1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the code for emitting atomic operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Operator.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 namespace { 30 class AtomicInfo { 31 CodeGenFunction &CGF; 32 QualType AtomicTy; 33 QualType ValueTy; 34 uint64_t AtomicSizeInBits; 35 uint64_t ValueSizeInBits; 36 CharUnits AtomicAlign; 37 CharUnits ValueAlign; 38 CharUnits LValueAlign; 39 TypeEvaluationKind EvaluationKind; 40 bool UseLibcall; 41 LValue LVal; 42 CGBitFieldInfo BFI; 43 public: 44 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) 45 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), 46 EvaluationKind(TEK_Scalar), UseLibcall(true) { 47 assert(!lvalue.isGlobalReg()); 48 ASTContext &C = CGF.getContext(); 49 if (lvalue.isSimple()) { 50 AtomicTy = lvalue.getType(); 51 if (auto *ATy = AtomicTy->getAs<AtomicType>()) 52 ValueTy = ATy->getValueType(); 53 else 54 ValueTy = AtomicTy; 55 EvaluationKind = CGF.getEvaluationKind(ValueTy); 56 57 uint64_t ValueAlignInBits; 58 uint64_t AtomicAlignInBits; 59 TypeInfo ValueTI = C.getTypeInfo(ValueTy); 60 ValueSizeInBits = ValueTI.Width; 61 ValueAlignInBits = ValueTI.Align; 62 63 TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); 64 AtomicSizeInBits = AtomicTI.Width; 65 AtomicAlignInBits = AtomicTI.Align; 66 67 assert(ValueSizeInBits <= AtomicSizeInBits); 68 assert(ValueAlignInBits <= AtomicAlignInBits); 69 70 AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); 71 ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); 72 if (lvalue.getAlignment().isZero()) 73 lvalue.setAlignment(AtomicAlign); 74 75 LVal = lvalue; 76 } else if (lvalue.isBitField()) { 77 ValueTy = lvalue.getType(); 78 ValueSizeInBits = C.getTypeSize(ValueTy); 79 auto &OrigBFI = lvalue.getBitFieldInfo(); 80 auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); 81 AtomicSizeInBits = C.toBits( 82 C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) 83 .alignTo(lvalue.getAlignment())); 84 auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer()); 85 auto OffsetInChars = 86 (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * 87 lvalue.getAlignment(); 88 VoidPtrAddr = CGF.Builder.CreateConstGEP1_64( 89 VoidPtrAddr, OffsetInChars.getQuantity()); 90 auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 91 VoidPtrAddr, 92 CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(), 93 "atomic_bitfield_base"); 94 BFI = OrigBFI; 95 BFI.Offset = Offset; 96 BFI.StorageSize = AtomicSizeInBits; 97 BFI.StorageOffset += OffsetInChars; 98 LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()), 99 BFI, lvalue.getType(), lvalue.getBaseInfo(), 100 lvalue.getTBAAInfo()); 101 AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); 102 if (AtomicTy.isNull()) { 103 llvm::APInt Size( 104 /*numBits=*/32, 105 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); 106 AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal, 107 /*IndexTypeQuals=*/0); 108 } 109 AtomicAlign = ValueAlign = lvalue.getAlignment(); 110 } else if (lvalue.isVectorElt()) { 111 ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType(); 112 ValueSizeInBits = C.getTypeSize(ValueTy); 113 AtomicTy = lvalue.getType(); 114 AtomicSizeInBits = C.getTypeSize(AtomicTy); 115 AtomicAlign = ValueAlign = lvalue.getAlignment(); 116 LVal = lvalue; 117 } else { 118 assert(lvalue.isExtVectorElt()); 119 ValueTy = lvalue.getType(); 120 ValueSizeInBits = C.getTypeSize(ValueTy); 121 AtomicTy = ValueTy = CGF.getContext().getExtVectorType( 122 lvalue.getType(), lvalue.getExtVectorAddress() 123 .getElementType()->getVectorNumElements()); 124 AtomicSizeInBits = C.getTypeSize(AtomicTy); 125 AtomicAlign = ValueAlign = lvalue.getAlignment(); 126 LVal = lvalue; 127 } 128 UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( 129 AtomicSizeInBits, C.toBits(lvalue.getAlignment())); 130 } 131 132 QualType getAtomicType() const { return AtomicTy; } 133 QualType getValueType() const { return ValueTy; } 134 CharUnits getAtomicAlignment() const { return AtomicAlign; } 135 CharUnits getValueAlignment() const { return ValueAlign; } 136 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } 137 uint64_t getValueSizeInBits() const { return ValueSizeInBits; } 138 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } 139 bool shouldUseLibcall() const { return UseLibcall; } 140 const LValue &getAtomicLValue() const { return LVal; } 141 llvm::Value *getAtomicPointer() const { 142 if (LVal.isSimple()) 143 return LVal.getPointer(); 144 else if (LVal.isBitField()) 145 return LVal.getBitFieldPointer(); 146 else if (LVal.isVectorElt()) 147 return LVal.getVectorPointer(); 148 assert(LVal.isExtVectorElt()); 149 return LVal.getExtVectorPointer(); 150 } 151 Address getAtomicAddress() const { 152 return Address(getAtomicPointer(), getAtomicAlignment()); 153 } 154 155 Address getAtomicAddressAsAtomicIntPointer() const { 156 return emitCastToAtomicIntPointer(getAtomicAddress()); 157 } 158 159 /// Is the atomic size larger than the underlying value type? 160 /// 161 /// Note that the absence of padding does not mean that atomic 162 /// objects are completely interchangeable with non-atomic 163 /// objects: we might have promoted the alignment of a type 164 /// without making it bigger. 165 bool hasPadding() const { 166 return (ValueSizeInBits != AtomicSizeInBits); 167 } 168 169 bool emitMemSetZeroIfNecessary() const; 170 171 llvm::Value *getAtomicSizeValue() const { 172 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); 173 return CGF.CGM.getSize(size); 174 } 175 176 /// Cast the given pointer to an integer pointer suitable for atomic 177 /// operations if the source. 178 Address emitCastToAtomicIntPointer(Address Addr) const; 179 180 /// If Addr is compatible with the iN that will be used for an atomic 181 /// operation, bitcast it. Otherwise, create a temporary that is suitable 182 /// and copy the value across. 183 Address convertToAtomicIntPointer(Address Addr) const; 184 185 /// Turn an atomic-layout object into an r-value. 186 RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, 187 SourceLocation loc, bool AsValue) const; 188 189 /// \brief Converts a rvalue to integer value. 190 llvm::Value *convertRValueToInt(RValue RVal) const; 191 192 RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, 193 AggValueSlot ResultSlot, 194 SourceLocation Loc, bool AsValue) const; 195 196 /// Copy an atomic r-value into atomic-layout memory. 197 void emitCopyIntoMemory(RValue rvalue) const; 198 199 /// Project an l-value down to the value field. 200 LValue projectValue() const { 201 assert(LVal.isSimple()); 202 Address addr = getAtomicAddress(); 203 if (hasPadding()) 204 addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits()); 205 206 return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), 207 LVal.getBaseInfo(), LVal.getTBAAInfo()); 208 } 209 210 /// \brief Emits atomic load. 211 /// \returns Loaded value. 212 RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 213 bool AsValue, llvm::AtomicOrdering AO, 214 bool IsVolatile); 215 216 /// \brief Emits atomic compare-and-exchange sequence. 217 /// \param Expected Expected value. 218 /// \param Desired Desired value. 219 /// \param Success Atomic ordering for success operation. 220 /// \param Failure Atomic ordering for failed operation. 221 /// \param IsWeak true if atomic operation is weak, false otherwise. 222 /// \returns Pair of values: previous value from storage (value type) and 223 /// boolean flag (i1 type) with true if success and false otherwise. 224 std::pair<RValue, llvm::Value *> 225 EmitAtomicCompareExchange(RValue Expected, RValue Desired, 226 llvm::AtomicOrdering Success = 227 llvm::AtomicOrdering::SequentiallyConsistent, 228 llvm::AtomicOrdering Failure = 229 llvm::AtomicOrdering::SequentiallyConsistent, 230 bool IsWeak = false); 231 232 /// \brief Emits atomic update. 233 /// \param AO Atomic ordering. 234 /// \param UpdateOp Update operation for the current lvalue. 235 void EmitAtomicUpdate(llvm::AtomicOrdering AO, 236 const llvm::function_ref<RValue(RValue)> &UpdateOp, 237 bool IsVolatile); 238 /// \brief Emits atomic update. 239 /// \param AO Atomic ordering. 240 void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 241 bool IsVolatile); 242 243 /// Materialize an atomic r-value in atomic-layout memory. 244 Address materializeRValue(RValue rvalue) const; 245 246 /// \brief Creates temp alloca for intermediate operations on atomic value. 247 Address CreateTempAlloca() const; 248 private: 249 bool requiresMemSetZero(llvm::Type *type) const; 250 251 252 /// \brief Emits atomic load as a libcall. 253 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 254 llvm::AtomicOrdering AO, bool IsVolatile); 255 /// \brief Emits atomic load as LLVM instruction. 256 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); 257 /// \brief Emits atomic compare-and-exchange op as a libcall. 258 llvm::Value *EmitAtomicCompareExchangeLibcall( 259 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, 260 llvm::AtomicOrdering Success = 261 llvm::AtomicOrdering::SequentiallyConsistent, 262 llvm::AtomicOrdering Failure = 263 llvm::AtomicOrdering::SequentiallyConsistent); 264 /// \brief Emits atomic compare-and-exchange op as LLVM instruction. 265 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( 266 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 267 llvm::AtomicOrdering Success = 268 llvm::AtomicOrdering::SequentiallyConsistent, 269 llvm::AtomicOrdering Failure = 270 llvm::AtomicOrdering::SequentiallyConsistent, 271 bool IsWeak = false); 272 /// \brief Emit atomic update as libcalls. 273 void 274 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 275 const llvm::function_ref<RValue(RValue)> &UpdateOp, 276 bool IsVolatile); 277 /// \brief Emit atomic update as LLVM instructions. 278 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, 279 const llvm::function_ref<RValue(RValue)> &UpdateOp, 280 bool IsVolatile); 281 /// \brief Emit atomic update as libcalls. 282 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, 283 bool IsVolatile); 284 /// \brief Emit atomic update as LLVM instructions. 285 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, 286 bool IsVolatile); 287 }; 288 } 289 290 Address AtomicInfo::CreateTempAlloca() const { 291 Address TempAlloca = CGF.CreateMemTemp( 292 (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy 293 : AtomicTy, 294 getAtomicAlignment(), 295 "atomic-temp"); 296 // Cast to pointer to value type for bitfields. 297 if (LVal.isBitField()) 298 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 299 TempAlloca, getAtomicAddress().getType()); 300 return TempAlloca; 301 } 302 303 static RValue emitAtomicLibcall(CodeGenFunction &CGF, 304 StringRef fnName, 305 QualType resultType, 306 CallArgList &args) { 307 const CGFunctionInfo &fnInfo = 308 CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); 309 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); 310 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); 311 auto callee = CGCallee::forDirect(fn); 312 return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args); 313 } 314 315 /// Does a store of the given IR type modify the full expected width? 316 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, 317 uint64_t expectedSize) { 318 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); 319 } 320 321 /// Does the atomic type require memsetting to zero before initialization? 322 /// 323 /// The IR type is provided as a way of making certain queries faster. 324 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { 325 // If the atomic type has size padding, we definitely need a memset. 326 if (hasPadding()) return true; 327 328 // Otherwise, do some simple heuristics to try to avoid it: 329 switch (getEvaluationKind()) { 330 // For scalars and complexes, check whether the store size of the 331 // type uses the full size. 332 case TEK_Scalar: 333 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); 334 case TEK_Complex: 335 return !isFullSizeType(CGF.CGM, type->getStructElementType(0), 336 AtomicSizeInBits / 2); 337 338 // Padding in structs has an undefined bit pattern. User beware. 339 case TEK_Aggregate: 340 return false; 341 } 342 llvm_unreachable("bad evaluation kind"); 343 } 344 345 bool AtomicInfo::emitMemSetZeroIfNecessary() const { 346 assert(LVal.isSimple()); 347 llvm::Value *addr = LVal.getPointer(); 348 if (!requiresMemSetZero(addr->getType()->getPointerElementType())) 349 return false; 350 351 CGF.Builder.CreateMemSet( 352 addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), 353 CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), 354 LVal.getAlignment().getQuantity()); 355 return true; 356 } 357 358 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, 359 Address Dest, Address Ptr, 360 Address Val1, Address Val2, 361 uint64_t Size, 362 llvm::AtomicOrdering SuccessOrder, 363 llvm::AtomicOrdering FailureOrder, 364 llvm::SyncScope::ID Scope) { 365 // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. 366 llvm::Value *Expected = CGF.Builder.CreateLoad(Val1); 367 llvm::Value *Desired = CGF.Builder.CreateLoad(Val2); 368 369 llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( 370 Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder, 371 Scope); 372 Pair->setVolatile(E->isVolatile()); 373 Pair->setWeak(IsWeak); 374 375 // Cmp holds the result of the compare-exchange operation: true on success, 376 // false on failure. 377 llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); 378 llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); 379 380 // This basic block is used to hold the store instruction if the operation 381 // failed. 382 llvm::BasicBlock *StoreExpectedBB = 383 CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); 384 385 // This basic block is the exit point of the operation, we should end up 386 // here regardless of whether or not the operation succeeded. 387 llvm::BasicBlock *ContinueBB = 388 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 389 390 // Update Expected if Expected isn't equal to Old, otherwise branch to the 391 // exit point. 392 CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); 393 394 CGF.Builder.SetInsertPoint(StoreExpectedBB); 395 // Update the memory at Expected with Old's value. 396 CGF.Builder.CreateStore(Old, Val1); 397 // Finally, branch to the exit point. 398 CGF.Builder.CreateBr(ContinueBB); 399 400 CGF.Builder.SetInsertPoint(ContinueBB); 401 // Update the memory at Dest with Cmp's value. 402 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 403 } 404 405 /// Given an ordering required on success, emit all possible cmpxchg 406 /// instructions to cope with the provided (but possibly only dynamically known) 407 /// FailureOrder. 408 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, 409 bool IsWeak, Address Dest, Address Ptr, 410 Address Val1, Address Val2, 411 llvm::Value *FailureOrderVal, 412 uint64_t Size, 413 llvm::AtomicOrdering SuccessOrder, 414 llvm::SyncScope::ID Scope) { 415 llvm::AtomicOrdering FailureOrder; 416 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { 417 auto FOS = FO->getSExtValue(); 418 if (!llvm::isValidAtomicOrderingCABI(FOS)) 419 FailureOrder = llvm::AtomicOrdering::Monotonic; 420 else 421 switch ((llvm::AtomicOrderingCABI)FOS) { 422 case llvm::AtomicOrderingCABI::relaxed: 423 case llvm::AtomicOrderingCABI::release: 424 case llvm::AtomicOrderingCABI::acq_rel: 425 FailureOrder = llvm::AtomicOrdering::Monotonic; 426 break; 427 case llvm::AtomicOrderingCABI::consume: 428 case llvm::AtomicOrderingCABI::acquire: 429 FailureOrder = llvm::AtomicOrdering::Acquire; 430 break; 431 case llvm::AtomicOrderingCABI::seq_cst: 432 FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; 433 break; 434 } 435 if (isStrongerThan(FailureOrder, SuccessOrder)) { 436 // Don't assert on undefined behavior "failure argument shall be no 437 // stronger than the success argument". 438 FailureOrder = 439 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder); 440 } 441 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 442 FailureOrder, Scope); 443 return; 444 } 445 446 // Create all the relevant BB's 447 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 448 *SeqCstBB = nullptr; 449 MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); 450 if (SuccessOrder != llvm::AtomicOrdering::Monotonic && 451 SuccessOrder != llvm::AtomicOrdering::Release) 452 AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); 453 if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent) 454 SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); 455 456 llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); 457 458 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); 459 460 // Emit all the different atomics 461 462 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 463 // doesn't matter unless someone is crazy enough to use something that 464 // doesn't fold to a constant for the ordering. 465 CGF.Builder.SetInsertPoint(MonotonicBB); 466 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 467 Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope); 468 CGF.Builder.CreateBr(ContBB); 469 470 if (AcquireBB) { 471 CGF.Builder.SetInsertPoint(AcquireBB); 472 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, 473 Size, SuccessOrder, llvm::AtomicOrdering::Acquire, Scope); 474 CGF.Builder.CreateBr(ContBB); 475 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 476 AcquireBB); 477 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 478 AcquireBB); 479 } 480 if (SeqCstBB) { 481 CGF.Builder.SetInsertPoint(SeqCstBB); 482 emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, 483 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 484 CGF.Builder.CreateBr(ContBB); 485 SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 486 SeqCstBB); 487 } 488 489 CGF.Builder.SetInsertPoint(ContBB); 490 } 491 492 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, 493 Address Ptr, Address Val1, Address Val2, 494 llvm::Value *IsWeak, llvm::Value *FailureOrder, 495 uint64_t Size, llvm::AtomicOrdering Order, 496 llvm::SyncScope::ID Scope) { 497 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 498 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 499 500 switch (E->getOp()) { 501 case AtomicExpr::AO__c11_atomic_init: 502 case AtomicExpr::AO__opencl_atomic_init: 503 llvm_unreachable("Already handled!"); 504 505 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 506 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 507 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 508 FailureOrder, Size, Order, Scope); 509 return; 510 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 511 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 512 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 513 FailureOrder, Size, Order, Scope); 514 return; 515 case AtomicExpr::AO__atomic_compare_exchange: 516 case AtomicExpr::AO__atomic_compare_exchange_n: { 517 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { 518 emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, 519 Val1, Val2, FailureOrder, Size, Order, Scope); 520 } else { 521 // Create all the relevant BB's 522 llvm::BasicBlock *StrongBB = 523 CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); 524 llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); 525 llvm::BasicBlock *ContBB = 526 CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); 527 528 llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); 529 SI->addCase(CGF.Builder.getInt1(false), StrongBB); 530 531 CGF.Builder.SetInsertPoint(StrongBB); 532 emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, 533 FailureOrder, Size, Order, Scope); 534 CGF.Builder.CreateBr(ContBB); 535 536 CGF.Builder.SetInsertPoint(WeakBB); 537 emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, 538 FailureOrder, Size, Order, Scope); 539 CGF.Builder.CreateBr(ContBB); 540 541 CGF.Builder.SetInsertPoint(ContBB); 542 } 543 return; 544 } 545 case AtomicExpr::AO__c11_atomic_load: 546 case AtomicExpr::AO__opencl_atomic_load: 547 case AtomicExpr::AO__atomic_load_n: 548 case AtomicExpr::AO__atomic_load: { 549 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 550 Load->setAtomic(Order, Scope); 551 Load->setVolatile(E->isVolatile()); 552 CGF.Builder.CreateStore(Load, Dest); 553 return; 554 } 555 556 case AtomicExpr::AO__c11_atomic_store: 557 case AtomicExpr::AO__opencl_atomic_store: 558 case AtomicExpr::AO__atomic_store: 559 case AtomicExpr::AO__atomic_store_n: { 560 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 561 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 562 Store->setAtomic(Order, Scope); 563 Store->setVolatile(E->isVolatile()); 564 return; 565 } 566 567 case AtomicExpr::AO__c11_atomic_exchange: 568 case AtomicExpr::AO__opencl_atomic_exchange: 569 case AtomicExpr::AO__atomic_exchange_n: 570 case AtomicExpr::AO__atomic_exchange: 571 Op = llvm::AtomicRMWInst::Xchg; 572 break; 573 574 case AtomicExpr::AO__atomic_add_fetch: 575 PostOp = llvm::Instruction::Add; 576 LLVM_FALLTHROUGH; 577 case AtomicExpr::AO__c11_atomic_fetch_add: 578 case AtomicExpr::AO__opencl_atomic_fetch_add: 579 case AtomicExpr::AO__atomic_fetch_add: 580 Op = llvm::AtomicRMWInst::Add; 581 break; 582 583 case AtomicExpr::AO__atomic_sub_fetch: 584 PostOp = llvm::Instruction::Sub; 585 LLVM_FALLTHROUGH; 586 case AtomicExpr::AO__c11_atomic_fetch_sub: 587 case AtomicExpr::AO__opencl_atomic_fetch_sub: 588 case AtomicExpr::AO__atomic_fetch_sub: 589 Op = llvm::AtomicRMWInst::Sub; 590 break; 591 592 case AtomicExpr::AO__opencl_atomic_fetch_min: 593 Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Min 594 : llvm::AtomicRMWInst::UMin; 595 break; 596 597 case AtomicExpr::AO__opencl_atomic_fetch_max: 598 Op = E->getValueType()->isSignedIntegerType() ? llvm::AtomicRMWInst::Max 599 : llvm::AtomicRMWInst::UMax; 600 break; 601 602 case AtomicExpr::AO__atomic_and_fetch: 603 PostOp = llvm::Instruction::And; 604 LLVM_FALLTHROUGH; 605 case AtomicExpr::AO__c11_atomic_fetch_and: 606 case AtomicExpr::AO__opencl_atomic_fetch_and: 607 case AtomicExpr::AO__atomic_fetch_and: 608 Op = llvm::AtomicRMWInst::And; 609 break; 610 611 case AtomicExpr::AO__atomic_or_fetch: 612 PostOp = llvm::Instruction::Or; 613 LLVM_FALLTHROUGH; 614 case AtomicExpr::AO__c11_atomic_fetch_or: 615 case AtomicExpr::AO__opencl_atomic_fetch_or: 616 case AtomicExpr::AO__atomic_fetch_or: 617 Op = llvm::AtomicRMWInst::Or; 618 break; 619 620 case AtomicExpr::AO__atomic_xor_fetch: 621 PostOp = llvm::Instruction::Xor; 622 LLVM_FALLTHROUGH; 623 case AtomicExpr::AO__c11_atomic_fetch_xor: 624 case AtomicExpr::AO__opencl_atomic_fetch_xor: 625 case AtomicExpr::AO__atomic_fetch_xor: 626 Op = llvm::AtomicRMWInst::Xor; 627 break; 628 629 case AtomicExpr::AO__atomic_nand_fetch: 630 PostOp = llvm::Instruction::And; // the NOT is special cased below 631 LLVM_FALLTHROUGH; 632 case AtomicExpr::AO__atomic_fetch_nand: 633 Op = llvm::AtomicRMWInst::Nand; 634 break; 635 } 636 637 llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); 638 llvm::AtomicRMWInst *RMWI = 639 CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order, Scope); 640 RMWI->setVolatile(E->isVolatile()); 641 642 // For __atomic_*_fetch operations, perform the operation again to 643 // determine the value which was written. 644 llvm::Value *Result = RMWI; 645 if (PostOp) 646 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 647 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 648 Result = CGF.Builder.CreateNot(Result); 649 CGF.Builder.CreateStore(Result, Dest); 650 } 651 652 // This function emits any expression (scalar, complex, or aggregate) 653 // into a temporary alloca. 654 static Address 655 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 656 Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 657 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 658 /*Init*/ true); 659 return DeclPtr; 660 } 661 662 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, 663 Address Ptr, Address Val1, Address Val2, 664 llvm::Value *IsWeak, llvm::Value *FailureOrder, 665 uint64_t Size, llvm::AtomicOrdering Order, 666 llvm::Value *Scope) { 667 auto ScopeModel = Expr->getScopeModel(); 668 669 // LLVM atomic instructions always have synch scope. If clang atomic 670 // expression has no scope operand, use default LLVM synch scope. 671 if (!ScopeModel) { 672 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 673 Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID("")); 674 return; 675 } 676 677 // Handle constant scope. 678 if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) { 679 auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( 680 ScopeModel->map(SC->getZExtValue()), CGF.CGM.getLLVMContext()); 681 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 682 Order, SCID); 683 return; 684 } 685 686 // Handle non-constant scope. 687 auto &Builder = CGF.Builder; 688 auto Scopes = ScopeModel->getRuntimeValues(); 689 llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; 690 for (auto S : Scopes) 691 BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); 692 693 llvm::BasicBlock *ContBB = 694 CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn); 695 696 auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false); 697 // If unsupported synch scope is encountered at run time, assume a fallback 698 // synch scope value. 699 auto FallBack = ScopeModel->getFallBackValue(); 700 llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]); 701 for (auto S : Scopes) { 702 auto *B = BB[S]; 703 if (S != FallBack) 704 SI->addCase(Builder.getInt32(S), B); 705 706 Builder.SetInsertPoint(B); 707 EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, 708 Order, 709 CGF.getTargetHooks().getLLVMSyncScopeID(ScopeModel->map(S), 710 CGF.getLLVMContext())); 711 Builder.CreateBr(ContBB); 712 } 713 714 Builder.SetInsertPoint(ContBB); 715 } 716 717 static void 718 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, 719 bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, 720 SourceLocation Loc, CharUnits SizeInChars) { 721 if (UseOptimizedLibcall) { 722 // Load value and pass it to the function directly. 723 CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy); 724 int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); 725 ValTy = 726 CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); 727 llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(), 728 SizeInBits)->getPointerTo(); 729 Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align); 730 Val = CGF.EmitLoadOfScalar(Ptr, false, 731 CGF.getContext().getPointerType(ValTy), 732 Loc); 733 // Coerce the value into an appropriately sized integer type. 734 Args.add(RValue::get(Val), ValTy); 735 } else { 736 // Non-optimized functions always take a reference. 737 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), 738 CGF.getContext().VoidPtrTy); 739 } 740 } 741 742 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { 743 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 744 QualType MemTy = AtomicTy; 745 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 746 MemTy = AT->getValueType(); 747 llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; 748 749 Address Val1 = Address::invalid(); 750 Address Val2 = Address::invalid(); 751 Address Dest = Address::invalid(); 752 Address Ptr = EmitPointerWithAlignment(E->getPtr()); 753 754 CharUnits sizeChars, alignChars; 755 std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy); 756 uint64_t Size = sizeChars.getQuantity(); 757 unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); 758 bool UseLibcall = ((Ptr.getAlignment() % sizeChars) != 0 || 759 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 760 761 if (E->getOp() == AtomicExpr::AO__c11_atomic_init || 762 E->getOp() == AtomicExpr::AO__opencl_atomic_init) { 763 LValue lvalue = MakeAddrLValue(Ptr, AtomicTy); 764 EmitAtomicInit(E->getVal1(), lvalue); 765 return RValue::get(nullptr); 766 } 767 768 llvm::Value *Order = EmitScalarExpr(E->getOrder()); 769 llvm::Value *Scope = 770 E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr; 771 772 switch (E->getOp()) { 773 case AtomicExpr::AO__c11_atomic_init: 774 case AtomicExpr::AO__opencl_atomic_init: 775 llvm_unreachable("Already handled above with EmitAtomicInit!"); 776 777 case AtomicExpr::AO__c11_atomic_load: 778 case AtomicExpr::AO__opencl_atomic_load: 779 case AtomicExpr::AO__atomic_load_n: 780 break; 781 782 case AtomicExpr::AO__atomic_load: 783 Dest = EmitPointerWithAlignment(E->getVal1()); 784 break; 785 786 case AtomicExpr::AO__atomic_store: 787 Val1 = EmitPointerWithAlignment(E->getVal1()); 788 break; 789 790 case AtomicExpr::AO__atomic_exchange: 791 Val1 = EmitPointerWithAlignment(E->getVal1()); 792 Dest = EmitPointerWithAlignment(E->getVal2()); 793 break; 794 795 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 796 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 797 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 798 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 799 case AtomicExpr::AO__atomic_compare_exchange_n: 800 case AtomicExpr::AO__atomic_compare_exchange: 801 Val1 = EmitPointerWithAlignment(E->getVal1()); 802 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 803 Val2 = EmitPointerWithAlignment(E->getVal2()); 804 else 805 Val2 = EmitValToTemp(*this, E->getVal2()); 806 OrderFail = EmitScalarExpr(E->getOrderFail()); 807 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || 808 E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 809 IsWeak = EmitScalarExpr(E->getWeak()); 810 break; 811 812 case AtomicExpr::AO__c11_atomic_fetch_add: 813 case AtomicExpr::AO__c11_atomic_fetch_sub: 814 case AtomicExpr::AO__opencl_atomic_fetch_add: 815 case AtomicExpr::AO__opencl_atomic_fetch_sub: 816 if (MemTy->isPointerType()) { 817 // For pointer arithmetic, we're required to do a bit of math: 818 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 819 // ... but only for the C11 builtins. The GNU builtins expect the 820 // user to multiply by sizeof(T). 821 QualType Val1Ty = E->getVal1()->getType(); 822 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 823 CharUnits PointeeIncAmt = 824 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 825 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 826 auto Temp = CreateMemTemp(Val1Ty, ".atomictmp"); 827 Val1 = Temp; 828 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty)); 829 break; 830 } 831 LLVM_FALLTHROUGH; 832 case AtomicExpr::AO__atomic_fetch_add: 833 case AtomicExpr::AO__atomic_fetch_sub: 834 case AtomicExpr::AO__atomic_add_fetch: 835 case AtomicExpr::AO__atomic_sub_fetch: 836 case AtomicExpr::AO__c11_atomic_store: 837 case AtomicExpr::AO__c11_atomic_exchange: 838 case AtomicExpr::AO__opencl_atomic_store: 839 case AtomicExpr::AO__opencl_atomic_exchange: 840 case AtomicExpr::AO__atomic_store_n: 841 case AtomicExpr::AO__atomic_exchange_n: 842 case AtomicExpr::AO__c11_atomic_fetch_and: 843 case AtomicExpr::AO__c11_atomic_fetch_or: 844 case AtomicExpr::AO__c11_atomic_fetch_xor: 845 case AtomicExpr::AO__opencl_atomic_fetch_and: 846 case AtomicExpr::AO__opencl_atomic_fetch_or: 847 case AtomicExpr::AO__opencl_atomic_fetch_xor: 848 case AtomicExpr::AO__opencl_atomic_fetch_min: 849 case AtomicExpr::AO__opencl_atomic_fetch_max: 850 case AtomicExpr::AO__atomic_fetch_and: 851 case AtomicExpr::AO__atomic_fetch_or: 852 case AtomicExpr::AO__atomic_fetch_xor: 853 case AtomicExpr::AO__atomic_fetch_nand: 854 case AtomicExpr::AO__atomic_and_fetch: 855 case AtomicExpr::AO__atomic_or_fetch: 856 case AtomicExpr::AO__atomic_xor_fetch: 857 case AtomicExpr::AO__atomic_nand_fetch: 858 Val1 = EmitValToTemp(*this, E->getVal1()); 859 break; 860 } 861 862 QualType RValTy = E->getType().getUnqualifiedType(); 863 864 // The inlined atomics only function on iN types, where N is a power of 2. We 865 // need to make sure (via temporaries if necessary) that all incoming values 866 // are compatible. 867 LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy); 868 AtomicInfo Atomics(*this, AtomicVal); 869 870 Ptr = Atomics.emitCastToAtomicIntPointer(Ptr); 871 if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1); 872 if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2); 873 if (Dest.isValid()) 874 Dest = Atomics.emitCastToAtomicIntPointer(Dest); 875 else if (E->isCmpXChg()) 876 Dest = CreateMemTemp(RValTy, "cmpxchg.bool"); 877 else if (!RValTy->isVoidType()) 878 Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca()); 879 880 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 881 if (UseLibcall) { 882 bool UseOptimizedLibcall = false; 883 switch (E->getOp()) { 884 case AtomicExpr::AO__c11_atomic_init: 885 case AtomicExpr::AO__opencl_atomic_init: 886 llvm_unreachable("Already handled above with EmitAtomicInit!"); 887 888 case AtomicExpr::AO__c11_atomic_fetch_add: 889 case AtomicExpr::AO__opencl_atomic_fetch_add: 890 case AtomicExpr::AO__atomic_fetch_add: 891 case AtomicExpr::AO__c11_atomic_fetch_and: 892 case AtomicExpr::AO__opencl_atomic_fetch_and: 893 case AtomicExpr::AO__atomic_fetch_and: 894 case AtomicExpr::AO__c11_atomic_fetch_or: 895 case AtomicExpr::AO__opencl_atomic_fetch_or: 896 case AtomicExpr::AO__atomic_fetch_or: 897 case AtomicExpr::AO__atomic_fetch_nand: 898 case AtomicExpr::AO__c11_atomic_fetch_sub: 899 case AtomicExpr::AO__opencl_atomic_fetch_sub: 900 case AtomicExpr::AO__atomic_fetch_sub: 901 case AtomicExpr::AO__c11_atomic_fetch_xor: 902 case AtomicExpr::AO__opencl_atomic_fetch_xor: 903 case AtomicExpr::AO__opencl_atomic_fetch_min: 904 case AtomicExpr::AO__opencl_atomic_fetch_max: 905 case AtomicExpr::AO__atomic_fetch_xor: 906 case AtomicExpr::AO__atomic_add_fetch: 907 case AtomicExpr::AO__atomic_and_fetch: 908 case AtomicExpr::AO__atomic_nand_fetch: 909 case AtomicExpr::AO__atomic_or_fetch: 910 case AtomicExpr::AO__atomic_sub_fetch: 911 case AtomicExpr::AO__atomic_xor_fetch: 912 // For these, only library calls for certain sizes exist. 913 UseOptimizedLibcall = true; 914 break; 915 916 case AtomicExpr::AO__c11_atomic_load: 917 case AtomicExpr::AO__c11_atomic_store: 918 case AtomicExpr::AO__c11_atomic_exchange: 919 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 920 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 921 case AtomicExpr::AO__opencl_atomic_load: 922 case AtomicExpr::AO__opencl_atomic_store: 923 case AtomicExpr::AO__opencl_atomic_exchange: 924 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 925 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 926 case AtomicExpr::AO__atomic_load_n: 927 case AtomicExpr::AO__atomic_load: 928 case AtomicExpr::AO__atomic_store_n: 929 case AtomicExpr::AO__atomic_store: 930 case AtomicExpr::AO__atomic_exchange_n: 931 case AtomicExpr::AO__atomic_exchange: 932 case AtomicExpr::AO__atomic_compare_exchange_n: 933 case AtomicExpr::AO__atomic_compare_exchange: 934 // Only use optimized library calls for sizes for which they exist. 935 if (Size == 1 || Size == 2 || Size == 4 || Size == 8) 936 UseOptimizedLibcall = true; 937 break; 938 } 939 940 CallArgList Args; 941 if (!UseOptimizedLibcall) { 942 // For non-optimized library calls, the size is the first parameter 943 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 944 getContext().getSizeType()); 945 } 946 // Atomic address is the first or second parameter 947 // The OpenCL atomic library functions only accept pointer arguments to 948 // generic address space. 949 auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { 950 if (!E->isOpenCL()) 951 return V; 952 auto AS = PT->getAs<PointerType>()->getPointeeType().getAddressSpace(); 953 if (AS == LangAS::opencl_generic) 954 return V; 955 auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); 956 auto T = V->getType(); 957 auto *DestType = T->getPointerElementType()->getPointerTo(DestAS); 958 959 return getTargetHooks().performAddrSpaceCast( 960 *this, V, AS, LangAS::opencl_generic, DestType, false); 961 }; 962 963 Args.add(RValue::get(CastToGenericAddrSpace( 964 EmitCastToVoidPtr(Ptr.getPointer()), E->getPtr()->getType())), 965 getContext().VoidPtrTy); 966 967 std::string LibCallName; 968 QualType LoweredMemTy = 969 MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; 970 QualType RetTy; 971 bool HaveRetTy = false; 972 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 973 switch (E->getOp()) { 974 case AtomicExpr::AO__c11_atomic_init: 975 case AtomicExpr::AO__opencl_atomic_init: 976 llvm_unreachable("Already handled!"); 977 978 // There is only one libcall for compare an exchange, because there is no 979 // optimisation benefit possible from a libcall version of a weak compare 980 // and exchange. 981 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, 982 // void *desired, int success, int failure) 983 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, 984 // int success, int failure) 985 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 986 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 987 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 988 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 989 case AtomicExpr::AO__atomic_compare_exchange: 990 case AtomicExpr::AO__atomic_compare_exchange_n: 991 LibCallName = "__atomic_compare_exchange"; 992 RetTy = getContext().BoolTy; 993 HaveRetTy = true; 994 Args.add( 995 RValue::get(CastToGenericAddrSpace( 996 EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())), 997 getContext().VoidPtrTy); 998 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(), 999 MemTy, E->getExprLoc(), sizeChars); 1000 Args.add(RValue::get(Order), getContext().IntTy); 1001 Order = OrderFail; 1002 break; 1003 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 1004 // int order) 1005 // T __atomic_exchange_N(T *mem, T val, int order) 1006 case AtomicExpr::AO__c11_atomic_exchange: 1007 case AtomicExpr::AO__opencl_atomic_exchange: 1008 case AtomicExpr::AO__atomic_exchange_n: 1009 case AtomicExpr::AO__atomic_exchange: 1010 LibCallName = "__atomic_exchange"; 1011 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1012 MemTy, E->getExprLoc(), sizeChars); 1013 break; 1014 // void __atomic_store(size_t size, void *mem, void *val, int order) 1015 // void __atomic_store_N(T *mem, T val, int order) 1016 case AtomicExpr::AO__c11_atomic_store: 1017 case AtomicExpr::AO__opencl_atomic_store: 1018 case AtomicExpr::AO__atomic_store: 1019 case AtomicExpr::AO__atomic_store_n: 1020 LibCallName = "__atomic_store"; 1021 RetTy = getContext().VoidTy; 1022 HaveRetTy = true; 1023 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1024 MemTy, E->getExprLoc(), sizeChars); 1025 break; 1026 // void __atomic_load(size_t size, void *mem, void *return, int order) 1027 // T __atomic_load_N(T *mem, int order) 1028 case AtomicExpr::AO__c11_atomic_load: 1029 case AtomicExpr::AO__opencl_atomic_load: 1030 case AtomicExpr::AO__atomic_load: 1031 case AtomicExpr::AO__atomic_load_n: 1032 LibCallName = "__atomic_load"; 1033 break; 1034 // T __atomic_add_fetch_N(T *mem, T val, int order) 1035 // T __atomic_fetch_add_N(T *mem, T val, int order) 1036 case AtomicExpr::AO__atomic_add_fetch: 1037 PostOp = llvm::Instruction::Add; 1038 LLVM_FALLTHROUGH; 1039 case AtomicExpr::AO__c11_atomic_fetch_add: 1040 case AtomicExpr::AO__opencl_atomic_fetch_add: 1041 case AtomicExpr::AO__atomic_fetch_add: 1042 LibCallName = "__atomic_fetch_add"; 1043 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1044 LoweredMemTy, E->getExprLoc(), sizeChars); 1045 break; 1046 // T __atomic_and_fetch_N(T *mem, T val, int order) 1047 // T __atomic_fetch_and_N(T *mem, T val, int order) 1048 case AtomicExpr::AO__atomic_and_fetch: 1049 PostOp = llvm::Instruction::And; 1050 LLVM_FALLTHROUGH; 1051 case AtomicExpr::AO__c11_atomic_fetch_and: 1052 case AtomicExpr::AO__opencl_atomic_fetch_and: 1053 case AtomicExpr::AO__atomic_fetch_and: 1054 LibCallName = "__atomic_fetch_and"; 1055 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1056 MemTy, E->getExprLoc(), sizeChars); 1057 break; 1058 // T __atomic_or_fetch_N(T *mem, T val, int order) 1059 // T __atomic_fetch_or_N(T *mem, T val, int order) 1060 case AtomicExpr::AO__atomic_or_fetch: 1061 PostOp = llvm::Instruction::Or; 1062 LLVM_FALLTHROUGH; 1063 case AtomicExpr::AO__c11_atomic_fetch_or: 1064 case AtomicExpr::AO__opencl_atomic_fetch_or: 1065 case AtomicExpr::AO__atomic_fetch_or: 1066 LibCallName = "__atomic_fetch_or"; 1067 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1068 MemTy, E->getExprLoc(), sizeChars); 1069 break; 1070 // T __atomic_sub_fetch_N(T *mem, T val, int order) 1071 // T __atomic_fetch_sub_N(T *mem, T val, int order) 1072 case AtomicExpr::AO__atomic_sub_fetch: 1073 PostOp = llvm::Instruction::Sub; 1074 LLVM_FALLTHROUGH; 1075 case AtomicExpr::AO__c11_atomic_fetch_sub: 1076 case AtomicExpr::AO__opencl_atomic_fetch_sub: 1077 case AtomicExpr::AO__atomic_fetch_sub: 1078 LibCallName = "__atomic_fetch_sub"; 1079 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1080 LoweredMemTy, E->getExprLoc(), sizeChars); 1081 break; 1082 // T __atomic_xor_fetch_N(T *mem, T val, int order) 1083 // T __atomic_fetch_xor_N(T *mem, T val, int order) 1084 case AtomicExpr::AO__atomic_xor_fetch: 1085 PostOp = llvm::Instruction::Xor; 1086 LLVM_FALLTHROUGH; 1087 case AtomicExpr::AO__c11_atomic_fetch_xor: 1088 case AtomicExpr::AO__opencl_atomic_fetch_xor: 1089 case AtomicExpr::AO__atomic_fetch_xor: 1090 LibCallName = "__atomic_fetch_xor"; 1091 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1092 MemTy, E->getExprLoc(), sizeChars); 1093 break; 1094 case AtomicExpr::AO__opencl_atomic_fetch_min: 1095 LibCallName = E->getValueType()->isSignedIntegerType() 1096 ? "__atomic_fetch_min" 1097 : "__atomic_fetch_umin"; 1098 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1099 LoweredMemTy, E->getExprLoc(), sizeChars); 1100 break; 1101 case AtomicExpr::AO__opencl_atomic_fetch_max: 1102 LibCallName = E->getValueType()->isSignedIntegerType() 1103 ? "__atomic_fetch_max" 1104 : "__atomic_fetch_umax"; 1105 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1106 LoweredMemTy, E->getExprLoc(), sizeChars); 1107 break; 1108 // T __atomic_nand_fetch_N(T *mem, T val, int order) 1109 // T __atomic_fetch_nand_N(T *mem, T val, int order) 1110 case AtomicExpr::AO__atomic_nand_fetch: 1111 PostOp = llvm::Instruction::And; // the NOT is special cased below 1112 LLVM_FALLTHROUGH; 1113 case AtomicExpr::AO__atomic_fetch_nand: 1114 LibCallName = "__atomic_fetch_nand"; 1115 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), 1116 MemTy, E->getExprLoc(), sizeChars); 1117 break; 1118 } 1119 1120 if (E->isOpenCL()) { 1121 LibCallName = std::string("__opencl") + 1122 StringRef(LibCallName).drop_front(1).str(); 1123 1124 } 1125 // Optimized functions have the size in their name. 1126 if (UseOptimizedLibcall) 1127 LibCallName += "_" + llvm::utostr(Size); 1128 // By default, assume we return a value of the atomic type. 1129 if (!HaveRetTy) { 1130 if (UseOptimizedLibcall) { 1131 // Value is returned directly. 1132 // The function returns an appropriately sized integer type. 1133 RetTy = getContext().getIntTypeForBitwidth( 1134 getContext().toBits(sizeChars), /*Signed=*/false); 1135 } else { 1136 // Value is returned through parameter before the order. 1137 RetTy = getContext().VoidTy; 1138 Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())), 1139 getContext().VoidPtrTy); 1140 } 1141 } 1142 // order is always the last parameter 1143 Args.add(RValue::get(Order), 1144 getContext().IntTy); 1145 if (E->isOpenCL()) 1146 Args.add(RValue::get(Scope), getContext().IntTy); 1147 1148 // PostOp is only needed for the atomic_*_fetch operations, and 1149 // thus is only needed for and implemented in the 1150 // UseOptimizedLibcall codepath. 1151 assert(UseOptimizedLibcall || !PostOp); 1152 1153 RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); 1154 // The value is returned directly from the libcall. 1155 if (E->isCmpXChg()) 1156 return Res; 1157 1158 // The value is returned directly for optimized libcalls but the expr 1159 // provided an out-param. 1160 if (UseOptimizedLibcall && Res.getScalarVal()) { 1161 llvm::Value *ResVal = Res.getScalarVal(); 1162 if (PostOp) { 1163 llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal(); 1164 ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1); 1165 } 1166 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 1167 ResVal = Builder.CreateNot(ResVal); 1168 1169 Builder.CreateStore( 1170 ResVal, 1171 Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo())); 1172 } 1173 1174 if (RValTy->isVoidType()) 1175 return RValue::get(nullptr); 1176 1177 return convertTempToRValue( 1178 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()), 1179 RValTy, E->getExprLoc()); 1180 } 1181 1182 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 1183 E->getOp() == AtomicExpr::AO__opencl_atomic_store || 1184 E->getOp() == AtomicExpr::AO__atomic_store || 1185 E->getOp() == AtomicExpr::AO__atomic_store_n; 1186 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 1187 E->getOp() == AtomicExpr::AO__opencl_atomic_load || 1188 E->getOp() == AtomicExpr::AO__atomic_load || 1189 E->getOp() == AtomicExpr::AO__atomic_load_n; 1190 1191 if (isa<llvm::ConstantInt>(Order)) { 1192 auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1193 // We should not ever get to a case where the ordering isn't a valid C ABI 1194 // value, but it's hard to enforce that in general. 1195 if (llvm::isValidAtomicOrderingCABI(ord)) 1196 switch ((llvm::AtomicOrderingCABI)ord) { 1197 case llvm::AtomicOrderingCABI::relaxed: 1198 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1199 llvm::AtomicOrdering::Monotonic, Scope); 1200 break; 1201 case llvm::AtomicOrderingCABI::consume: 1202 case llvm::AtomicOrderingCABI::acquire: 1203 if (IsStore) 1204 break; // Avoid crashing on code with undefined behavior 1205 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1206 llvm::AtomicOrdering::Acquire, Scope); 1207 break; 1208 case llvm::AtomicOrderingCABI::release: 1209 if (IsLoad) 1210 break; // Avoid crashing on code with undefined behavior 1211 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1212 llvm::AtomicOrdering::Release, Scope); 1213 break; 1214 case llvm::AtomicOrderingCABI::acq_rel: 1215 if (IsLoad || IsStore) 1216 break; // Avoid crashing on code with undefined behavior 1217 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1218 llvm::AtomicOrdering::AcquireRelease, Scope); 1219 break; 1220 case llvm::AtomicOrderingCABI::seq_cst: 1221 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1222 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 1223 break; 1224 } 1225 if (RValTy->isVoidType()) 1226 return RValue::get(nullptr); 1227 1228 return convertTempToRValue( 1229 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo( 1230 Dest.getAddressSpace())), 1231 RValTy, E->getExprLoc()); 1232 } 1233 1234 // Long case, when Order isn't obviously constant. 1235 1236 // Create all the relevant BB's 1237 llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, 1238 *ReleaseBB = nullptr, *AcqRelBB = nullptr, 1239 *SeqCstBB = nullptr; 1240 MonotonicBB = createBasicBlock("monotonic", CurFn); 1241 if (!IsStore) 1242 AcquireBB = createBasicBlock("acquire", CurFn); 1243 if (!IsLoad) 1244 ReleaseBB = createBasicBlock("release", CurFn); 1245 if (!IsLoad && !IsStore) 1246 AcqRelBB = createBasicBlock("acqrel", CurFn); 1247 SeqCstBB = createBasicBlock("seqcst", CurFn); 1248 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1249 1250 // Create the switch for the split 1251 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 1252 // doesn't matter unless someone is crazy enough to use something that 1253 // doesn't fold to a constant for the ordering. 1254 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1255 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 1256 1257 // Emit all the different atomics 1258 Builder.SetInsertPoint(MonotonicBB); 1259 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1260 llvm::AtomicOrdering::Monotonic, Scope); 1261 Builder.CreateBr(ContBB); 1262 if (!IsStore) { 1263 Builder.SetInsertPoint(AcquireBB); 1264 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1265 llvm::AtomicOrdering::Acquire, Scope); 1266 Builder.CreateBr(ContBB); 1267 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), 1268 AcquireBB); 1269 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), 1270 AcquireBB); 1271 } 1272 if (!IsLoad) { 1273 Builder.SetInsertPoint(ReleaseBB); 1274 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1275 llvm::AtomicOrdering::Release, Scope); 1276 Builder.CreateBr(ContBB); 1277 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release), 1278 ReleaseBB); 1279 } 1280 if (!IsLoad && !IsStore) { 1281 Builder.SetInsertPoint(AcqRelBB); 1282 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1283 llvm::AtomicOrdering::AcquireRelease, Scope); 1284 Builder.CreateBr(ContBB); 1285 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel), 1286 AcqRelBB); 1287 } 1288 Builder.SetInsertPoint(SeqCstBB); 1289 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, 1290 llvm::AtomicOrdering::SequentiallyConsistent, Scope); 1291 Builder.CreateBr(ContBB); 1292 SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), 1293 SeqCstBB); 1294 1295 // Cleanup and return 1296 Builder.SetInsertPoint(ContBB); 1297 if (RValTy->isVoidType()) 1298 return RValue::get(nullptr); 1299 1300 assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); 1301 return convertTempToRValue( 1302 Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo( 1303 Dest.getAddressSpace())), 1304 RValTy, E->getExprLoc()); 1305 } 1306 1307 Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const { 1308 unsigned addrspace = 1309 cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace(); 1310 llvm::IntegerType *ty = 1311 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); 1312 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); 1313 } 1314 1315 Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { 1316 llvm::Type *Ty = Addr.getElementType(); 1317 uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); 1318 if (SourceSizeInBits != AtomicSizeInBits) { 1319 Address Tmp = CreateTempAlloca(); 1320 CGF.Builder.CreateMemCpy(Tmp, Addr, 1321 std::min(AtomicSizeInBits, SourceSizeInBits) / 8); 1322 Addr = Tmp; 1323 } 1324 1325 return emitCastToAtomicIntPointer(Addr); 1326 } 1327 1328 RValue AtomicInfo::convertAtomicTempToRValue(Address addr, 1329 AggValueSlot resultSlot, 1330 SourceLocation loc, 1331 bool asValue) const { 1332 if (LVal.isSimple()) { 1333 if (EvaluationKind == TEK_Aggregate) 1334 return resultSlot.asRValue(); 1335 1336 // Drill into the padding structure if we have one. 1337 if (hasPadding()) 1338 addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits()); 1339 1340 // Otherwise, just convert the temporary to an r-value using the 1341 // normal conversion routine. 1342 return CGF.convertTempToRValue(addr, getValueType(), loc); 1343 } 1344 if (!asValue) 1345 // Get RValue from temp memory as atomic for non-simple lvalues 1346 return RValue::get(CGF.Builder.CreateLoad(addr)); 1347 if (LVal.isBitField()) 1348 return CGF.EmitLoadOfBitfieldLValue( 1349 LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), 1350 LVal.getBaseInfo(), TBAAAccessInfo()), loc); 1351 if (LVal.isVectorElt()) 1352 return CGF.EmitLoadOfLValue( 1353 LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), 1354 LVal.getBaseInfo(), TBAAAccessInfo()), loc); 1355 assert(LVal.isExtVectorElt()); 1356 return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( 1357 addr, LVal.getExtVectorElts(), LVal.getType(), 1358 LVal.getBaseInfo(), TBAAAccessInfo())); 1359 } 1360 1361 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, 1362 AggValueSlot ResultSlot, 1363 SourceLocation Loc, 1364 bool AsValue) const { 1365 // Try not to in some easy cases. 1366 assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); 1367 if (getEvaluationKind() == TEK_Scalar && 1368 (((!LVal.isBitField() || 1369 LVal.getBitFieldInfo().Size == ValueSizeInBits) && 1370 !hasPadding()) || 1371 !AsValue)) { 1372 auto *ValTy = AsValue 1373 ? CGF.ConvertTypeForMem(ValueTy) 1374 : getAtomicAddress().getType()->getPointerElementType(); 1375 if (ValTy->isIntegerTy()) { 1376 assert(IntVal->getType() == ValTy && "Different integer types."); 1377 return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); 1378 } else if (ValTy->isPointerTy()) 1379 return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); 1380 else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) 1381 return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); 1382 } 1383 1384 // Create a temporary. This needs to be big enough to hold the 1385 // atomic integer. 1386 Address Temp = Address::invalid(); 1387 bool TempIsVolatile = false; 1388 if (AsValue && getEvaluationKind() == TEK_Aggregate) { 1389 assert(!ResultSlot.isIgnored()); 1390 Temp = ResultSlot.getAddress(); 1391 TempIsVolatile = ResultSlot.isVolatile(); 1392 } else { 1393 Temp = CreateTempAlloca(); 1394 } 1395 1396 // Slam the integer into the temporary. 1397 Address CastTemp = emitCastToAtomicIntPointer(Temp); 1398 CGF.Builder.CreateStore(IntVal, CastTemp) 1399 ->setVolatile(TempIsVolatile); 1400 1401 return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue); 1402 } 1403 1404 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, 1405 llvm::AtomicOrdering AO, bool) { 1406 // void __atomic_load(size_t size, void *mem, void *return, int order); 1407 CallArgList Args; 1408 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1409 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1410 CGF.getContext().VoidPtrTy); 1411 Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)), 1412 CGF.getContext().VoidPtrTy); 1413 Args.add( 1414 RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))), 1415 CGF.getContext().IntTy); 1416 emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); 1417 } 1418 1419 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, 1420 bool IsVolatile) { 1421 // Okay, we're doing this natively. 1422 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1423 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); 1424 Load->setAtomic(AO); 1425 1426 // Other decoration. 1427 if (IsVolatile) 1428 Load->setVolatile(true); 1429 CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); 1430 return Load; 1431 } 1432 1433 /// An LValue is a candidate for having its loads and stores be made atomic if 1434 /// we are operating under /volatile:ms *and* the LValue itself is volatile and 1435 /// performing such an operation can be performed without a libcall. 1436 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { 1437 if (!CGM.getCodeGenOpts().MSVolatile) return false; 1438 AtomicInfo AI(*this, LV); 1439 bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); 1440 // An atomic is inline if we don't need to use a libcall. 1441 bool AtomicIsInline = !AI.shouldUseLibcall(); 1442 // MSVC doesn't seem to do this for types wider than a pointer. 1443 if (getContext().getTypeSize(LV.getType()) > 1444 getContext().getTypeSize(getContext().getIntPtrType())) 1445 return false; 1446 return IsVolatile && AtomicIsInline; 1447 } 1448 1449 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, 1450 AggValueSlot Slot) { 1451 llvm::AtomicOrdering AO; 1452 bool IsVolatile = LV.isVolatileQualified(); 1453 if (LV.getType()->isAtomicType()) { 1454 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1455 } else { 1456 AO = llvm::AtomicOrdering::Acquire; 1457 IsVolatile = true; 1458 } 1459 return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); 1460 } 1461 1462 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, 1463 bool AsValue, llvm::AtomicOrdering AO, 1464 bool IsVolatile) { 1465 // Check whether we should use a library call. 1466 if (shouldUseLibcall()) { 1467 Address TempAddr = Address::invalid(); 1468 if (LVal.isSimple() && !ResultSlot.isIgnored()) { 1469 assert(getEvaluationKind() == TEK_Aggregate); 1470 TempAddr = ResultSlot.getAddress(); 1471 } else 1472 TempAddr = CreateTempAlloca(); 1473 1474 EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile); 1475 1476 // Okay, turn that back into the original value or whole atomic (for 1477 // non-simple lvalues) type. 1478 return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue); 1479 } 1480 1481 // Okay, we're doing this natively. 1482 auto *Load = EmitAtomicLoadOp(AO, IsVolatile); 1483 1484 // If we're ignoring an aggregate return, don't do anything. 1485 if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) 1486 return RValue::getAggregate(Address::invalid(), false); 1487 1488 // Okay, turn that back into the original value or atomic (for non-simple 1489 // lvalues) type. 1490 return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); 1491 } 1492 1493 /// Emit a load from an l-value of atomic type. Note that the r-value 1494 /// we produce is an r-value of the atomic *value* type. 1495 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, 1496 llvm::AtomicOrdering AO, bool IsVolatile, 1497 AggValueSlot resultSlot) { 1498 AtomicInfo Atomics(*this, src); 1499 return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, 1500 IsVolatile); 1501 } 1502 1503 /// Copy an r-value into memory as part of storing to an atomic type. 1504 /// This needs to create a bit-pattern suitable for atomic operations. 1505 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { 1506 assert(LVal.isSimple()); 1507 // If we have an r-value, the rvalue should be of the atomic type, 1508 // which means that the caller is responsible for having zeroed 1509 // any padding. Just do an aggregate copy of that type. 1510 if (rvalue.isAggregate()) { 1511 LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType()); 1512 LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(), 1513 getAtomicType()); 1514 bool IsVolatile = rvalue.isVolatileQualified() || 1515 LVal.isVolatileQualified(); 1516 CGF.EmitAggregateCopy(Dest, Src, getAtomicType(), IsVolatile); 1517 return; 1518 } 1519 1520 // Okay, otherwise we're copying stuff. 1521 1522 // Zero out the buffer if necessary. 1523 emitMemSetZeroIfNecessary(); 1524 1525 // Drill past the padding if present. 1526 LValue TempLVal = projectValue(); 1527 1528 // Okay, store the rvalue in. 1529 if (rvalue.isScalar()) { 1530 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); 1531 } else { 1532 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); 1533 } 1534 } 1535 1536 1537 /// Materialize an r-value into memory for the purposes of storing it 1538 /// to an atomic type. 1539 Address AtomicInfo::materializeRValue(RValue rvalue) const { 1540 // Aggregate r-values are already in memory, and EmitAtomicStore 1541 // requires them to be values of the atomic type. 1542 if (rvalue.isAggregate()) 1543 return rvalue.getAggregateAddress(); 1544 1545 // Otherwise, make a temporary and materialize into it. 1546 LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType()); 1547 AtomicInfo Atomics(CGF, TempLV); 1548 Atomics.emitCopyIntoMemory(rvalue); 1549 return TempLV.getAddress(); 1550 } 1551 1552 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { 1553 // If we've got a scalar value of the right size, try to avoid going 1554 // through memory. 1555 if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { 1556 llvm::Value *Value = RVal.getScalarVal(); 1557 if (isa<llvm::IntegerType>(Value->getType())) 1558 return CGF.EmitToMemory(Value, ValueTy); 1559 else { 1560 llvm::IntegerType *InputIntTy = llvm::IntegerType::get( 1561 CGF.getLLVMContext(), 1562 LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); 1563 if (isa<llvm::PointerType>(Value->getType())) 1564 return CGF.Builder.CreatePtrToInt(Value, InputIntTy); 1565 else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) 1566 return CGF.Builder.CreateBitCast(Value, InputIntTy); 1567 } 1568 } 1569 // Otherwise, we need to go through memory. 1570 // Put the r-value in memory. 1571 Address Addr = materializeRValue(RVal); 1572 1573 // Cast the temporary to the atomic int type and pull a value out. 1574 Addr = emitCastToAtomicIntPointer(Addr); 1575 return CGF.Builder.CreateLoad(Addr); 1576 } 1577 1578 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( 1579 llvm::Value *ExpectedVal, llvm::Value *DesiredVal, 1580 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { 1581 // Do the atomic store. 1582 Address Addr = getAtomicAddressAsAtomicIntPointer(); 1583 auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(), 1584 ExpectedVal, DesiredVal, 1585 Success, Failure); 1586 // Other decoration. 1587 Inst->setVolatile(LVal.isVolatileQualified()); 1588 Inst->setWeak(IsWeak); 1589 1590 // Okay, turn that back into the original value type. 1591 auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); 1592 auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); 1593 return std::make_pair(PreviousVal, SuccessFailureVal); 1594 } 1595 1596 llvm::Value * 1597 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, 1598 llvm::Value *DesiredAddr, 1599 llvm::AtomicOrdering Success, 1600 llvm::AtomicOrdering Failure) { 1601 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 1602 // void *desired, int success, int failure); 1603 CallArgList Args; 1604 Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); 1605 Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())), 1606 CGF.getContext().VoidPtrTy); 1607 Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)), 1608 CGF.getContext().VoidPtrTy); 1609 Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)), 1610 CGF.getContext().VoidPtrTy); 1611 Args.add(RValue::get( 1612 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))), 1613 CGF.getContext().IntTy); 1614 Args.add(RValue::get( 1615 llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))), 1616 CGF.getContext().IntTy); 1617 auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", 1618 CGF.getContext().BoolTy, Args); 1619 1620 return SuccessFailureRVal.getScalarVal(); 1621 } 1622 1623 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( 1624 RValue Expected, RValue Desired, llvm::AtomicOrdering Success, 1625 llvm::AtomicOrdering Failure, bool IsWeak) { 1626 if (isStrongerThan(Failure, Success)) 1627 // Don't assert on undefined behavior "failure argument shall be no stronger 1628 // than the success argument". 1629 Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success); 1630 1631 // Check whether we should use a library call. 1632 if (shouldUseLibcall()) { 1633 // Produce a source address. 1634 Address ExpectedAddr = materializeRValue(Expected); 1635 Address DesiredAddr = materializeRValue(Desired); 1636 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1637 DesiredAddr.getPointer(), 1638 Success, Failure); 1639 return std::make_pair( 1640 convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(), 1641 SourceLocation(), /*AsValue=*/false), 1642 Res); 1643 } 1644 1645 // If we've got a scalar value of the right size, try to avoid going 1646 // through memory. 1647 auto *ExpectedVal = convertRValueToInt(Expected); 1648 auto *DesiredVal = convertRValueToInt(Desired); 1649 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, 1650 Failure, IsWeak); 1651 return std::make_pair( 1652 ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), 1653 SourceLocation(), /*AsValue=*/false), 1654 Res.second); 1655 } 1656 1657 static void 1658 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, 1659 const llvm::function_ref<RValue(RValue)> &UpdateOp, 1660 Address DesiredAddr) { 1661 RValue UpRVal; 1662 LValue AtomicLVal = Atomics.getAtomicLValue(); 1663 LValue DesiredLVal; 1664 if (AtomicLVal.isSimple()) { 1665 UpRVal = OldRVal; 1666 DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType()); 1667 } else { 1668 // Build new lvalue for temp address 1669 Address Ptr = Atomics.materializeRValue(OldRVal); 1670 LValue UpdateLVal; 1671 if (AtomicLVal.isBitField()) { 1672 UpdateLVal = 1673 LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), 1674 AtomicLVal.getType(), 1675 AtomicLVal.getBaseInfo(), 1676 AtomicLVal.getTBAAInfo()); 1677 DesiredLVal = 1678 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1679 AtomicLVal.getType(), AtomicLVal.getBaseInfo(), 1680 AtomicLVal.getTBAAInfo()); 1681 } else if (AtomicLVal.isVectorElt()) { 1682 UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), 1683 AtomicLVal.getType(), 1684 AtomicLVal.getBaseInfo(), 1685 AtomicLVal.getTBAAInfo()); 1686 DesiredLVal = LValue::MakeVectorElt( 1687 DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), 1688 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); 1689 } else { 1690 assert(AtomicLVal.isExtVectorElt()); 1691 UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), 1692 AtomicLVal.getType(), 1693 AtomicLVal.getBaseInfo(), 1694 AtomicLVal.getTBAAInfo()); 1695 DesiredLVal = LValue::MakeExtVectorElt( 1696 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1697 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); 1698 } 1699 UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); 1700 } 1701 // Store new value in the corresponding memory area 1702 RValue NewRVal = UpdateOp(UpRVal); 1703 if (NewRVal.isScalar()) { 1704 CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); 1705 } else { 1706 assert(NewRVal.isComplex()); 1707 CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, 1708 /*isInit=*/false); 1709 } 1710 } 1711 1712 void AtomicInfo::EmitAtomicUpdateLibcall( 1713 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1714 bool IsVolatile) { 1715 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1716 1717 Address ExpectedAddr = CreateTempAlloca(); 1718 1719 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1720 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1721 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1722 CGF.EmitBlock(ContBB); 1723 Address DesiredAddr = CreateTempAlloca(); 1724 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1725 requiresMemSetZero(getAtomicAddress().getElementType())) { 1726 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1727 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1728 } 1729 auto OldRVal = convertAtomicTempToRValue(ExpectedAddr, 1730 AggValueSlot::ignored(), 1731 SourceLocation(), /*AsValue=*/false); 1732 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); 1733 auto *Res = 1734 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1735 DesiredAddr.getPointer(), 1736 AO, Failure); 1737 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1738 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1739 } 1740 1741 void AtomicInfo::EmitAtomicUpdateOp( 1742 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1743 bool IsVolatile) { 1744 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1745 1746 // Do the atomic load. 1747 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1748 // For non-simple lvalues perform compare-and-swap procedure. 1749 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1750 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1751 auto *CurBB = CGF.Builder.GetInsertBlock(); 1752 CGF.EmitBlock(ContBB); 1753 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1754 /*NumReservedValues=*/2); 1755 PHI->addIncoming(OldVal, CurBB); 1756 Address NewAtomicAddr = CreateTempAlloca(); 1757 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1758 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1759 requiresMemSetZero(getAtomicAddress().getElementType())) { 1760 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1761 } 1762 auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), 1763 SourceLocation(), /*AsValue=*/false); 1764 EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); 1765 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1766 // Try to write new value using cmpxchg operation 1767 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1768 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1769 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1770 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1771 } 1772 1773 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, 1774 RValue UpdateRVal, Address DesiredAddr) { 1775 LValue AtomicLVal = Atomics.getAtomicLValue(); 1776 LValue DesiredLVal; 1777 // Build new lvalue for temp address 1778 if (AtomicLVal.isBitField()) { 1779 DesiredLVal = 1780 LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), 1781 AtomicLVal.getType(), AtomicLVal.getBaseInfo(), 1782 AtomicLVal.getTBAAInfo()); 1783 } else if (AtomicLVal.isVectorElt()) { 1784 DesiredLVal = 1785 LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), 1786 AtomicLVal.getType(), AtomicLVal.getBaseInfo(), 1787 AtomicLVal.getTBAAInfo()); 1788 } else { 1789 assert(AtomicLVal.isExtVectorElt()); 1790 DesiredLVal = LValue::MakeExtVectorElt( 1791 DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), 1792 AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); 1793 } 1794 // Store new value in the corresponding memory area 1795 assert(UpdateRVal.isScalar()); 1796 CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); 1797 } 1798 1799 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, 1800 RValue UpdateRVal, bool IsVolatile) { 1801 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1802 1803 Address ExpectedAddr = CreateTempAlloca(); 1804 1805 EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); 1806 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1807 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1808 CGF.EmitBlock(ContBB); 1809 Address DesiredAddr = CreateTempAlloca(); 1810 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1811 requiresMemSetZero(getAtomicAddress().getElementType())) { 1812 auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); 1813 CGF.Builder.CreateStore(OldVal, DesiredAddr); 1814 } 1815 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); 1816 auto *Res = 1817 EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), 1818 DesiredAddr.getPointer(), 1819 AO, Failure); 1820 CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); 1821 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1822 } 1823 1824 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, 1825 bool IsVolatile) { 1826 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 1827 1828 // Do the atomic load. 1829 auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile); 1830 // For non-simple lvalues perform compare-and-swap procedure. 1831 auto *ContBB = CGF.createBasicBlock("atomic_cont"); 1832 auto *ExitBB = CGF.createBasicBlock("atomic_exit"); 1833 auto *CurBB = CGF.Builder.GetInsertBlock(); 1834 CGF.EmitBlock(ContBB); 1835 llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), 1836 /*NumReservedValues=*/2); 1837 PHI->addIncoming(OldVal, CurBB); 1838 Address NewAtomicAddr = CreateTempAlloca(); 1839 Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr); 1840 if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || 1841 requiresMemSetZero(getAtomicAddress().getElementType())) { 1842 CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); 1843 } 1844 EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); 1845 auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); 1846 // Try to write new value using cmpxchg operation 1847 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); 1848 PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); 1849 CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); 1850 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1851 } 1852 1853 void AtomicInfo::EmitAtomicUpdate( 1854 llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, 1855 bool IsVolatile) { 1856 if (shouldUseLibcall()) { 1857 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); 1858 } else { 1859 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); 1860 } 1861 } 1862 1863 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, 1864 bool IsVolatile) { 1865 if (shouldUseLibcall()) { 1866 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); 1867 } else { 1868 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); 1869 } 1870 } 1871 1872 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, 1873 bool isInit) { 1874 bool IsVolatile = lvalue.isVolatileQualified(); 1875 llvm::AtomicOrdering AO; 1876 if (lvalue.getType()->isAtomicType()) { 1877 AO = llvm::AtomicOrdering::SequentiallyConsistent; 1878 } else { 1879 AO = llvm::AtomicOrdering::Release; 1880 IsVolatile = true; 1881 } 1882 return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); 1883 } 1884 1885 /// Emit a store to an l-value of atomic type. 1886 /// 1887 /// Note that the r-value is expected to be an r-value *of the atomic 1888 /// type*; this means that for aggregate r-values, it should include 1889 /// storage for any padding that was necessary. 1890 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, 1891 llvm::AtomicOrdering AO, bool IsVolatile, 1892 bool isInit) { 1893 // If this is an aggregate r-value, it should agree in type except 1894 // maybe for address-space qualification. 1895 assert(!rvalue.isAggregate() || 1896 rvalue.getAggregateAddress().getElementType() 1897 == dest.getAddress().getElementType()); 1898 1899 AtomicInfo atomics(*this, dest); 1900 LValue LVal = atomics.getAtomicLValue(); 1901 1902 // If this is an initialization, just put the value there normally. 1903 if (LVal.isSimple()) { 1904 if (isInit) { 1905 atomics.emitCopyIntoMemory(rvalue); 1906 return; 1907 } 1908 1909 // Check whether we should use a library call. 1910 if (atomics.shouldUseLibcall()) { 1911 // Produce a source address. 1912 Address srcAddr = atomics.materializeRValue(rvalue); 1913 1914 // void __atomic_store(size_t size, void *mem, void *val, int order) 1915 CallArgList args; 1916 args.add(RValue::get(atomics.getAtomicSizeValue()), 1917 getContext().getSizeType()); 1918 args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())), 1919 getContext().VoidPtrTy); 1920 args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())), 1921 getContext().VoidPtrTy); 1922 args.add( 1923 RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))), 1924 getContext().IntTy); 1925 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); 1926 return; 1927 } 1928 1929 // Okay, we're doing this natively. 1930 llvm::Value *intValue = atomics.convertRValueToInt(rvalue); 1931 1932 // Do the atomic store. 1933 Address addr = 1934 atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress()); 1935 intValue = Builder.CreateIntCast( 1936 intValue, addr.getElementType(), /*isSigned=*/false); 1937 llvm::StoreInst *store = Builder.CreateStore(intValue, addr); 1938 1939 // Initializations don't need to be atomic. 1940 if (!isInit) 1941 store->setAtomic(AO); 1942 1943 // Other decoration. 1944 if (IsVolatile) 1945 store->setVolatile(true); 1946 CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo()); 1947 return; 1948 } 1949 1950 // Emit simple atomic update operation. 1951 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); 1952 } 1953 1954 /// Emit a compare-and-exchange op for atomic type. 1955 /// 1956 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( 1957 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 1958 llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, 1959 AggValueSlot Slot) { 1960 // If this is an aggregate r-value, it should agree in type except 1961 // maybe for address-space qualification. 1962 assert(!Expected.isAggregate() || 1963 Expected.getAggregateAddress().getElementType() == 1964 Obj.getAddress().getElementType()); 1965 assert(!Desired.isAggregate() || 1966 Desired.getAggregateAddress().getElementType() == 1967 Obj.getAddress().getElementType()); 1968 AtomicInfo Atomics(*this, Obj); 1969 1970 return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, 1971 IsWeak); 1972 } 1973 1974 void CodeGenFunction::EmitAtomicUpdate( 1975 LValue LVal, llvm::AtomicOrdering AO, 1976 const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { 1977 AtomicInfo Atomics(*this, LVal); 1978 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); 1979 } 1980 1981 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { 1982 AtomicInfo atomics(*this, dest); 1983 1984 switch (atomics.getEvaluationKind()) { 1985 case TEK_Scalar: { 1986 llvm::Value *value = EmitScalarExpr(init); 1987 atomics.emitCopyIntoMemory(RValue::get(value)); 1988 return; 1989 } 1990 1991 case TEK_Complex: { 1992 ComplexPairTy value = EmitComplexExpr(init); 1993 atomics.emitCopyIntoMemory(RValue::getComplex(value)); 1994 return; 1995 } 1996 1997 case TEK_Aggregate: { 1998 // Fix up the destination if the initializer isn't an expression 1999 // of atomic type. 2000 bool Zeroed = false; 2001 if (!init->getType()->isAtomicType()) { 2002 Zeroed = atomics.emitMemSetZeroIfNecessary(); 2003 dest = atomics.projectValue(); 2004 } 2005 2006 // Evaluate the expression directly into the destination. 2007 AggValueSlot slot = AggValueSlot::forLValue(dest, 2008 AggValueSlot::IsNotDestructed, 2009 AggValueSlot::DoesNotNeedGCBarriers, 2010 AggValueSlot::IsNotAliased, 2011 Zeroed ? AggValueSlot::IsZeroed : 2012 AggValueSlot::IsNotZeroed); 2013 2014 EmitAggExpr(init, slot); 2015 return; 2016 } 2017 } 2018 llvm_unreachable("bad evaluation kind"); 2019 } 2020