1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace llvm { 98 extern cl::opt<bool> DebugInfoCorrelate; 99 } 100 101 namespace { 102 103 // Default filename used for profile generation. 104 std::string getDefaultProfileGenName() { 105 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 106 } 107 108 class EmitAssemblyHelper { 109 DiagnosticsEngine &Diags; 110 const HeaderSearchOptions &HSOpts; 111 const CodeGenOptions &CodeGenOpts; 112 const clang::TargetOptions &TargetOpts; 113 const LangOptions &LangOpts; 114 Module *TheModule; 115 116 Timer CodeGenerationTime; 117 118 std::unique_ptr<raw_pwrite_stream> OS; 119 120 TargetIRAnalysis getTargetIRAnalysis() const { 121 if (TM) 122 return TM->getTargetIRAnalysis(); 123 124 return TargetIRAnalysis(); 125 } 126 127 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 128 129 /// Generates the TargetMachine. 130 /// Leaves TM unchanged if it is unable to create the target machine. 131 /// Some of our clang tests specify triples which are not built 132 /// into clang. This is okay because these tests check the generated 133 /// IR, and they require DataLayout which depends on the triple. 134 /// In this case, we allow this method to fail and not report an error. 135 /// When MustCreateTM is used, we print an error if we are unable to load 136 /// the requested target. 137 void CreateTargetMachine(bool MustCreateTM); 138 139 /// Add passes necessary to emit assembly or LLVM IR. 140 /// 141 /// \return True on success. 142 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 143 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 144 145 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 146 std::error_code EC; 147 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 148 llvm::sys::fs::OF_None); 149 if (EC) { 150 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 151 F.reset(); 152 } 153 return F; 154 } 155 156 void 157 RunOptimizationPipeline(BackendAction Action, 158 std::unique_ptr<raw_pwrite_stream> &OS, 159 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 160 void RunCodegenPipeline(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> &OS, 162 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 163 164 public: 165 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 166 const HeaderSearchOptions &HeaderSearchOpts, 167 const CodeGenOptions &CGOpts, 168 const clang::TargetOptions &TOpts, 169 const LangOptions &LOpts, Module *M) 170 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 171 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 172 CodeGenerationTime("codegen", "Code Generation Time") {} 173 174 ~EmitAssemblyHelper() { 175 if (CodeGenOpts.DisableFree) 176 BuryPointer(std::move(TM)); 177 } 178 179 std::unique_ptr<TargetMachine> TM; 180 181 // Emit output using the legacy pass manager for the optimization pipeline. 182 // This will be removed soon when using the legacy pass manager for the 183 // optimization pipeline is no longer supported. 184 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 185 std::unique_ptr<raw_pwrite_stream> OS); 186 187 // Emit output using the new pass manager for the optimization pipeline. This 188 // is the default. 189 void EmitAssembly(BackendAction Action, 190 std::unique_ptr<raw_pwrite_stream> OS); 191 }; 192 193 // We need this wrapper to access LangOpts and CGOpts from extension functions 194 // that we add to the PassManagerBuilder. 195 class PassManagerBuilderWrapper : public PassManagerBuilder { 196 public: 197 PassManagerBuilderWrapper(const Triple &TargetTriple, 198 const CodeGenOptions &CGOpts, 199 const LangOptions &LangOpts) 200 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 201 const Triple &getTargetTriple() const { return TargetTriple; } 202 const CodeGenOptions &getCGOpts() const { return CGOpts; } 203 const LangOptions &getLangOpts() const { return LangOpts; } 204 205 private: 206 const Triple &TargetTriple; 207 const CodeGenOptions &CGOpts; 208 const LangOptions &LangOpts; 209 }; 210 } 211 212 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 213 if (Builder.OptLevel > 0) 214 PM.add(createObjCARCAPElimPass()); 215 } 216 217 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 218 if (Builder.OptLevel > 0) 219 PM.add(createObjCARCExpandPass()); 220 } 221 222 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 223 if (Builder.OptLevel > 0) 224 PM.add(createObjCARCOptPass()); 225 } 226 227 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 228 legacy::PassManagerBase &PM) { 229 PM.add(createAddDiscriminatorsPass()); 230 } 231 232 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 PM.add(createBoundsCheckingLegacyPass()); 235 } 236 237 static SanitizerCoverageOptions 238 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 239 SanitizerCoverageOptions Opts; 240 Opts.CoverageType = 241 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 242 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 243 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 244 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 245 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 246 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 247 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 248 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 249 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 250 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 251 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 252 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 253 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 254 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 255 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 256 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 257 return Opts; 258 } 259 260 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 const PassManagerBuilderWrapper &BuilderWrapper = 263 static_cast<const PassManagerBuilderWrapper &>(Builder); 264 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 265 auto Opts = getSancovOptsFromCGOpts(CGOpts); 266 PM.add(createModuleSanitizerCoverageLegacyPassPass( 267 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 268 CGOpts.SanitizeCoverageIgnorelistFiles)); 269 } 270 271 // Check if ASan should use GC-friendly instrumentation for globals. 272 // First of all, there is no point if -fdata-sections is off (expect for MachO, 273 // where this is not a factor). Also, on ELF this feature requires an assembler 274 // extension that only works with -integrated-as at the moment. 275 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 276 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 277 return false; 278 switch (T.getObjectFormat()) { 279 case Triple::MachO: 280 case Triple::COFF: 281 return true; 282 case Triple::ELF: 283 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 284 case Triple::GOFF: 285 llvm::report_fatal_error("ASan not implemented for GOFF"); 286 case Triple::XCOFF: 287 llvm::report_fatal_error("ASan not implemented for XCOFF."); 288 case Triple::Wasm: 289 case Triple::UnknownObjectFormat: 290 break; 291 } 292 return false; 293 } 294 295 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 PM.add(createMemProfilerFunctionPass()); 298 PM.add(createModuleMemProfilerLegacyPassPass()); 299 } 300 301 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 const PassManagerBuilderWrapper &BuilderWrapper = 304 static_cast<const PassManagerBuilderWrapper&>(Builder); 305 const Triple &T = BuilderWrapper.getTargetTriple(); 306 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 307 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 308 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 309 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 310 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 311 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 312 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 313 CGOpts.getSanitizeAddressUseAfterReturn(); 314 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 315 UseAfterScope, UseAfterReturn)); 316 PM.add(createModuleAddressSanitizerLegacyPassPass( 317 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 318 DestructorKind)); 319 } 320 321 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 PM.add(createAddressSanitizerFunctionPass( 324 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 325 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 326 PM.add(createModuleAddressSanitizerLegacyPassPass( 327 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 328 /*UseOdrIndicator*/ false)); 329 } 330 331 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper &>(Builder); 335 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 336 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 337 PM.add(createHWAddressSanitizerLegacyPassPass( 338 /*CompileKernel*/ false, Recover, 339 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 340 } 341 342 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 const PassManagerBuilderWrapper &BuilderWrapper = 345 static_cast<const PassManagerBuilderWrapper &>(Builder); 346 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 347 PM.add(createHWAddressSanitizerLegacyPassPass( 348 /*CompileKernel*/ true, /*Recover*/ true, 349 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 350 } 351 352 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM, 354 bool CompileKernel) { 355 const PassManagerBuilderWrapper &BuilderWrapper = 356 static_cast<const PassManagerBuilderWrapper&>(Builder); 357 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 358 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 359 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 360 PM.add(createMemorySanitizerLegacyPassPass( 361 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 362 CGOpts.SanitizeMemoryParamRetval != 0})); 363 364 // MemorySanitizer inserts complex instrumentation that mostly follows 365 // the logic of the original code, but operates on "shadow" values. 366 // It can benefit from re-running some general purpose optimization passes. 367 if (Builder.OptLevel > 0) { 368 PM.add(createEarlyCSEPass()); 369 PM.add(createReassociatePass()); 370 PM.add(createLICMPass()); 371 PM.add(createGVNPass()); 372 PM.add(createInstructionCombiningPass()); 373 PM.add(createDeadStoreEliminationPass()); 374 } 375 } 376 377 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 378 legacy::PassManagerBase &PM) { 379 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 380 } 381 382 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 383 legacy::PassManagerBase &PM) { 384 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 385 } 386 387 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 388 legacy::PassManagerBase &PM) { 389 PM.add(createThreadSanitizerLegacyPassPass()); 390 } 391 392 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 393 legacy::PassManagerBase &PM) { 394 const PassManagerBuilderWrapper &BuilderWrapper = 395 static_cast<const PassManagerBuilderWrapper&>(Builder); 396 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 397 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 398 } 399 400 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 401 legacy::PassManagerBase &PM) { 402 PM.add(createEntryExitInstrumenterPass()); 403 } 404 405 static void 406 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 407 legacy::PassManagerBase &PM) { 408 PM.add(createPostInlineEntryExitInstrumenterPass()); 409 } 410 411 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 412 const CodeGenOptions &CodeGenOpts) { 413 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 414 415 switch (CodeGenOpts.getVecLib()) { 416 case CodeGenOptions::Accelerate: 417 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 418 break; 419 case CodeGenOptions::LIBMVEC: 420 switch(TargetTriple.getArch()) { 421 default: 422 break; 423 case llvm::Triple::x86_64: 424 TLII->addVectorizableFunctionsFromVecLib 425 (TargetLibraryInfoImpl::LIBMVEC_X86); 426 break; 427 } 428 break; 429 case CodeGenOptions::MASSV: 430 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 431 break; 432 case CodeGenOptions::SVML: 433 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 434 break; 435 case CodeGenOptions::Darwin_libsystem_m: 436 TLII->addVectorizableFunctionsFromVecLib( 437 TargetLibraryInfoImpl::DarwinLibSystemM); 438 break; 439 default: 440 break; 441 } 442 return TLII; 443 } 444 445 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 446 legacy::PassManager *MPM) { 447 llvm::SymbolRewriter::RewriteDescriptorList DL; 448 449 llvm::SymbolRewriter::RewriteMapParser MapParser; 450 for (const auto &MapFile : Opts.RewriteMapFiles) 451 MapParser.parse(MapFile, &DL); 452 453 MPM->add(createRewriteSymbolsPass(DL)); 454 } 455 456 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 457 switch (CodeGenOpts.OptimizationLevel) { 458 default: 459 llvm_unreachable("Invalid optimization level!"); 460 case 0: 461 return CodeGenOpt::None; 462 case 1: 463 return CodeGenOpt::Less; 464 case 2: 465 return CodeGenOpt::Default; // O2/Os/Oz 466 case 3: 467 return CodeGenOpt::Aggressive; 468 } 469 } 470 471 static Optional<llvm::CodeModel::Model> 472 getCodeModel(const CodeGenOptions &CodeGenOpts) { 473 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 474 .Case("tiny", llvm::CodeModel::Tiny) 475 .Case("small", llvm::CodeModel::Small) 476 .Case("kernel", llvm::CodeModel::Kernel) 477 .Case("medium", llvm::CodeModel::Medium) 478 .Case("large", llvm::CodeModel::Large) 479 .Case("default", ~1u) 480 .Default(~0u); 481 assert(CodeModel != ~0u && "invalid code model!"); 482 if (CodeModel == ~1u) 483 return None; 484 return static_cast<llvm::CodeModel::Model>(CodeModel); 485 } 486 487 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 488 if (Action == Backend_EmitObj) 489 return CGFT_ObjectFile; 490 else if (Action == Backend_EmitMCNull) 491 return CGFT_Null; 492 else { 493 assert(Action == Backend_EmitAssembly && "Invalid action!"); 494 return CGFT_AssemblyFile; 495 } 496 } 497 498 static bool actionRequiresCodeGen(BackendAction Action) { 499 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 500 Action != Backend_EmitLL; 501 } 502 503 static bool initTargetOptions(DiagnosticsEngine &Diags, 504 llvm::TargetOptions &Options, 505 const CodeGenOptions &CodeGenOpts, 506 const clang::TargetOptions &TargetOpts, 507 const LangOptions &LangOpts, 508 const HeaderSearchOptions &HSOpts) { 509 switch (LangOpts.getThreadModel()) { 510 case LangOptions::ThreadModelKind::POSIX: 511 Options.ThreadModel = llvm::ThreadModel::POSIX; 512 break; 513 case LangOptions::ThreadModelKind::Single: 514 Options.ThreadModel = llvm::ThreadModel::Single; 515 break; 516 } 517 518 // Set float ABI type. 519 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 520 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 521 "Invalid Floating Point ABI!"); 522 Options.FloatABIType = 523 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 524 .Case("soft", llvm::FloatABI::Soft) 525 .Case("softfp", llvm::FloatABI::Soft) 526 .Case("hard", llvm::FloatABI::Hard) 527 .Default(llvm::FloatABI::Default); 528 529 // Set FP fusion mode. 530 switch (LangOpts.getDefaultFPContractMode()) { 531 case LangOptions::FPM_Off: 532 // Preserve any contraction performed by the front-end. (Strict performs 533 // splitting of the muladd intrinsic in the backend.) 534 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 535 break; 536 case LangOptions::FPM_On: 537 case LangOptions::FPM_FastHonorPragmas: 538 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 539 break; 540 case LangOptions::FPM_Fast: 541 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 542 break; 543 } 544 545 Options.BinutilsVersion = 546 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 547 Options.UseInitArray = CodeGenOpts.UseInitArray; 548 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 549 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 550 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 551 552 // Set EABI version. 553 Options.EABIVersion = TargetOpts.EABIVersion; 554 555 if (LangOpts.hasSjLjExceptions()) 556 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 557 if (LangOpts.hasSEHExceptions()) 558 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 559 if (LangOpts.hasDWARFExceptions()) 560 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 561 if (LangOpts.hasWasmExceptions()) 562 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 563 564 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 565 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 566 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 567 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 568 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 569 570 Options.BBSections = 571 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 572 .Case("all", llvm::BasicBlockSection::All) 573 .Case("labels", llvm::BasicBlockSection::Labels) 574 .StartsWith("list=", llvm::BasicBlockSection::List) 575 .Case("none", llvm::BasicBlockSection::None) 576 .Default(llvm::BasicBlockSection::None); 577 578 if (Options.BBSections == llvm::BasicBlockSection::List) { 579 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 580 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 581 if (!MBOrErr) { 582 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 583 << MBOrErr.getError().message(); 584 return false; 585 } 586 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 587 } 588 589 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 590 Options.FunctionSections = CodeGenOpts.FunctionSections; 591 Options.DataSections = CodeGenOpts.DataSections; 592 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 593 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 594 Options.UniqueBasicBlockSectionNames = 595 CodeGenOpts.UniqueBasicBlockSectionNames; 596 Options.TLSSize = CodeGenOpts.TLSSize; 597 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 598 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 599 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 600 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 601 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 602 Options.EmitAddrsig = CodeGenOpts.Addrsig; 603 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 604 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 605 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 606 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 607 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 608 609 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 610 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 611 Options.SwiftAsyncFramePointer = 612 SwiftAsyncFramePointerMode::DeploymentBased; 613 break; 614 615 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 616 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 617 break; 618 619 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 620 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 621 break; 622 } 623 624 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 625 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 626 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 627 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 628 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 629 Options.MCOptions.MCIncrementalLinkerCompatible = 630 CodeGenOpts.IncrementalLinkerCompatible; 631 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 632 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 633 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 634 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 635 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 636 Options.MCOptions.ABIName = TargetOpts.ABI; 637 for (const auto &Entry : HSOpts.UserEntries) 638 if (!Entry.IsFramework && 639 (Entry.Group == frontend::IncludeDirGroup::Quoted || 640 Entry.Group == frontend::IncludeDirGroup::Angled || 641 Entry.Group == frontend::IncludeDirGroup::System)) 642 Options.MCOptions.IASSearchPaths.push_back( 643 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 644 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 645 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 646 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 647 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 648 Options.Hotpatch = CodeGenOpts.HotPatch; 649 650 return true; 651 } 652 653 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 654 const LangOptions &LangOpts) { 655 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 656 return None; 657 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 658 // LLVM's -default-gcov-version flag is set to something invalid. 659 GCOVOptions Options; 660 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 661 Options.EmitData = CodeGenOpts.EmitGcovArcs; 662 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 663 Options.NoRedZone = CodeGenOpts.DisableRedZone; 664 Options.Filter = CodeGenOpts.ProfileFilterFiles; 665 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 666 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 667 return Options; 668 } 669 670 static Optional<InstrProfOptions> 671 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 672 const LangOptions &LangOpts) { 673 if (!CodeGenOpts.hasProfileClangInstr()) 674 return None; 675 InstrProfOptions Options; 676 Options.NoRedZone = CodeGenOpts.DisableRedZone; 677 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 678 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 679 return Options; 680 } 681 682 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 683 legacy::FunctionPassManager &FPM) { 684 // Handle disabling of all LLVM passes, where we want to preserve the 685 // internal module before any optimization. 686 if (CodeGenOpts.DisableLLVMPasses) 687 return; 688 689 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 690 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 691 // are inserted before PMBuilder ones - they'd get the default-constructed 692 // TLI with an unknown target otherwise. 693 Triple TargetTriple(TheModule->getTargetTriple()); 694 std::unique_ptr<TargetLibraryInfoImpl> TLII( 695 createTLII(TargetTriple, CodeGenOpts)); 696 697 // If we reached here with a non-empty index file name, then the index file 698 // was empty and we are not performing ThinLTO backend compilation (used in 699 // testing in a distributed build environment). Drop any the type test 700 // assume sequences inserted for whole program vtables so that codegen doesn't 701 // complain. 702 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 703 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 704 /*ImportSummary=*/nullptr, 705 /*DropTypeTests=*/true)); 706 707 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 708 709 // At O0 and O1 we only run the always inliner which is more efficient. At 710 // higher optimization levels we run the normal inliner. 711 if (CodeGenOpts.OptimizationLevel <= 1) { 712 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 713 !CodeGenOpts.DisableLifetimeMarkers) || 714 LangOpts.Coroutines); 715 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 716 } else { 717 // We do not want to inline hot callsites for SamplePGO module-summary build 718 // because profile annotation will happen again in ThinLTO backend, and we 719 // want the IR of the hot path to match the profile. 720 PMBuilder.Inliner = createFunctionInliningPass( 721 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 722 (!CodeGenOpts.SampleProfileFile.empty() && 723 CodeGenOpts.PrepareForThinLTO)); 724 } 725 726 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 727 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 728 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 729 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 730 // Only enable CGProfilePass when using integrated assembler, since 731 // non-integrated assemblers don't recognize .cgprofile section. 732 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 733 734 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 735 // Loop interleaving in the loop vectorizer has historically been set to be 736 // enabled when loop unrolling is enabled. 737 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 738 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 739 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 740 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 741 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 742 743 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 744 745 if (TM) 746 TM->adjustPassManager(PMBuilder); 747 748 if (CodeGenOpts.DebugInfoForProfiling || 749 !CodeGenOpts.SampleProfileFile.empty()) 750 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 751 addAddDiscriminatorsPass); 752 753 // In ObjC ARC mode, add the main ARC optimization passes. 754 if (LangOpts.ObjCAutoRefCount) { 755 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 756 addObjCARCExpandPass); 757 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 758 addObjCARCAPElimPass); 759 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 760 addObjCARCOptPass); 761 } 762 763 if (LangOpts.Coroutines) 764 addCoroutinePassesToExtensionPoints(PMBuilder); 765 766 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 767 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 768 addMemProfilerPasses); 769 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 770 addMemProfilerPasses); 771 } 772 773 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 774 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 775 addBoundsCheckingPass); 776 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 777 addBoundsCheckingPass); 778 } 779 780 if (CodeGenOpts.hasSanitizeCoverage()) { 781 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 782 addSanitizerCoveragePass); 783 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 784 addSanitizerCoveragePass); 785 } 786 787 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 788 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 789 addAddressSanitizerPasses); 790 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 791 addAddressSanitizerPasses); 792 } 793 794 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 795 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 796 addKernelAddressSanitizerPasses); 797 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 798 addKernelAddressSanitizerPasses); 799 } 800 801 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 802 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 803 addHWAddressSanitizerPasses); 804 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 805 addHWAddressSanitizerPasses); 806 } 807 808 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 809 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 810 addKernelHWAddressSanitizerPasses); 811 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 812 addKernelHWAddressSanitizerPasses); 813 } 814 815 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 816 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 817 addMemorySanitizerPass); 818 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 819 addMemorySanitizerPass); 820 } 821 822 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 823 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 824 addKernelMemorySanitizerPass); 825 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 826 addKernelMemorySanitizerPass); 827 } 828 829 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 830 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 831 addThreadSanitizerPass); 832 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 833 addThreadSanitizerPass); 834 } 835 836 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 837 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 838 addDataFlowSanitizerPass); 839 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 840 addDataFlowSanitizerPass); 841 } 842 843 if (CodeGenOpts.InstrumentFunctions || 844 CodeGenOpts.InstrumentFunctionEntryBare || 845 CodeGenOpts.InstrumentFunctionsAfterInlining || 846 CodeGenOpts.InstrumentForProfiling) { 847 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 848 addEntryExitInstrumentationPass); 849 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 850 addEntryExitInstrumentationPass); 851 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 852 addPostInlineEntryExitInstrumentationPass); 853 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 854 addPostInlineEntryExitInstrumentationPass); 855 } 856 857 // Set up the per-function pass manager. 858 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 859 if (CodeGenOpts.VerifyModule) 860 FPM.add(createVerifierPass()); 861 862 // Set up the per-module pass manager. 863 if (!CodeGenOpts.RewriteMapFiles.empty()) 864 addSymbolRewriterPass(CodeGenOpts, &MPM); 865 866 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 867 MPM.add(createGCOVProfilerPass(*Options)); 868 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 869 MPM.add(createStripSymbolsPass(true)); 870 } 871 872 if (Optional<InstrProfOptions> Options = 873 getInstrProfOptions(CodeGenOpts, LangOpts)) 874 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 875 876 bool hasIRInstr = false; 877 if (CodeGenOpts.hasProfileIRInstr()) { 878 PMBuilder.EnablePGOInstrGen = true; 879 hasIRInstr = true; 880 } 881 if (CodeGenOpts.hasProfileCSIRInstr()) { 882 assert(!CodeGenOpts.hasProfileCSIRUse() && 883 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 884 "same time"); 885 assert(!hasIRInstr && 886 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 887 "same time"); 888 PMBuilder.EnablePGOCSInstrGen = true; 889 hasIRInstr = true; 890 } 891 if (hasIRInstr) { 892 if (!CodeGenOpts.InstrProfileOutput.empty()) 893 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 894 else 895 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 896 } 897 if (CodeGenOpts.hasProfileIRUse()) { 898 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 899 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 900 } 901 902 if (!CodeGenOpts.SampleProfileFile.empty()) 903 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 904 905 PMBuilder.populateFunctionPassManager(FPM); 906 PMBuilder.populateModulePassManager(MPM); 907 } 908 909 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 910 SmallVector<const char *, 16> BackendArgs; 911 BackendArgs.push_back("clang"); // Fake program name. 912 if (!CodeGenOpts.DebugPass.empty()) { 913 BackendArgs.push_back("-debug-pass"); 914 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 915 } 916 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 917 BackendArgs.push_back("-limit-float-precision"); 918 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 919 } 920 // Check for the default "clang" invocation that won't set any cl::opt values. 921 // Skip trying to parse the command line invocation to avoid the issues 922 // described below. 923 if (BackendArgs.size() == 1) 924 return; 925 BackendArgs.push_back(nullptr); 926 // FIXME: The command line parser below is not thread-safe and shares a global 927 // state, so this call might crash or overwrite the options of another Clang 928 // instance in the same process. 929 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 930 BackendArgs.data()); 931 } 932 933 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 934 // Create the TargetMachine for generating code. 935 std::string Error; 936 std::string Triple = TheModule->getTargetTriple(); 937 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 938 if (!TheTarget) { 939 if (MustCreateTM) 940 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 941 return; 942 } 943 944 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 945 std::string FeaturesStr = 946 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 947 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 948 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 949 950 llvm::TargetOptions Options; 951 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 952 HSOpts)) 953 return; 954 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 955 Options, RM, CM, OptLevel)); 956 } 957 958 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 959 BackendAction Action, 960 raw_pwrite_stream &OS, 961 raw_pwrite_stream *DwoOS) { 962 // Add LibraryInfo. 963 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 964 std::unique_ptr<TargetLibraryInfoImpl> TLII( 965 createTLII(TargetTriple, CodeGenOpts)); 966 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 967 968 // Normal mode, emit a .s or .o file by running the code generator. Note, 969 // this also adds codegenerator level optimization passes. 970 CodeGenFileType CGFT = getCodeGenFileType(Action); 971 972 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 973 // "codegen" passes so that it isn't run multiple times when there is 974 // inlining happening. 975 if (CodeGenOpts.OptimizationLevel > 0) 976 CodeGenPasses.add(createObjCARCContractPass()); 977 978 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 979 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 980 Diags.Report(diag::err_fe_unable_to_interface_with_target); 981 return false; 982 } 983 984 return true; 985 } 986 987 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 988 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 989 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 990 991 setCommandLineOpts(CodeGenOpts); 992 993 bool UsesCodeGen = actionRequiresCodeGen(Action); 994 CreateTargetMachine(UsesCodeGen); 995 996 if (UsesCodeGen && !TM) 997 return; 998 if (TM) 999 TheModule->setDataLayout(TM->createDataLayout()); 1000 1001 DebugifyCustomPassManager PerModulePasses; 1002 DebugInfoPerPassMap DIPreservationMap; 1003 if (CodeGenOpts.EnableDIPreservationVerify) { 1004 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1005 PerModulePasses.setDIPreservationMap(DIPreservationMap); 1006 1007 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1008 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1009 CodeGenOpts.DIBugsReportFilePath); 1010 } 1011 PerModulePasses.add( 1012 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1013 1014 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1015 PerFunctionPasses.add( 1016 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1017 1018 CreatePasses(PerModulePasses, PerFunctionPasses); 1019 1020 // Add a verifier pass if requested. We don't have to do this if the action 1021 // requires code generation because there will already be a verifier pass in 1022 // the code-generation pipeline. 1023 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1024 PerModulePasses.add(createVerifierPass()); 1025 1026 legacy::PassManager CodeGenPasses; 1027 CodeGenPasses.add( 1028 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1029 1030 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1031 1032 switch (Action) { 1033 case Backend_EmitNothing: 1034 break; 1035 1036 case Backend_EmitBC: 1037 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1038 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1039 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1040 if (!ThinLinkOS) 1041 return; 1042 } 1043 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1044 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1045 CodeGenOpts.EnableSplitLTOUnit); 1046 PerModulePasses.add(createWriteThinLTOBitcodePass( 1047 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1048 } else { 1049 // Emit a module summary by default for Regular LTO except for ld64 1050 // targets 1051 bool EmitLTOSummary = 1052 (CodeGenOpts.PrepareForLTO && 1053 !CodeGenOpts.DisableLLVMPasses && 1054 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1055 llvm::Triple::Apple); 1056 if (EmitLTOSummary) { 1057 if (!TheModule->getModuleFlag("ThinLTO")) 1058 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1059 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1060 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1061 uint32_t(1)); 1062 } 1063 1064 PerModulePasses.add(createBitcodeWriterPass( 1065 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1066 } 1067 break; 1068 1069 case Backend_EmitLL: 1070 PerModulePasses.add( 1071 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1072 break; 1073 1074 default: 1075 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1076 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1077 if (!DwoOS) 1078 return; 1079 } 1080 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1081 DwoOS ? &DwoOS->os() : nullptr)) 1082 return; 1083 } 1084 1085 // Before executing passes, print the final values of the LLVM options. 1086 cl::PrintOptionValues(); 1087 1088 // Run passes. For now we do all passes at once, but eventually we 1089 // would like to have the option of streaming code generation. 1090 1091 { 1092 PrettyStackTraceString CrashInfo("Per-function optimization"); 1093 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1094 1095 PerFunctionPasses.doInitialization(); 1096 for (Function &F : *TheModule) 1097 if (!F.isDeclaration()) 1098 PerFunctionPasses.run(F); 1099 PerFunctionPasses.doFinalization(); 1100 } 1101 1102 { 1103 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1104 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1105 PerModulePasses.run(*TheModule); 1106 } 1107 1108 { 1109 PrettyStackTraceString CrashInfo("Code generation"); 1110 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1111 CodeGenPasses.run(*TheModule); 1112 } 1113 1114 if (ThinLinkOS) 1115 ThinLinkOS->keep(); 1116 if (DwoOS) 1117 DwoOS->keep(); 1118 } 1119 1120 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1121 switch (Opts.OptimizationLevel) { 1122 default: 1123 llvm_unreachable("Invalid optimization level!"); 1124 1125 case 0: 1126 return OptimizationLevel::O0; 1127 1128 case 1: 1129 return OptimizationLevel::O1; 1130 1131 case 2: 1132 switch (Opts.OptimizeSize) { 1133 default: 1134 llvm_unreachable("Invalid optimization level for size!"); 1135 1136 case 0: 1137 return OptimizationLevel::O2; 1138 1139 case 1: 1140 return OptimizationLevel::Os; 1141 1142 case 2: 1143 return OptimizationLevel::Oz; 1144 } 1145 1146 case 3: 1147 return OptimizationLevel::O3; 1148 } 1149 } 1150 1151 static void addSanitizers(const Triple &TargetTriple, 1152 const CodeGenOptions &CodeGenOpts, 1153 const LangOptions &LangOpts, PassBuilder &PB) { 1154 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1155 OptimizationLevel Level) { 1156 if (CodeGenOpts.hasSanitizeCoverage()) { 1157 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1158 MPM.addPass(ModuleSanitizerCoveragePass( 1159 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1160 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1161 } 1162 1163 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1164 if (LangOpts.Sanitize.has(Mask)) { 1165 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1166 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1167 1168 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1169 CodeGenOpts.SanitizeMemoryParamRetval); 1170 MPM.addPass(ModuleMemorySanitizerPass(options)); 1171 FunctionPassManager FPM; 1172 FPM.addPass(MemorySanitizerPass(options)); 1173 if (Level != OptimizationLevel::O0) { 1174 // MemorySanitizer inserts complex instrumentation that mostly 1175 // follows the logic of the original code, but operates on 1176 // "shadow" values. It can benefit from re-running some 1177 // general purpose optimization passes. 1178 FPM.addPass(EarlyCSEPass()); 1179 // TODO: Consider add more passes like in 1180 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1181 // difference on size. It's not clear if the rest is still 1182 // usefull. InstCombinePass breakes 1183 // compiler-rt/test/msan/select_origin.cpp. 1184 } 1185 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1186 } 1187 }; 1188 MSanPass(SanitizerKind::Memory, false); 1189 MSanPass(SanitizerKind::KernelMemory, true); 1190 1191 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1192 MPM.addPass(ModuleThreadSanitizerPass()); 1193 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1194 } 1195 1196 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1197 if (LangOpts.Sanitize.has(Mask)) { 1198 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1199 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1200 llvm::AsanDtorKind DestructorKind = 1201 CodeGenOpts.getSanitizeAddressDtor(); 1202 AddressSanitizerOptions Opts; 1203 Opts.CompileKernel = CompileKernel; 1204 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1205 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1206 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1207 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1208 MPM.addPass(ModuleAddressSanitizerPass( 1209 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1210 } 1211 }; 1212 ASanPass(SanitizerKind::Address, false); 1213 ASanPass(SanitizerKind::KernelAddress, true); 1214 1215 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1216 if (LangOpts.Sanitize.has(Mask)) { 1217 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1218 MPM.addPass(HWAddressSanitizerPass( 1219 {CompileKernel, Recover, 1220 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1221 } 1222 }; 1223 HWASanPass(SanitizerKind::HWAddress, false); 1224 HWASanPass(SanitizerKind::KernelHWAddress, true); 1225 1226 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1227 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1228 } 1229 }); 1230 } 1231 1232 void EmitAssemblyHelper::RunOptimizationPipeline( 1233 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1234 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1235 Optional<PGOOptions> PGOOpt; 1236 1237 if (CodeGenOpts.hasProfileIRInstr()) 1238 // -fprofile-generate. 1239 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1240 ? getDefaultProfileGenName() 1241 : CodeGenOpts.InstrProfileOutput, 1242 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1243 CodeGenOpts.DebugInfoForProfiling); 1244 else if (CodeGenOpts.hasProfileIRUse()) { 1245 // -fprofile-use. 1246 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1247 : PGOOptions::NoCSAction; 1248 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1249 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1250 CSAction, CodeGenOpts.DebugInfoForProfiling); 1251 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1252 // -fprofile-sample-use 1253 PGOOpt = PGOOptions( 1254 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1255 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1256 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1257 else if (CodeGenOpts.PseudoProbeForProfiling) 1258 // -fpseudo-probe-for-profiling 1259 PGOOpt = 1260 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1261 CodeGenOpts.DebugInfoForProfiling, true); 1262 else if (CodeGenOpts.DebugInfoForProfiling) 1263 // -fdebug-info-for-profiling 1264 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1265 PGOOptions::NoCSAction, true); 1266 1267 // Check to see if we want to generate a CS profile. 1268 if (CodeGenOpts.hasProfileCSIRInstr()) { 1269 assert(!CodeGenOpts.hasProfileCSIRUse() && 1270 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1271 "the same time"); 1272 if (PGOOpt.hasValue()) { 1273 assert(PGOOpt->Action != PGOOptions::IRInstr && 1274 PGOOpt->Action != PGOOptions::SampleUse && 1275 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1276 " pass"); 1277 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1278 ? getDefaultProfileGenName() 1279 : CodeGenOpts.InstrProfileOutput; 1280 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1281 } else 1282 PGOOpt = PGOOptions("", 1283 CodeGenOpts.InstrProfileOutput.empty() 1284 ? getDefaultProfileGenName() 1285 : CodeGenOpts.InstrProfileOutput, 1286 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1287 CodeGenOpts.DebugInfoForProfiling); 1288 } 1289 if (TM) 1290 TM->setPGOOption(PGOOpt); 1291 1292 PipelineTuningOptions PTO; 1293 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1294 // For historical reasons, loop interleaving is set to mirror setting for loop 1295 // unrolling. 1296 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1297 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1298 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1299 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1300 // Only enable CGProfilePass when using integrated assembler, since 1301 // non-integrated assemblers don't recognize .cgprofile section. 1302 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1303 1304 LoopAnalysisManager LAM; 1305 FunctionAnalysisManager FAM; 1306 CGSCCAnalysisManager CGAM; 1307 ModuleAnalysisManager MAM; 1308 1309 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1310 PassInstrumentationCallbacks PIC; 1311 PrintPassOptions PrintPassOpts; 1312 PrintPassOpts.Indent = DebugPassStructure; 1313 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1314 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1315 DebugPassStructure, 1316 /*VerifyEach*/ false, PrintPassOpts); 1317 SI.registerCallbacks(PIC, &FAM); 1318 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1319 1320 // Attempt to load pass plugins and register their callbacks with PB. 1321 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1322 auto PassPlugin = PassPlugin::Load(PluginFN); 1323 if (PassPlugin) { 1324 PassPlugin->registerPassBuilderCallbacks(PB); 1325 } else { 1326 Diags.Report(diag::err_fe_unable_to_load_plugin) 1327 << PluginFN << toString(PassPlugin.takeError()); 1328 } 1329 } 1330 #define HANDLE_EXTENSION(Ext) \ 1331 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1332 #include "llvm/Support/Extension.def" 1333 1334 // Register the target library analysis directly and give it a customized 1335 // preset TLI. 1336 Triple TargetTriple(TheModule->getTargetTriple()); 1337 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1338 createTLII(TargetTriple, CodeGenOpts)); 1339 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1340 1341 // Register all the basic analyses with the managers. 1342 PB.registerModuleAnalyses(MAM); 1343 PB.registerCGSCCAnalyses(CGAM); 1344 PB.registerFunctionAnalyses(FAM); 1345 PB.registerLoopAnalyses(LAM); 1346 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1347 1348 ModulePassManager MPM; 1349 1350 if (!CodeGenOpts.DisableLLVMPasses) { 1351 // Map our optimization levels into one of the distinct levels used to 1352 // configure the pipeline. 1353 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1354 1355 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1356 bool IsLTO = CodeGenOpts.PrepareForLTO; 1357 1358 if (LangOpts.ObjCAutoRefCount) { 1359 PB.registerPipelineStartEPCallback( 1360 [](ModulePassManager &MPM, OptimizationLevel Level) { 1361 if (Level != OptimizationLevel::O0) 1362 MPM.addPass( 1363 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1364 }); 1365 PB.registerPipelineEarlySimplificationEPCallback( 1366 [](ModulePassManager &MPM, OptimizationLevel Level) { 1367 if (Level != OptimizationLevel::O0) 1368 MPM.addPass(ObjCARCAPElimPass()); 1369 }); 1370 PB.registerScalarOptimizerLateEPCallback( 1371 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1372 if (Level != OptimizationLevel::O0) 1373 FPM.addPass(ObjCARCOptPass()); 1374 }); 1375 } 1376 1377 // If we reached here with a non-empty index file name, then the index 1378 // file was empty and we are not performing ThinLTO backend compilation 1379 // (used in testing in a distributed build environment). 1380 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1381 // If so drop any the type test assume sequences inserted for whole program 1382 // vtables so that codegen doesn't complain. 1383 if (IsThinLTOPostLink) 1384 PB.registerPipelineStartEPCallback( 1385 [](ModulePassManager &MPM, OptimizationLevel Level) { 1386 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1387 /*ImportSummary=*/nullptr, 1388 /*DropTypeTests=*/true)); 1389 }); 1390 1391 if (CodeGenOpts.InstrumentFunctions || 1392 CodeGenOpts.InstrumentFunctionEntryBare || 1393 CodeGenOpts.InstrumentFunctionsAfterInlining || 1394 CodeGenOpts.InstrumentForProfiling) { 1395 PB.registerPipelineStartEPCallback( 1396 [](ModulePassManager &MPM, OptimizationLevel Level) { 1397 MPM.addPass(createModuleToFunctionPassAdaptor( 1398 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1399 }); 1400 PB.registerOptimizerLastEPCallback( 1401 [](ModulePassManager &MPM, OptimizationLevel Level) { 1402 MPM.addPass(createModuleToFunctionPassAdaptor( 1403 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1404 }); 1405 } 1406 1407 // Register callbacks to schedule sanitizer passes at the appropriate part 1408 // of the pipeline. 1409 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1410 PB.registerScalarOptimizerLateEPCallback( 1411 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1412 FPM.addPass(BoundsCheckingPass()); 1413 }); 1414 1415 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1416 // done on PreLink stage. 1417 if (!IsThinLTOPostLink) 1418 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1419 1420 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1421 PB.registerPipelineStartEPCallback( 1422 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1423 MPM.addPass(GCOVProfilerPass(*Options)); 1424 }); 1425 if (Optional<InstrProfOptions> Options = 1426 getInstrProfOptions(CodeGenOpts, LangOpts)) 1427 PB.registerPipelineStartEPCallback( 1428 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1429 MPM.addPass(InstrProfiling(*Options, false)); 1430 }); 1431 1432 if (CodeGenOpts.OptimizationLevel == 0) { 1433 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1434 } else if (IsThinLTO) { 1435 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1436 } else if (IsLTO) { 1437 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1438 } else { 1439 MPM = PB.buildPerModuleDefaultPipeline(Level); 1440 } 1441 1442 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1443 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1444 MPM.addPass(ModuleMemProfilerPass()); 1445 } 1446 } 1447 1448 // Add a verifier pass if requested. We don't have to do this if the action 1449 // requires code generation because there will already be a verifier pass in 1450 // the code-generation pipeline. 1451 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1452 MPM.addPass(VerifierPass()); 1453 1454 switch (Action) { 1455 case Backend_EmitBC: 1456 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1457 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1458 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1459 if (!ThinLinkOS) 1460 return; 1461 } 1462 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1463 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1464 CodeGenOpts.EnableSplitLTOUnit); 1465 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1466 : nullptr)); 1467 } else { 1468 // Emit a module summary by default for Regular LTO except for ld64 1469 // targets 1470 bool EmitLTOSummary = 1471 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1472 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1473 llvm::Triple::Apple); 1474 if (EmitLTOSummary) { 1475 if (!TheModule->getModuleFlag("ThinLTO")) 1476 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1477 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1478 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1479 uint32_t(1)); 1480 } 1481 MPM.addPass( 1482 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1483 } 1484 break; 1485 1486 case Backend_EmitLL: 1487 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1488 break; 1489 1490 default: 1491 break; 1492 } 1493 1494 // Now that we have all of the passes ready, run them. 1495 { 1496 PrettyStackTraceString CrashInfo("Optimizer"); 1497 llvm::TimeTraceScope TimeScope("Optimizer"); 1498 MPM.run(*TheModule, MAM); 1499 } 1500 } 1501 1502 void EmitAssemblyHelper::RunCodegenPipeline( 1503 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1504 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1505 // We still use the legacy PM to run the codegen pipeline since the new PM 1506 // does not work with the codegen pipeline. 1507 // FIXME: make the new PM work with the codegen pipeline. 1508 legacy::PassManager CodeGenPasses; 1509 1510 // Append any output we need to the pass manager. 1511 switch (Action) { 1512 case Backend_EmitAssembly: 1513 case Backend_EmitMCNull: 1514 case Backend_EmitObj: 1515 CodeGenPasses.add( 1516 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1517 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1518 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1519 if (!DwoOS) 1520 return; 1521 } 1522 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1523 DwoOS ? &DwoOS->os() : nullptr)) 1524 // FIXME: Should we handle this error differently? 1525 return; 1526 break; 1527 default: 1528 return; 1529 } 1530 1531 { 1532 PrettyStackTraceString CrashInfo("Code generation"); 1533 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1534 CodeGenPasses.run(*TheModule); 1535 } 1536 } 1537 1538 /// A clean version of `EmitAssembly` that uses the new pass manager. 1539 /// 1540 /// Not all features are currently supported in this system, but where 1541 /// necessary it falls back to the legacy pass manager to at least provide 1542 /// basic functionality. 1543 /// 1544 /// This API is planned to have its functionality finished and then to replace 1545 /// `EmitAssembly` at some point in the future when the default switches. 1546 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1547 std::unique_ptr<raw_pwrite_stream> OS) { 1548 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1549 setCommandLineOpts(CodeGenOpts); 1550 1551 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1552 CreateTargetMachine(RequiresCodeGen); 1553 1554 if (RequiresCodeGen && !TM) 1555 return; 1556 if (TM) 1557 TheModule->setDataLayout(TM->createDataLayout()); 1558 1559 // Before executing passes, print the final values of the LLVM options. 1560 cl::PrintOptionValues(); 1561 1562 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1563 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1564 RunCodegenPipeline(Action, OS, DwoOS); 1565 1566 if (ThinLinkOS) 1567 ThinLinkOS->keep(); 1568 if (DwoOS) 1569 DwoOS->keep(); 1570 } 1571 1572 static void runThinLTOBackend( 1573 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1574 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1575 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1576 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1577 std::string ProfileRemapping, BackendAction Action) { 1578 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1579 ModuleToDefinedGVSummaries; 1580 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1581 1582 setCommandLineOpts(CGOpts); 1583 1584 // We can simply import the values mentioned in the combined index, since 1585 // we should only invoke this using the individual indexes written out 1586 // via a WriteIndexesThinBackend. 1587 FunctionImporter::ImportMapTy ImportList; 1588 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1589 return; 1590 1591 auto AddStream = [&](size_t Task) { 1592 return std::make_unique<CachedFileStream>(std::move(OS), 1593 CGOpts.ObjectFilenameForDebug); 1594 }; 1595 lto::Config Conf; 1596 if (CGOpts.SaveTempsFilePrefix != "") { 1597 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1598 /* UseInputModulePath */ false)) { 1599 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1600 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1601 << '\n'; 1602 }); 1603 } 1604 } 1605 Conf.CPU = TOpts.CPU; 1606 Conf.CodeModel = getCodeModel(CGOpts); 1607 Conf.MAttrs = TOpts.Features; 1608 Conf.RelocModel = CGOpts.RelocationModel; 1609 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1610 Conf.OptLevel = CGOpts.OptimizationLevel; 1611 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1612 Conf.SampleProfile = std::move(SampleProfile); 1613 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1614 // For historical reasons, loop interleaving is set to mirror setting for loop 1615 // unrolling. 1616 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1617 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1618 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1619 // Only enable CGProfilePass when using integrated assembler, since 1620 // non-integrated assemblers don't recognize .cgprofile section. 1621 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1622 1623 // Context sensitive profile. 1624 if (CGOpts.hasProfileCSIRInstr()) { 1625 Conf.RunCSIRInstr = true; 1626 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1627 } else if (CGOpts.hasProfileCSIRUse()) { 1628 Conf.RunCSIRInstr = false; 1629 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1630 } 1631 1632 Conf.ProfileRemapping = std::move(ProfileRemapping); 1633 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1634 Conf.DebugPassManager = CGOpts.DebugPassManager; 1635 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1636 Conf.RemarksFilename = CGOpts.OptRecordFile; 1637 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1638 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1639 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1640 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1641 switch (Action) { 1642 case Backend_EmitNothing: 1643 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1644 return false; 1645 }; 1646 break; 1647 case Backend_EmitLL: 1648 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1649 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1650 return false; 1651 }; 1652 break; 1653 case Backend_EmitBC: 1654 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1655 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1656 return false; 1657 }; 1658 break; 1659 default: 1660 Conf.CGFileType = getCodeGenFileType(Action); 1661 break; 1662 } 1663 if (Error E = 1664 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1665 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1666 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1667 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1668 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1669 }); 1670 } 1671 } 1672 1673 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1674 const HeaderSearchOptions &HeaderOpts, 1675 const CodeGenOptions &CGOpts, 1676 const clang::TargetOptions &TOpts, 1677 const LangOptions &LOpts, 1678 StringRef TDesc, Module *M, 1679 BackendAction Action, 1680 std::unique_ptr<raw_pwrite_stream> OS) { 1681 1682 llvm::TimeTraceScope TimeScope("Backend"); 1683 1684 std::unique_ptr<llvm::Module> EmptyModule; 1685 if (!CGOpts.ThinLTOIndexFile.empty()) { 1686 // If we are performing a ThinLTO importing compile, load the function index 1687 // into memory and pass it into runThinLTOBackend, which will run the 1688 // function importer and invoke LTO passes. 1689 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1690 if (Error E = llvm::getModuleSummaryIndexForFile( 1691 CGOpts.ThinLTOIndexFile, 1692 /*IgnoreEmptyThinLTOIndexFile*/ true) 1693 .moveInto(CombinedIndex)) { 1694 logAllUnhandledErrors(std::move(E), errs(), 1695 "Error loading index file '" + 1696 CGOpts.ThinLTOIndexFile + "': "); 1697 return; 1698 } 1699 1700 // A null CombinedIndex means we should skip ThinLTO compilation 1701 // (LLVM will optionally ignore empty index files, returning null instead 1702 // of an error). 1703 if (CombinedIndex) { 1704 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1705 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1706 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1707 CGOpts.ProfileRemappingFile, Action); 1708 return; 1709 } 1710 // Distributed indexing detected that nothing from the module is needed 1711 // for the final linking. So we can skip the compilation. We sill need to 1712 // output an empty object file to make sure that a linker does not fail 1713 // trying to read it. Also for some features, like CFI, we must skip 1714 // the compilation as CombinedIndex does not contain all required 1715 // information. 1716 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1717 EmptyModule->setTargetTriple(M->getTargetTriple()); 1718 M = EmptyModule.get(); 1719 } 1720 } 1721 1722 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1723 1724 if (CGOpts.LegacyPassManager) 1725 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1726 else 1727 AsmHelper.EmitAssembly(Action, std::move(OS)); 1728 1729 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1730 // DataLayout. 1731 if (AsmHelper.TM) { 1732 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1733 if (DLDesc != TDesc) { 1734 unsigned DiagID = Diags.getCustomDiagID( 1735 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1736 "expected target description '%1'"); 1737 Diags.Report(DiagID) << DLDesc << TDesc; 1738 } 1739 } 1740 } 1741 1742 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1743 // __LLVM,__bitcode section. 1744 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1745 llvm::MemoryBufferRef Buf) { 1746 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1747 return; 1748 llvm::EmbedBitcodeInModule( 1749 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1750 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1751 CGOpts.CmdArgs); 1752 } 1753