic_compare_exchange_n: 992 LibCallName = "__atomic_compare_exchange"; 993 RetTy = getContext().BoolTy; 994 HaveRetTy = true; 995 Args.add( 996 RValue::get(CastToGenericAddrSpace( 997 EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())), 998 getContext().VoidPtrTy); 999 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(), 1000 MemTy, E->getExprLoc(), sizeChars); 1001 Args.add(RValue::get(Order), getContext().IntTy); 1002 Order = OrderFail; 1003 break; 1004 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 1005 // int order) 1006 // T __atomic_exchange_N(T *mem, T val, int order) 1007 case AtomicExpr::AO__c11_atomic_exchange: 1008 case AtomicExpr::AO__opencl_atomic_exchange: 1009 case AtomicExpr::AO__atomic_exchange_n: 1010 case AtomicExpr::AO__atomic_exchange: 1011 LibCallName = "__atomic_exchange"; 1012 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1013 MemTy, E->getExprLoc(), sizeChars); 1014 break; 1015 // void __atomic_store(size_t size, void *mem, void *val, int order) 1016 // void __atomic_store_N(T *mem, T val, int order) 1017 case AtomicExpr::AO__c11_atomic_store: 1018 case AtomicExpr::AO__opencl_atomic_store: 1019 case AtomicExpr::AO__atomic_store: 1020 case AtomicExpr::AO__atomic_store_n: 1021 LibCallName = "__atomic_store"; 1022 RetTy = getContext().VoidTy; 1023 HaveRetTy = true; 1024 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1025 MemTy, E->getExprLoc(), sizeChars); 1026 break; 1027 // void __atomic_load(size_t size, void *mem, void *return, int order) 1028 // T __atomic_load_N(T *mem, int order) 1029 case AtomicExpr::AO__c11_atomic_load: 1030 case AtomicExpr::AO__opencl_atomic_load: 1031 case AtomicExpr::AO__atomic_load: 1032 case AtomicExpr::AO__atomic_load_n: 1033 LibCallName = "__atomic_load"; 1034 break; 1035 // T __atomic_add_fetch_N(T *mem, T val, int order) 1036 // T __atomic_fetch_add_N(T *mem, T val, int order) 1037 case AtomicExpr::AO__atomic_add_fetch: 1038 PostOp = llvm::Instruction::Add; 1039 // Fall through. 1040 case AtomicExpr::AO__c11_atomic_fetch_add: 1041 case AtomicExpr::AO__opencl_atomic_fetch_add: 1042 case AtomicExpr::AO__atomic_fetch_add: 1043 LibCallName = "__atomic_fetch_add"; 1044 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1045 LoweredMemTy, E->getExprLoc(), sizeChars); 1046 break; 1047 // T __atomic_and_fetch_N(T *mem, T val, int order) 1048 // T __atomic_fetch_and_N(T *mem, T val, int order) 1049 case AtomicExpr::AO__atomic_and_fetch: 1050 PostOp = llvm::Instruction::And; 1051 // Fall through. 1052 case AtomicExpr::AO__c11_atomic_fetch_and: 1053 case AtomicExpr::AO__opencl_atomic_fetch_and: 1054 case AtomicExpr::AO__atomic_fetch_and: 1055 LibCallName = "__atomic_fetch_and"; 1056 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1057 MemTy, E->getExprLoc(), sizeChars); 1058 break; 1059 // T __atomic_or_fetch_N(T *mem, T val, int order) 1060 // T __atomic_fetch_or_N(T *mem, T val, int order) 1061 case AtomicExpr::AO__atomic_or_fetch: 1062 PostOp = llvm::Instruction::Or; 1063 // Fall through. 1064 case AtomicExpr::AO__c11_atomic_fetch_or: 1065 case AtomicExpr::AO__opencl_atomic_fetch_or: 1066 case AtomicExpr::AO__atomic_fetch_or: 1067 LibCallName = "__atomic_fetch_or"; 1068 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1069 MemTy, E->getExprLoc(), sizeChars); 1070 break; 1071 // T __atomic_sub_fetch_N(T *mem, T val, int order) 1072 // T __atomic_fetch_sub_N(T *mem, T val, int order) 1073 case AtomicExpr::AO__atomic_sub_fetch: 1074 PostOp = llvm::Instruction::Sub; 1075 // Fall through. 1076 case AtomicExpr::AO__c11_atomic_fetch_sub: 1077 case AtomicExpr::AO__opencl_atomic_fetch_sub: 1078 case AtomicExpr::AO__atomic_fetch_sub: 1079 LibCallName = "__atomic_fetch_sub"; 1080 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1081 LoweredMemTy, E->getExprLoc(), sizeChars); 1082 break; 1083 // T __atomic_xor_fetch_N(T *mem, T val, int order) 1084 // T __atomic_fetch_xor_N(T *mem, T val, int order) 1085 case AtomicExpr::AO__atomic_xor_fetch: 1086 PostOp = llvm::Instruction::Xor; 1087 // Fall through. 1088 case AtomicExpr::AO__c11_atomic_fetch_xor: 1089 case AtomicExpr::AO__opencl_atomic_fetch_xor: 1090 case AtomicExpr::AO__atomic_fetch_xor: 1091 LibCallName = "__atomic_fetch_xor"; 1092 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1093 MemTy, E->getExprLoc(), sizeChars); 1094 break; 1095 case AtomicExpr::AO__opencl_atomic_fetch_min: 1096 LibCallName = E->getValueType()->isSignedIntegerType() 1097 ? "__atomic_fetch_min" 1098 : "__atomic_fetch_umin"; 1099 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1100 LoweredMemTy, E->getExprLoc(), sizeChars); 1101 break; 1102 case AtomicExpr::AO__opencl_atomic_fetch_max: 1103 LibCallName = E->getValueType()->isSignedIntegerType() 1104 ? "__atomic_fetch_max" 1105 : "__atomic_fetch_umax"; 1106 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1107 LoweredMemTy, E->getExprLoc(), sizeChars); 1108 break; 1109 // T __atomic_nand_fetch_N(T *mem, T val, int order) 1110 // T __atomic_fetch_nand_N(T *mem, T val, int order) 1111 case AtomicExpr::AO__atomic_nand_fetch: 1112 PostOp = llvm::Instruction::And; // the NOT is special cased below 1113 // Fall through. 1114 case AtomicExpr::AO__atomic_fetch_nand: 1115 LibCallName = "__atomic_fetch_nand"; 1116 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1117 MemTy, E->getExprLoc(), sizeChars); 1118 break; 1119 } 1120 1121 if (E->isOpenCL()) { 1122 LibCallName = std::string("__opencl") + 1123 StringRef(LibCallName).drop_front(1).str(); 1124 1125 } 1126 // Optimized functions have the size in their name. 1127 if (UseOptimizedLibcall) 1128 LibCallName += "_" + llvm::utostr(Size); 1129 // By default, assume we return a value of the atomic type. 1130 if (!HaveRetTy) { 1131 if (UseOptimizedLibcall) { 1132 // Value is returned directly. 1133 // The function returns an appropriately sized integer type. 1134 RetTy = getContext().getIntTypeForBitwidth( 1135 getContext().toBits(sizeChars), /*Signed=*/false); 1136 } else { 1137 // Value is returned through parameter before the order. 1138 RetTy = getContext().VoidTy; 1139 Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())), 1140 getContext().VoidPtrTy); 1141 } 1142 } 1143 // order is always the last parameter 1144 Args.add(RValue::get(Order), 1145 getContext().IntTy); 1146 if (E->isOpenCL()) 1147 Args.add(RValue::get(Scope), getContext().IntTy); 1148 1149 // PostOp is only needed for the atomic_*_fetch operations, and 1150 // thus is only needed for and implemented in the 1151 // UseOptimizedLibcall codepath. 1152 assert(UseOptimizedLibcall || !PostOp); 1153 1154 RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); 1155 // The value is returned directly from the libcall. 1156 if (E->isCmpXChg()) 1157 return Res; 1158 1159 // The value is returned directly for optimized libcalls but the expr 1160 // provided an out-param. 1161 if (UseOptimizedLibcall && Res.getScalarVal()) { 1162 llvm::Value *ResVal = Res.getScalarVal(); 1163 if (PostOp) { 1164 llvm::Value *LoadVal1 = Args[1].RV.getScalarVal(); 1165 ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1); 1166 } 1167 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 1168 ResVal = Builder.CreateNot(ResVal); 1169 1170 Builder.CreateStore( 1171 ResVal, 1172 Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo())); 1173 } 1174 1175 if (RValTy->isVoidType()) 1176 return RValue::get(nullptr); 1177 1178 return convertTempToRValue( 1179 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1180 RValTy, E->getExprLoc()); 1181 } 1182 1183 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 1184 E->getOp() == AtomicExpr::AO__opencl_atomic_store || 1185 E->getOp() == AtomicExpr::AO__atomic_store || 1186 E->getOp() == AtomicExpr::AO__atomic_store_n; 1187 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 1188 E->getOp() == AtomicExpr::AO__opencl_atomic_load || 1189 E->getOp() == AtomicExpr::AO__atomic_load || 1190 E->getOp() == AtomicExpr::AO__atomic_load_n; 1191 1192 if (isa<llvm::ConstantInt>(Order)) { 1193 auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1194 // We should not ever get to a case where the ordering isn't a valid C ABI 1195 // value, but it's hard to enforce that in general. 1196 if (llvm::isValidAtomicOrderingCABI(ord)) 1197 switch ((llvm::AtomicOrderingCABI)ord) { 1198 case llvm::AtomicOrderingCABI::relaxed: 1199 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1200 llvm::AtomicOrdering::Monotonic, Scope); 1201 break; 1202 case llvm::AtomicOrderingCABI::consume: 1203 case llvm::AtomicOrderingCABI::acquire: 1204 if (IsStore) 1205 break; // Avoid crashing on code with undefined behavior 1206 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1207 llvm::AtomicOrdering::Acquire, Scope); 1208 break; 1209 case llvm::AtomicOrderingCABI::release: 1210 if (IsLoad) 1211 break; // Avoid crashing on code with undefined behavior 1212 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1213 llvm::AtomicOrdering::Release, Scope); 1214 break; 1215 case llvm::AtomicOrderingCABI::acq_rel: 1216 if (IsLoad || IsStore) 1217 break; // Avoid crashing on code with undefined behavior 1218 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1219 llvm::AtomicOrdering::AcquireRelease, Scope); 1220 break; 1221 case llvm::AtomicOrderingCABI::seq_cst: 1222 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1223 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 1224 break; 1225 } 1226 if (RValTy->isVoidType()) 1227 return RValue::get(nullptr); 1228 1229 return convertTempToRValue( 1230 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1231 RValTy, E->getExprLoc()); 1232 } 1233 1234 // Long case, when Order isn't obviously constant. 1235 1236 // Create all the relevant BB's 1237 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 1238 *ReleaseBB = nullptr, *AcqRelBB = nullptr, 1239 *SeqCstBB = nullptr; 1240 MonotonicBB = createBasicBlock("monotonic", CurFn); 1241 if (!IsStore) 1242 AcquireBB = createBasicBlock("acquire", CurFn); 1243 if (!IsLoad) 1244 ReleaseBB = createBasicBlock("release", CurFn); 1245 if (!IsLoad && !IsStore) 1246 AcqRelBB = createBasicBlock("acqrel", CurFn); 1247 SeqCstBB = createBasicBlock("seqcst", CurFn); 1248 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1249 1250 // Create the switch for the split 1251 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 1252 // doesn't matter unless someone is crazy enough to use something that 1253 // doesn't fold to a constant for the ordering. 1254 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1255 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 1256 1257 // Emit all the different atomics 1258 Builder.SetInsertPoint(MonotonicBB); 1259 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1260 llvm::AtomicOrdering::Monotonic, Scope); 1261 Builder.CreateBr(ContBB); 1262 if (!IsStore) { 1263 Builder.SetInsertPoint(AcquireBB); 1264 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1265 llvm::AtomicOrdering::Acquire, Scope); 1266 Builder.CreateBr(ContBB); 1267 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 1268 AcquireBB); 1269 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 1270 AcquireBB); 1271 } 1272 if (!IsLoad) { 1273 Builder.SetInsertPoint(ReleaseBB); 1274 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1275 llvm::AtomicOrdering::Release, Scope); 1276 Builder.CreateBr(ContBB); 1277 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release), 1278 ReleaseBB); 1279 } 1280 if (!IsLoad && !IsStore) { 1281 Builder.SetInsertPoint(AcqRelBB); 1282 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1283 llvm::AtomicOrdering::AcquireRelease, Scope); 1284 Builder.CreateBr(ContBB); 1285 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel), 1286 AcqRelBB); 1287 } 1288 Builder.SetInsertPoint(SeqCstBB); 1289 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1290 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 1291 Builder.CreateBr(ContBB); 1292 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 1293 SeqCstBB); 1294 1295 // Cleanup and return 1296 Builder.SetInsertPoint(ContBB); 1297 if (RValTy->isVoidType()) 1298 return RValue::get(nullptr); 1299 1300 assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); 1301 return convertTempToRValue( 1302 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1303 RValTy, E->getExprLoc()); 1304 } 1305 1306 Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const { 1307 unsigned addrspace = 1308 cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace(); 1309 llvm::IntegerType *ty = 1310 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); 1311 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); 1312 } 1313 1314 Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { 1315 llvm::Type *Ty = Addr.getElementType(); 1316 uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); 1317 if (SourceSizeInBits != AtomicSizeInBits) { 1318 Address Tmp = CreateTempAlloca(); 1319 CGF.Builder.CreateMemCpy(Tmp, Addr, 1320 std::min(AtomicSizeInBits, SourceSizeInBits) / 8); 1321 Addr = Tmp; 1322 } 1323 1324 return emitCastToAtomicIntPointer(Addr); 1325 } 1326 1327 RValue AtomicInfo::convertAtomicTempToRValue(Address addr, 1328 AggValueSlot resultSlot, 1329 SourceLocation loc, 1330 bool asValue) const { 1331 if (LVal.isSimple()) { 1332 if (EvaluationKind == TEK_Aggregate) 1333 return resultSlot.asRValue(); 1334 1335 // Drill into the padding structure if we have one. 1336 if (hasPadding()) 1337 addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits()); 1338 1339 // Otherwise, just convert the temporary to an r-value using the 1340 // normal conversion routine. 1341 return CGF.convertTempToRValue(addr, getValueType(), loc); 1342 } 1343 if (!asValue) 1344 // Get RValue from temp memory as atomic for non-simple lvalues 1345 return RValue::get(CGF.Builder.CreateLoad(addr)); 1346 if (LVal.isBitField()) 1347 return CGF.EmitLoadOfBitfieldLValue( 1348 LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), 1349 LVal.getBaseInfo()), loc); 1350 if (LVal.isVectorElt()) 1351 return CGF.EmitLoadOfLValue( 1352 LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), 1353 LVal.getBaseInfo()), loc); 1354 assert(LVal.isExtVectorElt()); 1355 return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( 1356 addr, LVal.getExtVectorElts(), LVal.getType(), 1357 LVal.getBaseInfo())); 1358 } 1359 1360 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, 1361 AggValueSlot ResultSlot, 1362 SourceLocation Loc, 1363 bool AsValue) const { 1364 // Try not to in some easy cases. 1365 assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); 1366 if (getEvaluationKind() == TEK_Scalar && 1367 (((!LVal.isBitField() || 1368 LVal.getBitFieldInfo().Size == ValueSizeInBits) && 1369 !hasPadding()) || 1370 !AsValue)) { 1371 auto *ValTy = AsValue 1372 ? CGF.ConvertTypeForMem(ValueTy) 1373 : getAtomicAddress().getType()->getPointerElementType(); 1374 if (ValTy->isIntegerTy()) { 1375 assert(IntVal->getType() == ValTy && "Different integer types."); 1376 return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); 1377 } else if (ValTy->isPointerTy()) 1378 return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); 1379 else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) 1380 return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); 1381 } 1382 1383 // Create a temporary. This needs to be big enough to hold the 1384 // atomic integer. 1385 Address Temp = Address::invalid(); 1386 bool TempIsVolatile = false; 1387 if (AsValue && getEvaluationKind() == TEK_Aggregate) { 1388 assert(!ResultSlot.isIgnored()); 1389 Temp = ResultSlot.getAddress(); 1390 TempIsVolatile = ResultSlot.isVolatile(); 1391 } else { 1392 Temp = CreateTempAlloca(); 1393 } 1394 1395 // Slam the integer into the temporary. 1396 Address CastTemp = emitCastToAtomicIntPointer(Temp); 1397 CGF.Builder.CreateStore(IntVal, CastTemp) 1398 ->setVolatile(TempIsVolatile); 1399 1400 return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue); 1401 } 1402 1403 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 1404 llvm::AtomicOrdering AO, bool) { 1405 // void __atomic_load(size_t size, void *mem, void *return, int order); 1406 CallArgList Args; 1407 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1408 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1409 CGF.getContext().VoidPtrTy); 1410 Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)), 1411 CGF.getContext().VoidPtrTy); 1412 Args.add( 1413 RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))), 1414 CGF.getContext().IntTy); 1415 emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); 1416 } 1417 1418 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, 1419 bool IsVolatile) { 1420 // Okay, we're doing this natively. 1421 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1422 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); 1423 Load->setAtomic(AO); 1424 1425 // Other decoration. 1426 if (IsVolatile) 1427 Load->setVolatile(true); 1428 if (LVal.getTBAAInfo()) 1429 CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); 1430 return Load; 1431 } 1432 1433 /// An LValue is a candidate for having its loads and stores be made atomic if 1434 /// we are operating under /volatile:ms *and* the LValue itself is volatile and 1435 /// performing such an operation can be performed without a libcall. 1436 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { 1437 if (!CGM.getCodeGenOpts().MSVolatile) return false; 1438 AtomicInfo AI(*this, LV); 1439 bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); 1440 // An atomic is inline if we don't need to use a libcall. 1441 bool AtomicIsInline = !AI.shouldUseLibcall(); 1442 // MSVC doesn't seem to do this for types wider than a pointer. 1443 if (getContext().getTypeSize(LV.getType()) > 1444 getContext().getTypeSize(getContext().getIntPtrType())) 1445 return false; 1446 return IsVolatile && AtomicIsInline; 1447 } 1448 1449 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, 1450 AggValueSlot Slot) { 1451 llvm::AtomicOrdering AO; 1452 bool IsVolatile = LV.isVolatileQualified(); 1453 if (LV.getType()->isAtomicType()) { 1454 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1455 } else { 1456 AO = llvm::AtomicOrdering::Acquire; 1457 IsVolatile = true; 1458 } 1459 return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); 1460 } 1461 1462 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 1463 bool AsValue, llvm::AtomicOrdering AO, 1464 bool IsVolatile) { 1465 // Check whether we should use a library call. 1466 if (shouldUseLibcall()) { 1467 Address TempAddr = Address::invalid(); 1468 if (LVal.isSimple() && !ResultSlot.isIgnored()) { 1469 assert(getEvaluationKind() == TEK_Aggregate); 1470 TempAddr = ResultSlot.getAddress(); 1471 } else 1472 TempAddr = CreateTempAlloca(); 1473 1474 EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile); 1475 1476 // Okay, turn that back into the original value or whole atomic (for 1477 // non-simple lvalues) type. 1478 return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue); 1479 } 1480 1481 // Okay, we're doing this natively. 1482 auto *Load = EmitAtomicLoadOp(AO, IsVolatile); 1483 1484 // If we're ignoring an aggregate return, don't do anything. 1485 if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) 1486 return RValue::getAggregate(Address::invalid(), false); 1487 1488 // Okay, turn that back into the original value or atomic (for non-simple 1489 // lvalues) type. 1490 return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); 1491 } 1492 1493 /// Emit a load from an l-value of atomic type. Note that the r-value 1494 /// we produce is an r-value of the atomic *value* type. 1495 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, 1496 llvm::AtomicOrdering AO, bool IsVolatile, 1497 AggValueSlot resultSlot) { 1498 AtomicInfo Atomics(*this, src); 1499 return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, 1500 IsVolatile); 1501 } 1502 1503 /// Copy an r-value into memory as part of storing to an atomic type. 1504 /// This needs to create a bit-pattern suitable for atomic operations. 1505 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { 1506 assert(LVal.isSimple()); 1507 // If we have an r-value, the rvalue should be of the atomic type, 1508 // which means that the caller is responsible for having zeroed 1509 // any padding. Just do an aggregate copy of that type. 1510 if (rvalue.isAggregate()) { 1511 CGF.EmitAggregateCopy(getAtomicAddress(), 1512 rvalue.getAggregateAddress(), 1513 getAtomicType(), 1514 (rvalue.isVolatileQualified() 1515 || LVal.isVolatileQualified())); 1516 return; 1517 } 1518 1519 // Okay, otherwise we're copying stuff. 1520 1521 // Zero out the buffer if necessary. 1522 emitMemSetZeroIfNecessary(); 1523 1524 // Drill past the padding if present. 1525 LValue TempLVal = projectValue(); 1526 1527 // Okay, store the rvalue in. 1528 if (rvalue.isScalar()) { 1529 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); 1530 } else { 1531 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); 1532 } 1533 } 1534 1535 1536 /// Materialize an r-value into memory for the purposes of storing it 1537 /// to an atomic type. 1538 Address AtomicInfo::materializeRValue(RValue rvalue) const { 1539 // Aggregate r-values are already in memory, and EmitAtomicStore 1540 // requires them to be values of the atomic type. 1541 if (rvalue.isAggregate()) 1542 return rvalue.getAggregateAddress(); 1543 1544 // Otherwise, make a temporary and materialize into it. 1545 LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType()); 1546 AtomicInfo Atomics(CGF, TempLV); 1547 Atomics.emitCopyIntoMemory(rvalue); 1548 return TempLV.getAddress(); 1549 } 1550 1551 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { 1552 // If we've got a scalar value of the right size, try to avoid going 1553 // through memory. 1554 if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { 1555 llvm::Value *Value = RVal.getScalarVal(); 1556 if (isa<llvm::IntegerType>(Value->getType())) 1557 return CGF.EmitToMemory(Value, ValueTy); 1558 else { 1559 llvm::IntegerType *InputIntTy = llvm::IntegerType::get( 1560 CGF.getLLVMContext(), 1561 LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); 1562 if (isa<llvm::PointerType>(Value->getType())) 1563 return CGF.Builder.CreatePtrToInt(Value, InputIntTy); 1564 else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) 1565 return CGF.Builder.CreateBitCast(Value, InputIntTy); 1566 } 1567 } 1568 // Otherwise, we need to go through memory. 1569 // Put the r-value in memory. 1570 Address Addr = materializeRValue(RVal); 1571 1572 // Cast the temporary to the atomic int type and pull a value out. 1573 Addr = emitCastToAtomicIntPointer(Addr); 1574 return CGF.Builder.CreateLoad(Addr); 1575 } 1576 1577 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( 1578 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 1579 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { 1580 // Do the atomic store. 1581 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1582 auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(), 1583 ExpectedVal, DesiredVal, 1584 Success, Failure); 1585 // Other decoration. 1586 Inst->setVolatile(LVal.isVolatileQualified()); 1587 Inst->setWeak(IsWeak); 1588 1589 // Okay, turn that back into the original value type. 1590 auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); 1591 auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); 1592 return std::make_pair(PreviousVal, SuccessFailureVal); 1593 } 1594 1595 llvm::Value * 1596 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, 1597 llvm::Value *DesiredAddr, 1598 llvm::AtomicOrdering Success, 1599 llvm::AtomicOrdering Failure) { 1600 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 1601 // void *desired, int success, int failure); 1602 CallArgList Args; 1603 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1604 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1605 CGF.getContext().VoidPtrTy); 1606 Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)), 1607 CGF.getContext().VoidPtrTy); 1608 Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)), 1609 CGF.getContext().VoidPtrTy); 1610 Args.add(RValue::get( 1611 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))), 1612 CGF.getContext().IntTy); 1613 Args.add(RValue::get( 1614 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))), 1615 CGF.getContext().IntTy); 1616 auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", 1617 CGF.getContext().BoolTy, Args); 1618 1619 return SuccessFailureRVal.getScalarVal(); 1620 } 1621 1622 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( 1623 RValue Expected, RValue Desired, llvm::AtomicOrdering Success, 1624 llvm::AtomicOrdering Failure, bool IsWeak) { 1625 if (isStrongerThan(Failure, Success)) 1626 // Don't assert on undefined behavior "failure argument shall be no stronger 1627 // than the success argument". 1628 Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success); 1629 1630 // Check whether we should use a library call. 1631 if (shouldUseLibcall()) { 1632 // Produce a source address. 1633 Address ExpectedAddr = materializeRValue(Expected); 1634 Address DesiredAddr = materializeRValue(Desired); 1635 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1636 DesiredAddr.getPointer(), 1637 Success, Failure); 1638 return std::make_pair( 1639 convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(), 1640 SourceLocation(), /*AsValue=*/false), 1641 Res); 1642 } 1643 1644 // If we've got a scalar value of the right size, try to avoid going 1645 // through memory. 1646 auto *ExpectedVal = convertRValueToInt(Expected); 1647 auto *DesiredVal = convertRValueToInt(Desired); 1648 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, 1649 Failure, IsWeak); 1650 return std::make_pair( 1651 ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), 1652 SourceLocation(), /*AsValue=*/false), 1653 Res.second); 1654 } 1655 1656 static void 1657 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, 1658 const llvm::function_ref<RValue(RValue)> &UpdateOp, 1659 Address DesiredAddr) { 1660 RValue UpRVal; 1661 LValue AtomicLVal = Atomics.getAtomicLValue(); 1662 LValue DesiredLVal; 1663 if (AtomicLVal.isSimple()) { 1664 UpRVal = OldRVal; 1665 DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType()); 1666 } else { 1667 // Build new lvalue for temp address 1668 Address Ptr = Atomics.materializeRValue(OldRVal); 1669 LValue UpdateLVal; 1670 if (AtomicLVal.isBitField()) { 1671 UpdateLVal = 1672 LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), 1673 AtomicLVal.getType(), 1674 AtomicLVal.getBaseInfo()); 1675 DesiredLVal = 1676 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1677 AtomicLVal.getType(), 1678 AtomicLVal.getBaseInfo()); 1679 } else if (AtomicLVal.isVectorElt()) { 1680 UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), 1681 AtomicLVal.getType(), 1682 AtomicLVal.getBaseInfo()); 1683 DesiredLVal = LValue::MakeVectorElt( 1684 DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), 1685 AtomicLVal.getBaseInfo()); 1686 } else { 1687 assert(AtomicLVal.isExtVectorElt()); 1688 UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), 1689 AtomicLVal.getType(), 1690 AtomicLVal.getBaseInfo()); 1691 DesiredLVal = LValue::MakeExtVectorElt( 1692 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1693 AtomicLVal.getBaseInfo()); 1694 } 1695 UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1696 DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1697 UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); 1698 } 1699 // Store new value in the corresponding memory area 1700 RValue NewRVal = UpdateOp(UpRVal); 1701 if (NewRVal.isScalar()) { 1702 CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); 1703 } else { 1704 assert(NewRVal.isComplex()); 1705 CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, 1706 /*isInit=*/false); 1707 } 1708 } 1709 1710 void AtomicInfo::EmitAtomicUpdateLibcall( 1711 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1712 bool IsVolatile) { 1713 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1714 1715 Address ExpectedAddr = CreateTempAlloca(); 1716 1717 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1718 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1719 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1720 CGF.EmitBlock(ContBB); 1721 Address DesiredAddr = CreateTempAlloca(); 1722 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1723 requiresMemSetZero(getAtomicAddress().getElementType())) { 1724 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1725 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1726 } 1727 auto OldRVal = convertAtomicTempToRValue(ExpectedAddr, 1728 AggValueSlot::ignored(), 1729 SourceLocation(), /*AsValue=*/false); 1730 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); 1731 auto *Res = 1732 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1733 DesiredAddr.getPointer(), 1734 AO, Failure); 1735 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1736 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1737 } 1738 1739 void AtomicInfo::EmitAtomicUpdateOp( 1740 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1741 bool IsVolatile) { 1742 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1743 1744 // Do the atomic load. 1745 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1746 // For non-simple lvalues perform compare-and-swap procedure. 1747 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1748 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1749 auto *CurBB = CGF.Builder.GetInsertBlock(); 1750 CGF.EmitBlock(ContBB); 1751 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1752 /*NumReservedValues=*/2); 1753 PHI->addIncoming(OldVal, CurBB); 1754 Address NewAtomicAddr = CreateTempAlloca(); 1755 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1756 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1757 requiresMemSetZero(getAtomicAddress().getElementType())) { 1758 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1759 } 1760 auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), 1761 SourceLocation(), /*AsValue=*/false); 1762 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); 1763 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1764 // Try to write new value using cmpxchg operation 1765 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1766 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1767 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1768 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1769 } 1770 1771 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, 1772 RValue UpdateRVal, Address DesiredAddr) { 1773 LValue AtomicLVal = Atomics.getAtomicLValue(); 1774 LValue DesiredLVal; 1775 // Build new lvalue for temp address 1776 if (AtomicLVal.isBitField()) { 1777 DesiredLVal = 1778 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1779 AtomicLVal.getType(), 1780 AtomicLVal.getBaseInfo()); 1781 } else if (AtomicLVal.isVectorElt()) { 1782 DesiredLVal = 1783 LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), 1784 AtomicLVal.getType(), 1785 AtomicLVal.getBaseInfo()); 1786 } else { 1787 assert(AtomicLVal.isExtVectorElt()); 1788 DesiredLVal = LValue::MakeExtVectorElt( 1789 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1790 AtomicLVal.getBaseInfo()); 1791 } 1792 DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1793 // Store new value in the corresponding memory area 1794 assert(UpdateRVal.isScalar()); 1795 CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); 1796 } 1797 1798 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 1799 RValue UpdateRVal, bool IsVolatile) { 1800 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1801 1802 Address ExpectedAddr = CreateTempAlloca(); 1803 1804 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1805 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1806 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1807 CGF.EmitBlock(ContBB); 1808 Address DesiredAddr = CreateTempAlloca(); 1809 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1810 requiresMemSetZero(getAtomicAddress().getElementType())) { 1811 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1812 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1813 } 1814 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); 1815 auto *Res = 1816 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1817 DesiredAddr.getPointer(), 1818 AO, Failure); 1819 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1820 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1821 } 1822 1823 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, 1824 bool IsVolatile) { 1825 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1826 1827 // Do the atomic load. 1828 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1829 // For non-simple lvalues perform compare-and-swap procedure. 1830 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1831 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1832 auto *CurBB = CGF.Builder.GetInsertBlock(); 1833 CGF.EmitBlock(ContBB); 1834 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1835 /*NumReservedValues=*/2); 1836 PHI->addIncoming(OldVal, CurBB); 1837 Address NewAtomicAddr = CreateTempAlloca(); 1838 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1839 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1840 requiresMemSetZero(getAtomicAddress().getElementType())) { 1841 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1842 } 1843 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); 1844 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1845 // Try to write new value using cmpxchg operation 1846 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1847 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1848 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1849 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1850 } 1851 1852 void AtomicInfo::EmitAtomicUpdate( 1853 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1854 bool IsVolatile) { 1855 if (shouldUseLibcall()) { 1856 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); 1857 } else { 1858 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); 1859 } 1860 } 1861 1862 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 1863 bool IsVolatile) { 1864 if (shouldUseLibcall()) { 1865 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); 1866 } else { 1867 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); 1868 } 1869 } 1870 1871 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, 1872 bool isInit) { 1873 bool IsVolatile = lvalue.isVolatileQualified(); 1874 llvm::AtomicOrdering AO; 1875 if (lvalue.getType()->isAtomicType()) { 1876 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1877 } else { 1878 AO = llvm::AtomicOrdering::Release; 1879 IsVolatile = true; 1880 } 1881 return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); 1882 } 1883 1884 /// Emit a store to an l-value of atomic type. 1885 /// 1886 /// Note that the r-value is expected to be an r-value *of the atomic 1887 /// type*; this means that for aggregate r-values, it should include 1888 /// storage for any padding that was necessary. 1889 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, 1890 llvm::AtomicOrdering AO, bool IsVolatile, 1891 bool isInit) { 1892 // If this is an aggregate r-value, it should agree in type except 1893 // maybe for address-space qualification. 1894 assert(!rvalue.isAggregate() || 1895 rvalue.getAggregateAddress().getElementType() 1896 == dest.getAddress().getElementType()); 1897 1898 AtomicInfo atomics(*this, dest); 1899 LValue LVal = atomics.getAtomicLValue(); 1900 1901 // If this is an initialization, just put the value there normally. 1902 if (LVal.isSimple()) { 1903 if (isInit) { 1904 atomics.emitCopyIntoMemory(rvalue); 1905 return; 1906 } 1907 1908 // Check whether we should use a library call. 1909 if (atomics.shouldUseLibcall()) { 1910 // Produce a source address. 1911 Address srcAddr = atomics.materializeRValue(rvalue); 1912 1913 // void __atomic_store(size_t size, void *mem, void *val, int order) 1914 CallArgList args; 1915 args.add(RValue::get(atomics.getAtomicSizeValue()), 1916 getContext().getSizeType()); 1917 args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())), 1918 getContext().VoidPtrTy); 1919 args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())), 1920 getContext().VoidPtrTy); 1921 args.add( 1922 RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))), 1923 getContext().IntTy); 1924 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); 1925 return; 1926 } 1927 1928 // Okay, we're doing this natively. 1929 llvm::Value *intValue = atomics.convertRValueToInt(rvalue); 1930 1931 // Do the atomic store. 1932 Address addr = 1933 atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress()); 1934 intValue = Builder.CreateIntCast( 1935 intValue, addr.getElementType(), /*isSigned=*/false); 1936 llvm::StoreInst *store = Builder.CreateStore(intValue, addr); 1937 1938 // Initializations don't need to be atomic. 1939 if (!isInit) 1940 store->setAtomic(AO); 1941 1942 // Other decoration. 1943 if (IsVolatile) 1944 store->setVolatile(true); 1945 if (dest.getTBAAInfo()) 1946 CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo()); 1947 return; 1948 } 1949 1950 // Emit simple atomic update operation. 1951 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); 1952 } 1953 1954 /// Emit a compare-and-exchange op for atomic type. 1955 /// 1956 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( 1957 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 1958 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, 1959 AggValueSlot Slot) { 1960 // If this is an aggregate r-value, it should agree in type except 1961 // maybe for address-space qualification. 1962 assert(!Expected.isAggregate() || 1963 Expected.getAggregateAddress().getElementType() == 1964 Obj.getAddress().getElementType()); 1965 assert(!Desired.isAggregate() || 1966 Desired.getAggregateAddress().getElementType() == 1967 Obj.getAddress().getElementType()); 1968 AtomicInfo Atomics(*this, Obj); 1969 1970 return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, 1971 IsWeak); 1972 } 1973 1974 void CodeGenFunction::EmitAtomicUpdate( 1975 LValue LVal, llvm::AtomicOrdering AO, 1976 const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { 1977 AtomicInfo Atomics(*this, LVal); 1978 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); 1979 } 1980 1981 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { 1982 AtomicInfo atomics(*this, dest); 1983 1984 switch (atomics.getEvaluationKind()) { 1985 case TEK_Scalar: { 1986 llvm::Value *value = EmitScalarExpr(init); 1987 atomics.emitCopyIntoMemory(RValue::get(value)); 1988 return; 1989 } 1990 1991 case TEK_Complex: { 1992 ComplexPairTy value = EmitComplexExpr(init); 1993 atomics.emitCopyIntoMemory(RValue::getComplex(value)); 1994 return; 1995 } 1996 1997 case TEK_Aggregate: { 1998 // Fix up the destination if the initializer isn't an expression 1999 // of atomic type. 2000 bool Zeroed = false; 2001 if (!init->getType()->isAtomicType()) { 2002 Zeroed = atomics.emitMemSetZeroIfNecessary(); 2003 dest = atomics.projectValue(); 2004 } 2005 2006 // Evaluate the expression directly into the destination. 2007 AggValueSlot slot = AggValueSlot::forLValue(dest, 2008 AggValueSlot::IsNotDestructed, 2009 AggValueSlot::DoesNotNeedGCBarriers, 2010 AggValueSlot::IsNotAliased, 2011 Zeroed ? AggValueSlot::IsZeroed : 2012 AggValueSlot::IsNotZeroed); 2013 2014 EmitAggExpr(init, slot); 2015 return; 2016 } 2017 } 2018 llvm_unreachable("bad evaluation kind"); 2019 } 2020