1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the code for emitting atomic operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCall.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Operator.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 28 namespace { 29 class AtomicInfo { 30 CodeGenFunction &CGF; 31 QualType AtomicTy; 32 QualType ValueTy; 33 uint64_t AtomicSizeInBits; 34 uint64_t ValueSizeInBits; 35 CharUnits AtomicAlign; 36 CharUnits ValueAlign; 37 CharUnits LValueAlign; 38 TypeEvaluationKind EvaluationKind; 39 bool UseLibcall; 40 LValue LVal; 41 CGBitFieldInfo BFI; 42 public: 43 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) 44 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), 45 EvaluationKind(TEK_Scalar), UseLibcall(true) { 46 assert(!lvalue.isGlobalReg()); 47 ASTContext &C = CGF.getContext(); 48 if (lvalue.isSimple()) { 49 AtomicTy = lvalue.getType(); 50 if (auto *ATy = AtomicTy->getAs<AtomicType>()) 51 ValueTy = ATy->getValueType(); 52 else 53 ValueTy = AtomicTy; 54 EvaluationKind = CGF.getEvaluationKind(ValueTy); 55 56 uint64_t ValueAlignInBits; 57 uint64_t AtomicAlignInBits; 58 TypeInfo ValueTI = C.getTypeInfo(ValueTy); 59 ValueSizeInBits = ValueTI.Width; 60 ValueAlignInBits = ValueTI.Align; 61 62 TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); 63 AtomicSizeInBits = AtomicTI.Width; 64 AtomicAlignInBits = AtomicTI.Align; 65 66 assert(ValueSizeInBits <= AtomicSizeInBits); 67 assert(ValueAlignInBits <= AtomicAlignInBits); 68 69 AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); 70 ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); 71 if (lvalue.getAlignment().isZero()) 72 lvalue.setAlignment(AtomicAlign); 73 74 LVal = lvalue; 75 } else if (lvalue.isBitField()) { 76 ValueTy = lvalue.getType(); 77 ValueSizeInBits = C.getTypeSize(ValueTy); 78 auto &OrigBFI = lvalue.getBitFieldInfo(); 79 auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); 80 AtomicSizeInBits = C.toBits( 81 C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) 82 .RoundUpToAlignment(lvalue.getAlignment())); 83 auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldAddr()); 84 auto OffsetInChars = 85 (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * 86 lvalue.getAlignment(); 87 VoidPtrAddr = CGF.Builder.CreateConstGEP1_64( 88 VoidPtrAddr, OffsetInChars.getQuantity()); 89 auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 90 VoidPtrAddr, 91 CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(), 92 "atomic_bitfield_base"); 93 BFI = OrigBFI; 94 BFI.Offset = Offset; 95 BFI.StorageSize = AtomicSizeInBits; 96 LVal = LValue::MakeBitfield(Addr, BFI, lvalue.getType(), 97 lvalue.getAlignment()); 98 LVal.setTBAAInfo(lvalue.getTBAAInfo()); 99 AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); 100 if (AtomicTy.isNull()) { 101 llvm::APInt Size( 102 /*numBits=*/32, 103 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); 104 AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal, 105 /*IndexTypeQuals=*/0); 106 } 107 AtomicAlign = ValueAlign = lvalue.getAlignment(); 108 } else if (lvalue.isVectorElt()) { 109 ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType(); 110 ValueSizeInBits = C.getTypeSize(ValueTy); 111 AtomicTy = lvalue.getType(); 112 AtomicSizeInBits = C.getTypeSize(AtomicTy); 113 AtomicAlign = ValueAlign = lvalue.getAlignment(); 114 LVal = lvalue; 115 } else { 116 assert(lvalue.isExtVectorElt()); 117 ValueTy = lvalue.getType(); 118 ValueSizeInBits = C.getTypeSize(ValueTy); 119 AtomicTy = ValueTy = CGF.getContext().getExtVectorType( 120 lvalue.getType(), lvalue.getExtVectorAddr() 121 ->getType() 122 ->getPointerElementType() 123 ->getVectorNumElements()); 124 AtomicSizeInBits = C.getTypeSize(AtomicTy); 125 AtomicAlign = ValueAlign = lvalue.getAlignment(); 126 LVal = lvalue; 127 } 128 UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( 129 AtomicSizeInBits, C.toBits(lvalue.getAlignment())); 130 } 131 132 QualType getAtomicType() const { return AtomicTy; } 133 QualType getValueType() const { return ValueTy; } 134 CharUnits getAtomicAlignment() const { return AtomicAlign; } 135 CharUnits getValueAlignment() const { return ValueAlign; } 136 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } 137 uint64_t getValueSizeInBits() const { return ValueSizeInBits; } 138 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } 139 bool shouldUseLibcall() const { return UseLibcall; } 140 const LValue &getAtomicLValue() const { return LVal; } 141 llvm::Value *getAtomicAddress() const { 142 if (LVal.isSimple()) 143 return LVal.getAddress(); 144 else if (LVal.isBitField()) 145 return LVal.getBitFieldAddr(); 146 else if (LVal.isVectorElt()) 147 return LVal.getVectorAddr(); 148 assert(LVal.isExtVectorElt()); 149 return LVal.getExtVectorAddr(); 150 } 151 152 /// Is the atomic size larger than the underlying value type? 153 /// 154 /// Note that the absence of padding does not mean that atomic 155 /// objects are completely interchangeable with non-atomic 156 /// objects: we might have promoted the alignment of a type 157 /// without making it bigger. 158 bool hasPadding() const { 159 return (ValueSizeInBits != AtomicSizeInBits); 160 } 161 162 bool emitMemSetZeroIfNecessary() const; 163 164 llvm::Value *getAtomicSizeValue() const { 165 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); 166 return CGF.CGM.getSize(size); 167 } 168 169 /// Cast the given pointer to an integer pointer suitable for 170 /// atomic operations. 171 llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const; 172 173 /// Turn an atomic-layout object into an r-value. 174 RValue convertTempToRValue(llvm::Value *addr, AggValueSlot resultSlot, 175 SourceLocation loc, bool AsValue) const; 176 177 /// \brief Converts a rvalue to integer value. 178 llvm::Value *convertRValueToInt(RValue RVal) const; 179 180 RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, 181 AggValueSlot ResultSlot, 182 SourceLocation Loc, bool AsValue) const; 183 184 /// Copy an atomic r-value into atomic-layout memory. 185 void emitCopyIntoMemory(RValue rvalue) const; 186 187 /// Project an l-value down to the value field. 188 LValue projectValue() const { 189 assert(LVal.isSimple()); 190 llvm::Value *addr = getAtomicAddress(); 191 if (hasPadding()) 192 addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0); 193 194 return LValue::MakeAddr(addr, getValueType(), LVal.getAlignment(), 195 CGF.getContext(), LVal.getTBAAInfo()); 196 } 197 198 /// \brief Emits atomic load. 199 /// \returns Loaded value. 200 RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 201 bool AsValue, llvm::AtomicOrdering AO, 202 bool IsVolatile); 203 204 /// \brief Emits atomic compare-and-exchange sequence. 205 /// \param Expected Expected value. 206 /// \param Desired Desired value. 207 /// \param Success Atomic ordering for success operation. 208 /// \param Failure Atomic ordering for failed operation. 209 /// \param IsWeak true if atomic operation is weak, false otherwise. 210 /// \returns Pair of values: previous value from storage (value type) and 211 /// boolean flag (i1 type) with true if success and false otherwise. 212 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 213 RValue Expected, RValue Desired, 214 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 215 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 216 bool IsWeak = false); 217 218 /// \brief Emits atomic update. 219 /// \param AO Atomic ordering. 220 /// \param UpdateOp Update operation for the current lvalue. 221 void EmitAtomicUpdate(llvm::AtomicOrdering AO, 222 const llvm::function_ref<RValue(RValue)> &UpdateOp, 223 bool IsVolatile); 224 /// \brief Emits atomic update. 225 /// \param AO Atomic ordering. 226 void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 227 bool IsVolatile); 228 229 /// Materialize an atomic r-value in atomic-layout memory. 230 llvm::Value *materializeRValue(RValue rvalue) const; 231 232 /// \brief Translates LLVM atomic ordering to GNU atomic ordering for 233 /// libcalls. 234 static AtomicExpr::AtomicOrderingKind 235 translateAtomicOrdering(const llvm::AtomicOrdering AO); 236 237 private: 238 bool requiresMemSetZero(llvm::Type *type) const; 239 240 /// \brief Creates temp alloca for intermediate operations on atomic value. 241 llvm::Value *CreateTempAlloca() const; 242 243 /// \brief Emits atomic load as a libcall. 244 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 245 llvm::AtomicOrdering AO, bool IsVolatile); 246 /// \brief Emits atomic load as LLVM instruction. 247 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); 248 /// \brief Emits atomic compare-and-exchange op as a libcall. 249 llvm::Value *EmitAtomicCompareExchangeLibcall( 250 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, 251 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 252 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent); 253 /// \brief Emits atomic compare-and-exchange op as LLVM instruction. 254 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( 255 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 256 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 257 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 258 bool IsWeak = false); 259 /// \brief Emit atomic update as libcalls. 260 void 261 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 262 const llvm::function_ref<RValue(RValue)> &UpdateOp, 263 bool IsVolatile); 264 /// \brief Emit atomic update as LLVM instructions. 265 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, 266 const llvm::function_ref<RValue(RValue)> &UpdateOp, 267 bool IsVolatile); 268 /// \brief Emit atomic update as libcalls. 269 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, 270 bool IsVolatile); 271 /// \brief Emit atomic update as LLVM instructions. 272 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, 273 bool IsVolatile); 274 }; 275 } 276 277 AtomicExpr::AtomicOrderingKind 278 AtomicInfo::translateAtomicOrdering(const llvm::AtomicOrdering AO) { 279 switch (AO) { 280 case llvm::Unordered: 281 case llvm::NotAtomic: 282 case llvm::Monotonic: 283 return AtomicExpr::AO_ABI_memory_order_relaxed; 284 case llvm::Acquire: 285 return AtomicExpr::AO_ABI_memory_order_acquire; 286 case llvm::Release: 287 return AtomicExpr::AO_ABI_memory_order_release; 288 case llvm::AcquireRelease: 289 return AtomicExpr::AO_ABI_memory_order_acq_rel; 290 case llvm::SequentiallyConsistent: 291 return AtomicExpr::AO_ABI_memory_order_seq_cst; 292 } 293 llvm_unreachable("Unhandled AtomicOrdering"); 294 } 295 296 llvm::Value *AtomicInfo::CreateTempAlloca() const { 297 auto *TempAlloca = CGF.CreateMemTemp( 298 (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy 299 : AtomicTy, 300 "atomic-temp"); 301 TempAlloca->setAlignment(getAtomicAlignment().getQuantity()); 302 // Cast to pointer to value type for bitfields. 303 if (LVal.isBitField()) 304 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 305 TempAlloca, getAtomicAddress()->getType()); 306 return TempAlloca; 307 } 308 309 static RValue emitAtomicLibcall(CodeGenFunction &CGF, 310 StringRef fnName, 311 QualType resultType, 312 CallArgList &args) { 313 const CGFunctionInfo &fnInfo = 314 CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args, 315 FunctionType::ExtInfo(), RequiredArgs::All); 316 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); 317 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); 318 return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args); 319 } 320 321 /// Does a store of the given IR type modify the full expected width? 322 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, 323 uint64_t expectedSize) { 324 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); 325 } 326 327 /// Does the atomic type require memsetting to zero before initialization? 328 /// 329 /// The IR type is provided as a way of making certain queries faster. 330 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { 331 // If the atomic type has size padding, we definitely need a memset. 332 if (hasPadding()) return true; 333 334 // Otherwise, do some simple heuristics to try to avoid it: 335 switch (getEvaluationKind()) { 336 // For scalars and complexes, check whether the store size of the 337 // type uses the full size. 338 case TEK_Scalar: 339 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); 340 case TEK_Complex: 341 return !isFullSizeType(CGF.CGM, type->getStructElementType(0), 342 AtomicSizeInBits / 2); 343 344 // Padding in structs has an undefined bit pattern. User beware. 345 case TEK_Aggregate: 346 return false; 347 } 348 llvm_unreachable("bad evaluation kind"); 349 } 350 351 bool AtomicInfo::emitMemSetZeroIfNecessary() const { 352 assert(LVal.isSimple()); 353 llvm::Value *addr = LVal.getAddress(); 354 if (!requiresMemSetZero(addr->getType()->getPointerElementType())) 355 return false; 356 357 CGF.Builder.CreateMemSet( 358 addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), 359 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), 360 LVal.getAlignment().getQuantity()); 361 return true; 362 } 363 364 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, 365 llvm::Value *Dest, llvm::Value *Ptr, 366 llvm::Value *Val1, llvm::Value *Val2, 367 uint64_t Size, unsigned Align, 368 llvm::AtomicOrdering SuccessOrder, 369 llvm::AtomicOrdering FailureOrder) { 370 // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. 371 llvm::LoadInst *Expected = CGF.Builder.CreateLoad(Val1); 372 Expected->setAlignment(Align); 373 llvm::LoadInst *Desired = CGF.Builder.CreateLoad(Val2); 374 Desired->setAlignment(Align); 375 376 llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( 377 Ptr, Expected, Desired, SuccessOrder, FailureOrder); 378 Pair->setVolatile(E->isVolatile()); 379 Pair->setWeak(IsWeak); 380 381 // Cmp holds the result of the compare-exchange operation: true on success, 382 // false on failure. 383 llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); 384 llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); 385 386 // This basic block is used to hold the store instruction if the operation 387 // failed. 388 llvm::BasicBlock *StoreExpectedBB = 389 CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); 390 391 // This basic block is the exit point of the operation, we should end up 392 // here regardless of whether or not the operation succeeded. 393 llvm::BasicBlock *ContinueBB = 394 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 395 396 // Update Expected if Expected isn't equal to Old, otherwise branch to the 397 // exit point. 398 CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); 399 400 CGF.Builder.SetInsertPoint(StoreExpectedBB); 401 // Update the memory at Expected with Old's value. 402 llvm::StoreInst *StoreExpected = CGF.Builder.CreateStore(Old, Val1); 403 StoreExpected->setAlignment(Align); 404 // Finally, branch to the exit point. 405 CGF.Builder.CreateBr(ContinueBB); 406 407 CGF.Builder.SetInsertPoint(ContinueBB); 408 // Update the memory at Dest with Cmp's value. 409 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 410 return; 411 } 412 413 /// Given an ordering required on success, emit all possible cmpxchg 414 /// instructions to cope with the provided (but possibly only dynamically known) 415 /// FailureOrder. 416 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, 417 bool IsWeak, llvm::Value *Dest, 418 llvm::Value *Ptr, llvm::Value *Val1, 419 llvm::Value *Val2, 420 llvm::Value *FailureOrderVal, 421 uint64_t Size, unsigned Align, 422 llvm::AtomicOrdering SuccessOrder) { 423 llvm::AtomicOrdering FailureOrder; 424 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { 425 switch (FO->getSExtValue()) { 426 default: 427 FailureOrder = llvm::Monotonic; 428 break; 429 case AtomicExpr::AO_ABI_memory_order_consume: 430 case AtomicExpr::AO_ABI_memory_order_acquire: 431 FailureOrder = llvm::Acquire; 432 break; 433 case AtomicExpr::AO_ABI_memory_order_seq_cst: 434 FailureOrder = llvm::SequentiallyConsistent; 435 break; 436 } 437 if (FailureOrder >= SuccessOrder) { 438 // Don't assert on undefined behaviour. 439 FailureOrder = 440 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder); 441 } 442 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, Align, 443 SuccessOrder, FailureOrder); 444 return; 445 } 446 447 // Create all the relevant BB's 448 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 449 *SeqCstBB = nullptr; 450 MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); 451 if (SuccessOrder != llvm::Monotonic && SuccessOrder != llvm::Release) 452 AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); 453 if (SuccessOrder == llvm::SequentiallyConsistent) 454 SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); 455 456 llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); 457 458 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); 459 460 // Emit all the different atomics 461 462 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 463 // doesn't matter unless someone is crazy enough to use something that 464 // doesn't fold to a constant for the ordering. 465 CGF.Builder.SetInsertPoint(MonotonicBB); 466 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 467 Size, Align, SuccessOrder, llvm::Monotonic); 468 CGF.Builder.CreateBr(ContBB); 469 470 if (AcquireBB) { 471 CGF.Builder.SetInsertPoint(AcquireBB); 472 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 473 Size, Align, SuccessOrder, llvm::Acquire); 474 CGF.Builder.CreateBr(ContBB); 475 SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume), 476 AcquireBB); 477 SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire), 478 AcquireBB); 479 } 480 if (SeqCstBB) { 481 CGF.Builder.SetInsertPoint(SeqCstBB); 482 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 483 Size, Align, SuccessOrder, llvm::SequentiallyConsistent); 484 CGF.Builder.CreateBr(ContBB); 485 SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst), 486 SeqCstBB); 487 } 488 489 CGF.Builder.SetInsertPoint(ContBB); 490 } 491 492 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 493 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 494 llvm::Value *IsWeak, llvm::Value *FailureOrder, 495 uint64_t Size, unsigned Align, 496 llvm::AtomicOrdering Order) { 497 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 498 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 499 500 switch (E->getOp()) { 501 case AtomicExpr::AO__c11_atomic_init: 502 llvm_unreachable("Already handled!"); 503 504 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 505 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 506 FailureOrder, Size, Align, Order); 507 return; 508 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 509 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 510 FailureOrder, Size, Align, Order); 511 return; 512 case AtomicExpr::AO__atomic_compare_exchange: 513 case AtomicExpr::AO__atomic_compare_exchange_n: { 514 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { 515 emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, 516 Val1, Val2, FailureOrder, Size, Align, Order); 517 } else { 518 // Create all the relevant BB's 519 llvm::BasicBlock *StrongBB = 520 CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); 521 llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); 522 llvm::BasicBlock *ContBB = 523 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 524 525 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); 526 SI->addCase(CGF.Builder.getInt1(false), StrongBB); 527 528 CGF.Builder.SetInsertPoint(StrongBB); 529 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 530 FailureOrder, Size, Align, Order); 531 CGF.Builder.CreateBr(ContBB); 532 533 CGF.Builder.SetInsertPoint(WeakBB); 534 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 535 FailureOrder, Size, Align, Order); 536 CGF.Builder.CreateBr(ContBB); 537 538 CGF.Builder.SetInsertPoint(ContBB); 539 } 540 return; 541 } 542 case AtomicExpr::AO__c11_atomic_load: 543 case AtomicExpr::AO__atomic_load_n: 544 case AtomicExpr::AO__atomic_load: { 545 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 546 Load->setAtomic(Order); 547 Load->setAlignment(Size); 548 Load->setVolatile(E->isVolatile()); 549 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 550 StoreDest->setAlignment(Align); 551 return; 552 } 553 554 case AtomicExpr::AO__c11_atomic_store: 555 case AtomicExpr::AO__atomic_store: 556 case AtomicExpr::AO__atomic_store_n: { 557 assert(!Dest && "Store does not return a value"); 558 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 559 LoadVal1->setAlignment(Align); 560 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 561 Store->setAtomic(Order); 562 Store->setAlignment(Size); 563 Store->setVolatile(E->isVolatile()); 564 return; 565 } 566 567 case AtomicExpr::AO__c11_atomic_exchange: 568 case AtomicExpr::AO__atomic_exchange_n: 569 case AtomicExpr::AO__atomic_exchange: 570 Op = llvm::AtomicRMWInst::Xchg; 571 break; 572 573 case AtomicExpr::AO__atomic_add_fetch: 574 PostOp = llvm::Instruction::Add; 575 // Fall through. 576 case AtomicExpr::AO__c11_atomic_fetch_add: 577 case AtomicExpr::AO__atomic_fetch_add: 578 Op = llvm::AtomicRMWInst::Add; 579 break; 580 581 case AtomicExpr::AO__atomic_sub_fetch: 582 PostOp = llvm::Instruction::Sub; 583 // Fall through. 584 case AtomicExpr::AO__c11_atomic_fetch_sub: 585 case AtomicExpr::AO__atomic_fetch_sub: 586 Op = llvm::AtomicRMWInst::Sub; 587 break; 588 589 case AtomicExpr::AO__atomic_and_fetch: 590 PostOp = llvm::Instruction::And; 591 // Fall through. 592 case AtomicExpr::AO__c11_atomic_fetch_and: 593 case AtomicExpr::AO__atomic_fetch_and: 594 Op = llvm::AtomicRMWInst::And; 595 break; 596 597 case AtomicExpr::AO__atomic_or_fetch: 598 PostOp = llvm::Instruction::Or; 599 // Fall through. 600 case AtomicExpr::AO__c11_atomic_fetch_or: 601 case AtomicExpr::AO__atomic_fetch_or: 602 Op = llvm::AtomicRMWInst::Or; 603 break; 604 605 case AtomicExpr::AO__atomic_xor_fetch: 606 PostOp = llvm::Instruction::Xor; 607 // Fall through. 608 case AtomicExpr::AO__c11_atomic_fetch_xor: 609 case AtomicExpr::AO__atomic_fetch_xor: 610 Op = llvm::AtomicRMWInst::Xor; 611 break; 612 613 case AtomicExpr::AO__atomic_nand_fetch: 614 PostOp = llvm::Instruction::And; 615 // Fall through. 616 case AtomicExpr::AO__atomic_fetch_nand: 617 Op = llvm::AtomicRMWInst::Nand; 618 break; 619 } 620 621 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 622 LoadVal1->setAlignment(Align); 623 llvm::AtomicRMWInst *RMWI = 624 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 625 RMWI->setVolatile(E->isVolatile()); 626 627 // For __atomic_*_fetch operations, perform the operation again to 628 // determine the value which was written. 629 llvm::Value *Result = RMWI; 630 if (PostOp) 631 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 632 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 633 Result = CGF.Builder.CreateNot(Result); 634 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 635 StoreDest->setAlignment(Align); 636 } 637 638 // This function emits any expression (scalar, complex, or aggregate) 639 // into a temporary alloca. 640 static llvm::Value * 641 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 642 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 643 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 644 /*Init*/ true); 645 return DeclPtr; 646 } 647 648 static void 649 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, 650 bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, 651 SourceLocation Loc, CharUnits SizeInChars) { 652 if (UseOptimizedLibcall) { 653 // Load value and pass it to the function directly. 654 unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity(); 655 int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); 656 ValTy = 657 CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); 658 llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(), 659 SizeInBits)->getPointerTo(); 660 Val = CGF.EmitLoadOfScalar(CGF.Builder.CreateBitCast(Val, IPtrTy), false, 661 Align, CGF.getContext().getPointerType(ValTy), 662 Loc); 663 // Coerce the value into an appropriately sized integer type. 664 Args.add(RValue::get(Val), ValTy); 665 } else { 666 // Non-optimized functions always take a reference. 667 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), 668 CGF.getContext().VoidPtrTy); 669 } 670 } 671 672 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 673 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 674 QualType MemTy = AtomicTy; 675 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 676 MemTy = AT->getValueType(); 677 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 678 uint64_t Size = sizeChars.getQuantity(); 679 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 680 unsigned Align = alignChars.getQuantity(); 681 unsigned MaxInlineWidthInBits = 682 getTarget().getMaxAtomicInlineWidth(); 683 bool UseLibcall = (Size != Align || 684 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 685 686 llvm::Value *IsWeak = nullptr, *OrderFail = nullptr, *Val1 = nullptr, 687 *Val2 = nullptr; 688 llvm::Value *Ptr = EmitScalarExpr(E->getPtr()); 689 690 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 691 assert(!Dest && "Init does not return a value"); 692 LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext()); 693 EmitAtomicInit(E->getVal1(), lvalue); 694 return RValue::get(nullptr); 695 } 696 697 llvm::Value *Order = EmitScalarExpr(E->getOrder()); 698 699 switch (E->getOp()) { 700 case AtomicExpr::AO__c11_atomic_init: 701 llvm_unreachable("Already handled!"); 702 703 case AtomicExpr::AO__c11_atomic_load: 704 case AtomicExpr::AO__atomic_load_n: 705 break; 706 707 case AtomicExpr::AO__atomic_load: 708 Dest = EmitScalarExpr(E->getVal1()); 709 break; 710 711 case AtomicExpr::AO__atomic_store: 712 Val1 = EmitScalarExpr(E->getVal1()); 713 break; 714 715 case AtomicExpr::AO__atomic_exchange: 716 Val1 = EmitScalarExpr(E->getVal1()); 717 Dest = EmitScalarExpr(E->getVal2()); 718 break; 719 720 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 721 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 722 case AtomicExpr::AO__atomic_compare_exchange_n: 723 case AtomicExpr::AO__atomic_compare_exchange: 724 Val1 = EmitScalarExpr(E->getVal1()); 725 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 726 Val2 = EmitScalarExpr(E->getVal2()); 727 else 728 Val2 = EmitValToTemp(*this, E->getVal2()); 729 OrderFail = EmitScalarExpr(E->getOrderFail()); 730 if (E->getNumSubExprs() == 6) 731 IsWeak = EmitScalarExpr(E->getWeak()); 732 break; 733 734 case AtomicExpr::AO__c11_atomic_fetch_add: 735 case AtomicExpr::AO__c11_atomic_fetch_sub: 736 if (MemTy->isPointerType()) { 737 // For pointer arithmetic, we're required to do a bit of math: 738 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 739 // ... but only for the C11 builtins. The GNU builtins expect the 740 // user to multiply by sizeof(T). 741 QualType Val1Ty = E->getVal1()->getType(); 742 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 743 CharUnits PointeeIncAmt = 744 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 745 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 746 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 747 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 748 break; 749 } 750 // Fall through. 751 case AtomicExpr::AO__atomic_fetch_add: 752 case AtomicExpr::AO__atomic_fetch_sub: 753 case AtomicExpr::AO__atomic_add_fetch: 754 case AtomicExpr::AO__atomic_sub_fetch: 755 case AtomicExpr::AO__c11_atomic_store: 756 case AtomicExpr::AO__c11_atomic_exchange: 757 case AtomicExpr::AO__atomic_store_n: 758 case AtomicExpr::AO__atomic_exchange_n: 759 case AtomicExpr::AO__c11_atomic_fetch_and: 760 case AtomicExpr::AO__c11_atomic_fetch_or: 761 case AtomicExpr::AO__c11_atomic_fetch_xor: 762 case AtomicExpr::AO__atomic_fetch_and: 763 case AtomicExpr::AO__atomic_fetch_or: 764 case AtomicExpr::AO__atomic_fetch_xor: 765 case AtomicExpr::AO__atomic_fetch_nand: 766 case AtomicExpr::AO__atomic_and_fetch: 767 case AtomicExpr::AO__atomic_or_fetch: 768 case AtomicExpr::AO__atomic_xor_fetch: 769 case AtomicExpr::AO__atomic_nand_fetch: 770 Val1 = EmitValToTemp(*this, E->getVal1()); 771 break; 772 } 773 774 QualType RValTy = E->getType().getUnqualifiedType(); 775 776 auto GetDest = [&] { 777 if (!RValTy->isVoidType() && !Dest) { 778 Dest = CreateMemTemp(RValTy, ".atomicdst"); 779 } 780 return Dest; 781 }; 782 783 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 784 if (UseLibcall) { 785 bool UseOptimizedLibcall = false; 786 switch (E->getOp()) { 787 case AtomicExpr::AO__c11_atomic_fetch_add: 788 case AtomicExpr::AO__atomic_fetch_add: 789 case AtomicExpr::AO__c11_atomic_fetch_and: 790 case AtomicExpr::AO__atomic_fetch_and: 791 case AtomicExpr::AO__c11_atomic_fetch_or: 792 case AtomicExpr::AO__atomic_fetch_or: 793 case AtomicExpr::AO__c11_atomic_fetch_sub: 794 case AtomicExpr::AO__atomic_fetch_sub: 795 case AtomicExpr::AO__c11_atomic_fetch_xor: 796 case AtomicExpr::AO__atomic_fetch_xor: 797 // For these, only library calls for certain sizes exist. 798 UseOptimizedLibcall = true; 799 break; 800 default: 801 // Only use optimized library calls for sizes for which they exist. 802 if (Size == 1 || Size == 2 || Size == 4 || Size == 8) 803 UseOptimizedLibcall = true; 804 break; 805 } 806 807 CallArgList Args; 808 if (!UseOptimizedLibcall) { 809 // For non-optimized library calls, the size is the first parameter 810 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 811 getContext().getSizeType()); 812 } 813 // Atomic address is the first or second parameter 814 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), getContext().VoidPtrTy); 815 816 std::string LibCallName; 817 QualType LoweredMemTy = 818 MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; 819 QualType RetTy; 820 bool HaveRetTy = false; 821 switch (E->getOp()) { 822 // There is only one libcall for compare an exchange, because there is no 823 // optimisation benefit possible from a libcall version of a weak compare 824 // and exchange. 825 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, 826 // void *desired, int success, int failure) 827 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, 828 // int success, int failure) 829 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 830 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 831 case AtomicExpr::AO__atomic_compare_exchange: 832 case AtomicExpr::AO__atomic_compare_exchange_n: 833 LibCallName = "__atomic_compare_exchange"; 834 RetTy = getContext().BoolTy; 835 HaveRetTy = true; 836 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), getContext().VoidPtrTy); 837 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy, 838 E->getExprLoc(), sizeChars); 839 Args.add(RValue::get(Order), getContext().IntTy); 840 Order = OrderFail; 841 break; 842 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 843 // int order) 844 // T __atomic_exchange_N(T *mem, T val, int order) 845 case AtomicExpr::AO__c11_atomic_exchange: 846 case AtomicExpr::AO__atomic_exchange_n: 847 case AtomicExpr::AO__atomic_exchange: 848 LibCallName = "__atomic_exchange"; 849 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy, 850 E->getExprLoc(), sizeChars); 851 break; 852 // void __atomic_store(size_t size, void *mem, void *val, int order) 853 // void __atomic_store_N(T *mem, T val, int order) 854 case AtomicExpr::AO__c11_atomic_store: 855 case AtomicExpr::AO__atomic_store: 856 case AtomicExpr::AO__atomic_store_n: 857 LibCallName = "__atomic_store"; 858 RetTy = getContext().VoidTy; 859 HaveRetTy = true; 860 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy, 861 E->getExprLoc(), sizeChars); 862 break; 863 // void __atomic_load(size_t size, void *mem, void *return, int order) 864 // T __atomic_load_N(T *mem, int order) 865 case AtomicExpr::AO__c11_atomic_load: 866 case AtomicExpr::AO__atomic_load: 867 case AtomicExpr::AO__atomic_load_n: 868 LibCallName = "__atomic_load"; 869 break; 870 // T __atomic_fetch_add_N(T *mem, T val, int order) 871 case AtomicExpr::AO__c11_atomic_fetch_add: 872 case AtomicExpr::AO__atomic_fetch_add: 873 LibCallName = "__atomic_fetch_add"; 874 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy, 875 E->getExprLoc(), sizeChars); 876 break; 877 // T __atomic_fetch_and_N(T *mem, T val, int order) 878 case AtomicExpr::AO__c11_atomic_fetch_and: 879 case AtomicExpr::AO__atomic_fetch_and: 880 LibCallName = "__atomic_fetch_and"; 881 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy, 882 E->getExprLoc(), sizeChars); 883 break; 884 // T __atomic_fetch_or_N(T *mem, T val, int order) 885 case AtomicExpr::AO__c11_atomic_fetch_or: 886 case AtomicExpr::AO__atomic_fetch_or: 887 LibCallName = "__atomic_fetch_or"; 888 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy, 889 E->getExprLoc(), sizeChars); 890 break; 891 // T __atomic_fetch_sub_N(T *mem, T val, int order) 892 case AtomicExpr::AO__c11_atomic_fetch_sub: 893 case AtomicExpr::AO__atomic_fetch_sub: 894 LibCallName = "__atomic_fetch_sub"; 895 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy, 896 E->getExprLoc(), sizeChars); 897 break; 898 // T __atomic_fetch_xor_N(T *mem, T val, int order) 899 case AtomicExpr::AO__c11_atomic_fetch_xor: 900 case AtomicExpr::AO__atomic_fetch_xor: 901 LibCallName = "__atomic_fetch_xor"; 902 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy, 903 E->getExprLoc(), sizeChars); 904 break; 905 default: return EmitUnsupportedRValue(E, "atomic library call"); 906 } 907 908 // Optimized functions have the size in their name. 909 if (UseOptimizedLibcall) 910 LibCallName += "_" + llvm::utostr(Size); 911 // By default, assume we return a value of the atomic type. 912 if (!HaveRetTy) { 913 if (UseOptimizedLibcall) { 914 // Value is returned directly. 915 // The function returns an appropriately sized integer type. 916 RetTy = getContext().getIntTypeForBitwidth( 917 getContext().toBits(sizeChars), /*Signed=*/false); 918 } else { 919 // Value is returned through parameter before the order. 920 RetTy = getContext().VoidTy; 921 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), getContext().VoidPtrTy); 922 } 923 } 924 // order is always the last parameter 925 Args.add(RValue::get(Order), 926 getContext().IntTy); 927 928 RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); 929 // The value is returned directly from the libcall. 930 if (HaveRetTy && !RetTy->isVoidType()) 931 return Res; 932 // The value is returned via an explicit out param. 933 if (RetTy->isVoidType()) 934 return RValue::get(nullptr); 935 // The value is returned directly for optimized libcalls but the caller is 936 // expected an out-param. 937 if (UseOptimizedLibcall) { 938 llvm::Value *ResVal = Res.getScalarVal(); 939 llvm::StoreInst *StoreDest = Builder.CreateStore( 940 ResVal, 941 Builder.CreateBitCast(GetDest(), ResVal->getType()->getPointerTo())); 942 StoreDest->setAlignment(Align); 943 } 944 return convertTempToRValue(Dest, RValTy, E->getExprLoc()); 945 } 946 947 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 948 E->getOp() == AtomicExpr::AO__atomic_store || 949 E->getOp() == AtomicExpr::AO__atomic_store_n; 950 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 951 E->getOp() == AtomicExpr::AO__atomic_load || 952 E->getOp() == AtomicExpr::AO__atomic_load_n; 953 954 llvm::Type *ITy = 955 llvm::IntegerType::get(getLLVMContext(), Size * 8); 956 llvm::Value *OrigDest = GetDest(); 957 Ptr = Builder.CreateBitCast( 958 Ptr, ITy->getPointerTo(Ptr->getType()->getPointerAddressSpace())); 959 if (Val1) Val1 = Builder.CreateBitCast(Val1, ITy->getPointerTo()); 960 if (Val2) Val2 = Builder.CreateBitCast(Val2, ITy->getPointerTo()); 961 if (Dest && !E->isCmpXChg()) 962 Dest = Builder.CreateBitCast(Dest, ITy->getPointerTo()); 963 964 if (isa<llvm::ConstantInt>(Order)) { 965 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 966 switch (ord) { 967 case AtomicExpr::AO_ABI_memory_order_relaxed: 968 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 969 Size, Align, llvm::Monotonic); 970 break; 971 case AtomicExpr::AO_ABI_memory_order_consume: 972 case AtomicExpr::AO_ABI_memory_order_acquire: 973 if (IsStore) 974 break; // Avoid crashing on code with undefined behavior 975 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 976 Size, Align, llvm::Acquire); 977 break; 978 case AtomicExpr::AO_ABI_memory_order_release: 979 if (IsLoad) 980 break; // Avoid crashing on code with undefined behavior 981 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 982 Size, Align, llvm::Release); 983 break; 984 case AtomicExpr::AO_ABI_memory_order_acq_rel: 985 if (IsLoad || IsStore) 986 break; // Avoid crashing on code with undefined behavior 987 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 988 Size, Align, llvm::AcquireRelease); 989 break; 990 case AtomicExpr::AO_ABI_memory_order_seq_cst: 991 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 992 Size, Align, llvm::SequentiallyConsistent); 993 break; 994 default: // invalid order 995 // We should not ever get here normally, but it's hard to 996 // enforce that in general. 997 break; 998 } 999 if (RValTy->isVoidType()) 1000 return RValue::get(nullptr); 1001 return convertTempToRValue(OrigDest, RValTy, E->getExprLoc()); 1002 } 1003 1004 // Long case, when Order isn't obviously constant. 1005 1006 // Create all the relevant BB's 1007 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 1008 *ReleaseBB = nullptr, *AcqRelBB = nullptr, 1009 *SeqCstBB = nullptr; 1010 MonotonicBB = createBasicBlock("monotonic", CurFn); 1011 if (!IsStore) 1012 AcquireBB = createBasicBlock("acquire", CurFn); 1013 if (!IsLoad) 1014 ReleaseBB = createBasicBlock("release", CurFn); 1015 if (!IsLoad && !IsStore) 1016 AcqRelBB = createBasicBlock("acqrel", CurFn); 1017 SeqCstBB = createBasicBlock("seqcst", CurFn); 1018 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1019 1020 // Create the switch for the split 1021 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 1022 // doesn't matter unless someone is crazy enough to use something that 1023 // doesn't fold to a constant for the ordering. 1024 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1025 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 1026 1027 // Emit all the different atomics 1028 Builder.SetInsertPoint(MonotonicBB); 1029 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1030 Size, Align, llvm::Monotonic); 1031 Builder.CreateBr(ContBB); 1032 if (!IsStore) { 1033 Builder.SetInsertPoint(AcquireBB); 1034 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1035 Size, Align, llvm::Acquire); 1036 Builder.CreateBr(ContBB); 1037 SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume), 1038 AcquireBB); 1039 SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire), 1040 AcquireBB); 1041 } 1042 if (!IsLoad) { 1043 Builder.SetInsertPoint(ReleaseBB); 1044 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1045 Size, Align, llvm::Release); 1046 Builder.CreateBr(ContBB); 1047 SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_release), 1048 ReleaseBB); 1049 } 1050 if (!IsLoad && !IsStore) { 1051 Builder.SetInsertPoint(AcqRelBB); 1052 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1053 Size, Align, llvm::AcquireRelease); 1054 Builder.CreateBr(ContBB); 1055 SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acq_rel), 1056 AcqRelBB); 1057 } 1058 Builder.SetInsertPoint(SeqCstBB); 1059 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, 1060 Size, Align, llvm::SequentiallyConsistent); 1061 Builder.CreateBr(ContBB); 1062 SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst), 1063 SeqCstBB); 1064 1065 // Cleanup and return 1066 Builder.SetInsertPoint(ContBB); 1067 if (RValTy->isVoidType()) 1068 return RValue::get(nullptr); 1069 return convertTempToRValue(OrigDest, RValTy, E->getExprLoc()); 1070 } 1071 1072 llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const { 1073 unsigned addrspace = 1074 cast<llvm::PointerType>(addr->getType())->getAddressSpace(); 1075 llvm::IntegerType *ty = 1076 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); 1077 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); 1078 } 1079 1080 RValue AtomicInfo::convertTempToRValue(llvm::Value *addr, 1081 AggValueSlot resultSlot, 1082 SourceLocation loc, bool AsValue) const { 1083 if (LVal.isSimple()) { 1084 if (EvaluationKind == TEK_Aggregate) 1085 return resultSlot.asRValue(); 1086 1087 // Drill into the padding structure if we have one. 1088 if (hasPadding()) 1089 addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0); 1090 1091 // Otherwise, just convert the temporary to an r-value using the 1092 // normal conversion routine. 1093 return CGF.convertTempToRValue(addr, getValueType(), loc); 1094 } 1095 if (!AsValue) 1096 // Get RValue from temp memory as atomic for non-simple lvalues 1097 return RValue::get( 1098 CGF.Builder.CreateAlignedLoad(addr, AtomicAlign.getQuantity())); 1099 if (LVal.isBitField()) 1100 return CGF.EmitLoadOfBitfieldLValue(LValue::MakeBitfield( 1101 addr, LVal.getBitFieldInfo(), LVal.getType(), LVal.getAlignment())); 1102 if (LVal.isVectorElt()) 1103 return CGF.EmitLoadOfLValue(LValue::MakeVectorElt(addr, LVal.getVectorIdx(), 1104 LVal.getType(), 1105 LVal.getAlignment()), 1106 loc); 1107 assert(LVal.isExtVectorElt()); 1108 return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( 1109 addr, LVal.getExtVectorElts(), LVal.getType(), LVal.getAlignment())); 1110 } 1111 1112 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, 1113 AggValueSlot ResultSlot, 1114 SourceLocation Loc, 1115 bool AsValue) const { 1116 // Try not to in some easy cases. 1117 assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); 1118 if (getEvaluationKind() == TEK_Scalar && 1119 (((!LVal.isBitField() || 1120 LVal.getBitFieldInfo().Size == ValueSizeInBits) && 1121 !hasPadding()) || 1122 !AsValue)) { 1123 auto *ValTy = AsValue 1124 ? CGF.ConvertTypeForMem(ValueTy) 1125 : getAtomicAddress()->getType()->getPointerElementType(); 1126 if (ValTy->isIntegerTy()) { 1127 assert(IntVal->getType() == ValTy && "Different integer types."); 1128 return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); 1129 } else if (ValTy->isPointerTy()) 1130 return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); 1131 else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) 1132 return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); 1133 } 1134 1135 // Create a temporary. This needs to be big enough to hold the 1136 // atomic integer. 1137 llvm::Value *Temp; 1138 bool TempIsVolatile = false; 1139 CharUnits TempAlignment; 1140 if (AsValue && getEvaluationKind() == TEK_Aggregate) { 1141 assert(!ResultSlot.isIgnored()); 1142 Temp = ResultSlot.getAddr(); 1143 TempAlignment = getValueAlignment(); 1144 TempIsVolatile = ResultSlot.isVolatile(); 1145 } else { 1146 Temp = CreateTempAlloca(); 1147 TempAlignment = getAtomicAlignment(); 1148 } 1149 1150 // Slam the integer into the temporary. 1151 llvm::Value *CastTemp = emitCastToAtomicIntPointer(Temp); 1152 CGF.Builder.CreateAlignedStore(IntVal, CastTemp, TempAlignment.getQuantity()) 1153 ->setVolatile(TempIsVolatile); 1154 1155 return convertTempToRValue(Temp, ResultSlot, Loc, AsValue); 1156 } 1157 1158 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 1159 llvm::AtomicOrdering AO, bool) { 1160 // void __atomic_load(size_t size, void *mem, void *return, int order); 1161 CallArgList Args; 1162 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1163 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())), 1164 CGF.getContext().VoidPtrTy); 1165 Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)), 1166 CGF.getContext().VoidPtrTy); 1167 Args.add(RValue::get( 1168 llvm::ConstantInt::get(CGF.IntTy, translateAtomicOrdering(AO))), 1169 CGF.getContext().IntTy); 1170 emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); 1171 } 1172 1173 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, 1174 bool IsVolatile) { 1175 // Okay, we're doing this natively. 1176 llvm::Value *Addr = emitCastToAtomicIntPointer(getAtomicAddress()); 1177 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); 1178 Load->setAtomic(AO); 1179 1180 // Other decoration. 1181 Load->setAlignment(getAtomicAlignment().getQuantity()); 1182 if (IsVolatile) 1183 Load->setVolatile(true); 1184 if (LVal.getTBAAInfo()) 1185 CGF.CGM.DecorateInstruction(Load, LVal.getTBAAInfo()); 1186 return Load; 1187 } 1188 1189 /// An LValue is a candidate for having its loads and stores be made atomic if 1190 /// we are operating under /volatile:ms *and* the LValue itself is volatile and 1191 /// performing such an operation can be performed without a libcall. 1192 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { 1193 AtomicInfo AI(*this, LV); 1194 bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); 1195 // An atomic is inline if we don't need to use a libcall. 1196 bool AtomicIsInline = !AI.shouldUseLibcall(); 1197 return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline; 1198 } 1199 1200 /// An type is a candidate for having its loads and stores be made atomic if 1201 /// we are operating under /volatile:ms *and* we know the access is volatile and 1202 /// performing such an operation can be performed without a libcall. 1203 bool CodeGenFunction::typeIsSuitableForInlineAtomic(QualType Ty, 1204 bool IsVolatile) const { 1205 // An atomic is inline if we don't need to use a libcall (e.g. it is builtin). 1206 bool AtomicIsInline = getContext().getTargetInfo().hasBuiltinAtomic( 1207 getContext().getTypeSize(Ty), getContext().getTypeAlign(Ty)); 1208 return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline; 1209 } 1210 1211 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, 1212 AggValueSlot Slot) { 1213 llvm::AtomicOrdering AO; 1214 bool IsVolatile = LV.isVolatileQualified(); 1215 if (LV.getType()->isAtomicType()) { 1216 AO = llvm::SequentiallyConsistent; 1217 } else { 1218 AO = llvm::Acquire; 1219 IsVolatile = true; 1220 } 1221 return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); 1222 } 1223 1224 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 1225 bool AsValue, llvm::AtomicOrdering AO, 1226 bool IsVolatile) { 1227 // Check whether we should use a library call. 1228 if (shouldUseLibcall()) { 1229 llvm::Value *TempAddr; 1230 if (LVal.isSimple() && !ResultSlot.isIgnored()) { 1231 assert(getEvaluationKind() == TEK_Aggregate); 1232 TempAddr = ResultSlot.getAddr(); 1233 } else 1234 TempAddr = CreateTempAlloca(); 1235 1236 EmitAtomicLoadLibcall(TempAddr, AO, IsVolatile); 1237 1238 // Okay, turn that back into the original value or whole atomic (for 1239 // non-simple lvalues) type. 1240 return convertTempToRValue(TempAddr, ResultSlot, Loc, AsValue); 1241 } 1242 1243 // Okay, we're doing this natively. 1244 auto *Load = EmitAtomicLoadOp(AO, IsVolatile); 1245 1246 // If we're ignoring an aggregate return, don't do anything. 1247 if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) 1248 return RValue::getAggregate(nullptr, false); 1249 1250 // Okay, turn that back into the original value or atomic (for non-simple 1251 // lvalues) type. 1252 return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); 1253 } 1254 1255 /// Emit a load from an l-value of atomic type. Note that the r-value 1256 /// we produce is an r-value of the atomic *value* type. 1257 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, 1258 llvm::AtomicOrdering AO, bool IsVolatile, 1259 AggValueSlot resultSlot) { 1260 AtomicInfo Atomics(*this, src); 1261 return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, 1262 IsVolatile); 1263 } 1264 1265 /// Copy an r-value into memory as part of storing to an atomic type. 1266 /// This needs to create a bit-pattern suitable for atomic operations. 1267 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { 1268 assert(LVal.isSimple()); 1269 // If we have an r-value, the rvalue should be of the atomic type, 1270 // which means that the caller is responsible for having zeroed 1271 // any padding. Just do an aggregate copy of that type. 1272 if (rvalue.isAggregate()) { 1273 CGF.EmitAggregateCopy(getAtomicAddress(), 1274 rvalue.getAggregateAddr(), 1275 getAtomicType(), 1276 (rvalue.isVolatileQualified() 1277 || LVal.isVolatileQualified()), 1278 LVal.getAlignment()); 1279 return; 1280 } 1281 1282 // Okay, otherwise we're copying stuff. 1283 1284 // Zero out the buffer if necessary. 1285 emitMemSetZeroIfNecessary(); 1286 1287 // Drill past the padding if present. 1288 LValue TempLVal = projectValue(); 1289 1290 // Okay, store the rvalue in. 1291 if (rvalue.isScalar()) { 1292 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); 1293 } else { 1294 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); 1295 } 1296 } 1297 1298 1299 /// Materialize an r-value into memory for the purposes of storing it 1300 /// to an atomic type. 1301 llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const { 1302 // Aggregate r-values are already in memory, and EmitAtomicStore 1303 // requires them to be values of the atomic type. 1304 if (rvalue.isAggregate()) 1305 return rvalue.getAggregateAddr(); 1306 1307 // Otherwise, make a temporary and materialize into it. 1308 LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType(), 1309 getAtomicAlignment()); 1310 AtomicInfo Atomics(CGF, TempLV); 1311 Atomics.emitCopyIntoMemory(rvalue); 1312 return TempLV.getAddress(); 1313 } 1314 1315 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { 1316 // If we've got a scalar value of the right size, try to avoid going 1317 // through memory. 1318 if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { 1319 llvm::Value *Value = RVal.getScalarVal(); 1320 if (isa<llvm::IntegerType>(Value->getType())) 1321 return CGF.EmitToMemory(Value, ValueTy); 1322 else { 1323 llvm::IntegerType *InputIntTy = llvm::IntegerType::get( 1324 CGF.getLLVMContext(), 1325 LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); 1326 if (isa<llvm::PointerType>(Value->getType())) 1327 return CGF.Builder.CreatePtrToInt(Value, InputIntTy); 1328 else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) 1329 return CGF.Builder.CreateBitCast(Value, InputIntTy); 1330 } 1331 } 1332 // Otherwise, we need to go through memory. 1333 // Put the r-value in memory. 1334 llvm::Value *Addr = materializeRValue(RVal); 1335 1336 // Cast the temporary to the atomic int type and pull a value out. 1337 Addr = emitCastToAtomicIntPointer(Addr); 1338 return CGF.Builder.CreateAlignedLoad(Addr, 1339 getAtomicAlignment().getQuantity()); 1340 } 1341 1342 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( 1343 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 1344 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { 1345 // Do the atomic store. 1346 auto *Addr = emitCastToAtomicIntPointer(getAtomicAddress()); 1347 auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, ExpectedVal, DesiredVal, 1348 Success, Failure); 1349 // Other decoration. 1350 Inst->setVolatile(LVal.isVolatileQualified()); 1351 Inst->setWeak(IsWeak); 1352 1353 // Okay, turn that back into the original value type. 1354 auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); 1355 auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); 1356 return std::make_pair(PreviousVal, SuccessFailureVal); 1357 } 1358 1359 llvm::Value * 1360 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, 1361 llvm::Value *DesiredAddr, 1362 llvm::AtomicOrdering Success, 1363 llvm::AtomicOrdering Failure) { 1364 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 1365 // void *desired, int success, int failure); 1366 CallArgList Args; 1367 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1368 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())), 1369 CGF.getContext().VoidPtrTy); 1370 Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)), 1371 CGF.getContext().VoidPtrTy); 1372 Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)), 1373 CGF.getContext().VoidPtrTy); 1374 Args.add(RValue::get(llvm::ConstantInt::get( 1375 CGF.IntTy, translateAtomicOrdering(Success))), 1376 CGF.getContext().IntTy); 1377 Args.add(RValue::get(llvm::ConstantInt::get( 1378 CGF.IntTy, translateAtomicOrdering(Failure))), 1379 CGF.getContext().IntTy); 1380 auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", 1381 CGF.getContext().BoolTy, Args); 1382 1383 return SuccessFailureRVal.getScalarVal(); 1384 } 1385 1386 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( 1387 RValue Expected, RValue Desired, llvm::AtomicOrdering Success, 1388 llvm::AtomicOrdering Failure, bool IsWeak) { 1389 if (Failure >= Success) 1390 // Don't assert on undefined behavior. 1391 Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success); 1392 1393 // Check whether we should use a library call. 1394 if (shouldUseLibcall()) { 1395 // Produce a source address. 1396 auto *ExpectedAddr = materializeRValue(Expected); 1397 auto *DesiredAddr = materializeRValue(Desired); 1398 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, 1399 Success, Failure); 1400 return std::make_pair( 1401 convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(), 1402 SourceLocation(), /*AsValue=*/false), 1403 Res); 1404 } 1405 1406 // If we've got a scalar value of the right size, try to avoid going 1407 // through memory. 1408 auto *ExpectedVal = convertRValueToInt(Expected); 1409 auto *DesiredVal = convertRValueToInt(Desired); 1410 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, 1411 Failure, IsWeak); 1412 return std::make_pair( 1413 ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), 1414 SourceLocation(), /*AsValue=*/false), 1415 Res.second); 1416 } 1417 1418 static void 1419 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, 1420 const llvm::function_ref<RValue(RValue)> &UpdateOp, 1421 llvm::Value *DesiredAddr) { 1422 llvm::Value *Ptr = nullptr; 1423 LValue UpdateLVal; 1424 RValue UpRVal; 1425 LValue AtomicLVal = Atomics.getAtomicLValue(); 1426 LValue DesiredLVal; 1427 if (AtomicLVal.isSimple()) { 1428 UpRVal = OldRVal; 1429 DesiredLVal = 1430 LValue::MakeAddr(DesiredAddr, AtomicLVal.getType(), 1431 AtomicLVal.getAlignment(), CGF.CGM.getContext()); 1432 } else { 1433 // Build new lvalue for temp address 1434 Ptr = Atomics.materializeRValue(OldRVal); 1435 if (AtomicLVal.isBitField()) { 1436 UpdateLVal = 1437 LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), 1438 AtomicLVal.getType(), AtomicLVal.getAlignment()); 1439 DesiredLVal = 1440 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1441 AtomicLVal.getType(), AtomicLVal.getAlignment()); 1442 } else if (AtomicLVal.isVectorElt()) { 1443 UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), 1444 AtomicLVal.getType(), 1445 AtomicLVal.getAlignment()); 1446 DesiredLVal = LValue::MakeVectorElt( 1447 DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), 1448 AtomicLVal.getAlignment()); 1449 } else { 1450 assert(AtomicLVal.isExtVectorElt()); 1451 UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), 1452 AtomicLVal.getType(), 1453 AtomicLVal.getAlignment()); 1454 DesiredLVal = LValue::MakeExtVectorElt( 1455 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1456 AtomicLVal.getAlignment()); 1457 } 1458 UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1459 DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1460 UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); 1461 } 1462 // Store new value in the corresponding memory area 1463 RValue NewRVal = UpdateOp(UpRVal); 1464 if (NewRVal.isScalar()) { 1465 CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); 1466 } else { 1467 assert(NewRVal.isComplex()); 1468 CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, 1469 /*isInit=*/false); 1470 } 1471 } 1472 1473 void AtomicInfo::EmitAtomicUpdateLibcall( 1474 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1475 bool IsVolatile) { 1476 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1477 1478 llvm::Value *ExpectedAddr = CreateTempAlloca(); 1479 1480 EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile); 1481 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1482 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1483 CGF.EmitBlock(ContBB); 1484 auto *DesiredAddr = CreateTempAlloca(); 1485 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1486 requiresMemSetZero( 1487 getAtomicAddress()->getType()->getPointerElementType())) { 1488 auto *OldVal = CGF.Builder.CreateAlignedLoad( 1489 ExpectedAddr, getAtomicAlignment().getQuantity()); 1490 CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr, 1491 getAtomicAlignment().getQuantity()); 1492 } 1493 auto OldRVal = convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(), 1494 SourceLocation(), /*AsValue=*/false); 1495 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); 1496 auto *Res = 1497 EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure); 1498 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1499 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1500 } 1501 1502 void AtomicInfo::EmitAtomicUpdateOp( 1503 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1504 bool IsVolatile) { 1505 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1506 1507 // Do the atomic load. 1508 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1509 // For non-simple lvalues perform compare-and-swap procedure. 1510 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1511 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1512 auto *CurBB = CGF.Builder.GetInsertBlock(); 1513 CGF.EmitBlock(ContBB); 1514 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1515 /*NumReservedValues=*/2); 1516 PHI->addIncoming(OldVal, CurBB); 1517 auto *NewAtomicAddr = CreateTempAlloca(); 1518 auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1519 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1520 requiresMemSetZero( 1521 getAtomicAddress()->getType()->getPointerElementType())) { 1522 CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr, 1523 getAtomicAlignment().getQuantity()); 1524 } 1525 auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), 1526 SourceLocation(), /*AsValue=*/false); 1527 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); 1528 auto *DesiredVal = CGF.Builder.CreateAlignedLoad( 1529 NewAtomicIntAddr, getAtomicAlignment().getQuantity()); 1530 // Try to write new value using cmpxchg operation 1531 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1532 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1533 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1534 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1535 } 1536 1537 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, 1538 RValue UpdateRVal, llvm::Value *DesiredAddr) { 1539 LValue AtomicLVal = Atomics.getAtomicLValue(); 1540 LValue DesiredLVal; 1541 // Build new lvalue for temp address 1542 if (AtomicLVal.isBitField()) { 1543 DesiredLVal = 1544 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1545 AtomicLVal.getType(), AtomicLVal.getAlignment()); 1546 } else if (AtomicLVal.isVectorElt()) { 1547 DesiredLVal = 1548 LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), 1549 AtomicLVal.getType(), AtomicLVal.getAlignment()); 1550 } else { 1551 assert(AtomicLVal.isExtVectorElt()); 1552 DesiredLVal = LValue::MakeExtVectorElt( 1553 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1554 AtomicLVal.getAlignment()); 1555 } 1556 DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo()); 1557 // Store new value in the corresponding memory area 1558 assert(UpdateRVal.isScalar()); 1559 CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); 1560 } 1561 1562 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 1563 RValue UpdateRVal, bool IsVolatile) { 1564 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1565 1566 llvm::Value *ExpectedAddr = CreateTempAlloca(); 1567 1568 EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile); 1569 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1570 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1571 CGF.EmitBlock(ContBB); 1572 auto *DesiredAddr = CreateTempAlloca(); 1573 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1574 requiresMemSetZero( 1575 getAtomicAddress()->getType()->getPointerElementType())) { 1576 auto *OldVal = CGF.Builder.CreateAlignedLoad( 1577 ExpectedAddr, getAtomicAlignment().getQuantity()); 1578 CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr, 1579 getAtomicAlignment().getQuantity()); 1580 } 1581 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); 1582 auto *Res = 1583 EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure); 1584 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1585 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1586 } 1587 1588 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, 1589 bool IsVolatile) { 1590 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1591 1592 // Do the atomic load. 1593 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1594 // For non-simple lvalues perform compare-and-swap procedure. 1595 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1596 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1597 auto *CurBB = CGF.Builder.GetInsertBlock(); 1598 CGF.EmitBlock(ContBB); 1599 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1600 /*NumReservedValues=*/2); 1601 PHI->addIncoming(OldVal, CurBB); 1602 auto *NewAtomicAddr = CreateTempAlloca(); 1603 auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1604 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1605 requiresMemSetZero( 1606 getAtomicAddress()->getType()->getPointerElementType())) { 1607 CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr, 1608 getAtomicAlignment().getQuantity()); 1609 } 1610 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); 1611 auto *DesiredVal = CGF.Builder.CreateAlignedLoad( 1612 NewAtomicIntAddr, getAtomicAlignment().getQuantity()); 1613 // Try to write new value using cmpxchg operation 1614 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1615 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1616 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1617 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1618 } 1619 1620 void AtomicInfo::EmitAtomicUpdate( 1621 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1622 bool IsVolatile) { 1623 if (shouldUseLibcall()) { 1624 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); 1625 } else { 1626 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); 1627 } 1628 } 1629 1630 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 1631 bool IsVolatile) { 1632 if (shouldUseLibcall()) { 1633 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); 1634 } else { 1635 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); 1636 } 1637 } 1638 1639 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, 1640 bool isInit) { 1641 bool IsVolatile = lvalue.isVolatileQualified(); 1642 llvm::AtomicOrdering AO; 1643 if (lvalue.getType()->isAtomicType()) { 1644 AO = llvm::SequentiallyConsistent; 1645 } else { 1646 AO = llvm::Release; 1647 IsVolatile = true; 1648 } 1649 return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); 1650 } 1651 1652 /// Emit a store to an l-value of atomic type. 1653 /// 1654 /// Note that the r-value is expected to be an r-value *of the atomic 1655 /// type*; this means that for aggregate r-values, it should include 1656 /// storage for any padding that was necessary. 1657 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, 1658 llvm::AtomicOrdering AO, bool IsVolatile, 1659 bool isInit) { 1660 // If this is an aggregate r-value, it should agree in type except 1661 // maybe for address-space qualification. 1662 assert(!rvalue.isAggregate() || 1663 rvalue.getAggregateAddr()->getType()->getPointerElementType() 1664 == dest.getAddress()->getType()->getPointerElementType()); 1665 1666 AtomicInfo atomics(*this, dest); 1667 LValue LVal = atomics.getAtomicLValue(); 1668 1669 // If this is an initialization, just put the value there normally. 1670 if (LVal.isSimple()) { 1671 if (isInit) { 1672 atomics.emitCopyIntoMemory(rvalue); 1673 return; 1674 } 1675 1676 // Check whether we should use a library call. 1677 if (atomics.shouldUseLibcall()) { 1678 // Produce a source address. 1679 llvm::Value *srcAddr = atomics.materializeRValue(rvalue); 1680 1681 // void __atomic_store(size_t size, void *mem, void *val, int order) 1682 CallArgList args; 1683 args.add(RValue::get(atomics.getAtomicSizeValue()), 1684 getContext().getSizeType()); 1685 args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicAddress())), 1686 getContext().VoidPtrTy); 1687 args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), getContext().VoidPtrTy); 1688 args.add(RValue::get(llvm::ConstantInt::get( 1689 IntTy, AtomicInfo::translateAtomicOrdering(AO))), 1690 getContext().IntTy); 1691 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); 1692 return; 1693 } 1694 1695 // Okay, we're doing this natively. 1696 llvm::Value *intValue = atomics.convertRValueToInt(rvalue); 1697 1698 // Do the atomic store. 1699 llvm::Value *addr = 1700 atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress()); 1701 intValue = Builder.CreateIntCast( 1702 intValue, addr->getType()->getPointerElementType(), /*isSigned=*/false); 1703 llvm::StoreInst *store = Builder.CreateStore(intValue, addr); 1704 1705 // Initializations don't need to be atomic. 1706 if (!isInit) 1707 store->setAtomic(AO); 1708 1709 // Other decoration. 1710 store->setAlignment(dest.getAlignment().getQuantity()); 1711 if (IsVolatile) 1712 store->setVolatile(true); 1713 if (dest.getTBAAInfo()) 1714 CGM.DecorateInstruction(store, dest.getTBAAInfo()); 1715 return; 1716 } 1717 1718 // Emit simple atomic update operation. 1719 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); 1720 } 1721 1722 /// Emit a compare-and-exchange op for atomic type. 1723 /// 1724 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( 1725 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 1726 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, 1727 AggValueSlot Slot) { 1728 // If this is an aggregate r-value, it should agree in type except 1729 // maybe for address-space qualification. 1730 assert(!Expected.isAggregate() || 1731 Expected.getAggregateAddr()->getType()->getPointerElementType() == 1732 Obj.getAddress()->getType()->getPointerElementType()); 1733 assert(!Desired.isAggregate() || 1734 Desired.getAggregateAddr()->getType()->getPointerElementType() == 1735 Obj.getAddress()->getType()->getPointerElementType()); 1736 AtomicInfo Atomics(*this, Obj); 1737 1738 return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, 1739 IsWeak); 1740 } 1741 1742 void CodeGenFunction::EmitAtomicUpdate( 1743 LValue LVal, llvm::AtomicOrdering AO, 1744 const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { 1745 AtomicInfo Atomics(*this, LVal); 1746 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); 1747 } 1748 1749 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { 1750 AtomicInfo atomics(*this, dest); 1751 1752 switch (atomics.getEvaluationKind()) { 1753 case TEK_Scalar: { 1754 llvm::Value *value = EmitScalarExpr(init); 1755 atomics.emitCopyIntoMemory(RValue::get(value)); 1756 return; 1757 } 1758 1759 case TEK_Complex: { 1760 ComplexPairTy value = EmitComplexExpr(init); 1761 atomics.emitCopyIntoMemory(RValue::getComplex(value)); 1762 return; 1763 } 1764 1765 case TEK_Aggregate: { 1766 // Fix up the destination if the initializer isn't an expression 1767 // of atomic type. 1768 bool Zeroed = false; 1769 if (!init->getType()->isAtomicType()) { 1770 Zeroed = atomics.emitMemSetZeroIfNecessary(); 1771 dest = atomics.projectValue(); 1772 } 1773 1774 // Evaluate the expression directly into the destination. 1775 AggValueSlot slot = AggValueSlot::forLValue(dest, 1776 AggValueSlot::IsNotDestructed, 1777 AggValueSlot::DoesNotNeedGCBarriers, 1778 AggValueSlot::IsNotAliased, 1779 Zeroed ? AggValueSlot::IsZeroed : 1780 AggValueSlot::IsNotZeroed); 1781 1782 EmitAggExpr(init, slot); 1783 return; 1784 } 1785 } 1786 llvm_unreachable("bad evaluation kind"); 1787 } 1788