1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IRPrintingPasses.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSummaryIndex.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/LTO/LTOBackend.h" 35 #include "llvm/MC/SubtargetFeature.h" 36 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 37 #include "llvm/Passes/PassBuilder.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/MemoryBuffer.h" 40 #include "llvm/Support/PrettyStackTrace.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/Timer.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Target/TargetSubtargetInfo.h" 47 #include "llvm/Transforms/Coroutines.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/AlwaysInliner.h" 50 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 51 #include "llvm/Transforms/Instrumentation.h" 52 #include "llvm/Transforms/ObjCARC.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Scalar/GVN.h" 55 #include "llvm/Transforms/Utils/SymbolRewriter.h" 56 #include <memory> 57 using namespace clang; 58 using namespace llvm; 59 60 namespace { 61 62 class EmitAssemblyHelper { 63 DiagnosticsEngine &Diags; 64 const CodeGenOptions &CodeGenOpts; 65 const clang::TargetOptions &TargetOpts; 66 const LangOptions &LangOpts; 67 Module *TheModule; 68 69 Timer CodeGenerationTime; 70 71 std::unique_ptr<raw_pwrite_stream> OS; 72 73 private: 74 TargetIRAnalysis getTargetIRAnalysis() const { 75 if (TM) 76 return TM->getTargetIRAnalysis(); 77 78 return TargetIRAnalysis(); 79 } 80 81 /// Set LLVM command line options passed through -backend-option. 82 void setCommandLineOpts(); 83 84 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 85 86 /// Generates the TargetMachine. 87 /// Leaves TM unchanged if it is unable to create the target machine. 88 /// Some of our clang tests specify triples which are not built 89 /// into clang. This is okay because these tests check the generated 90 /// IR, and they require DataLayout which depends on the triple. 91 /// In this case, we allow this method to fail and not report an error. 92 /// When MustCreateTM is used, we print an error if we are unable to load 93 /// the requested target. 94 void CreateTargetMachine(bool MustCreateTM); 95 96 /// Add passes necessary to emit assembly or LLVM IR. 97 /// 98 /// \return True on success. 99 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 100 raw_pwrite_stream &OS); 101 102 public: 103 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 104 const clang::TargetOptions &TOpts, 105 const LangOptions &LOpts, Module *M) 106 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 107 TheModule(M), CodeGenerationTime("codegen", "Code Generation Time") {} 108 109 ~EmitAssemblyHelper() { 110 if (CodeGenOpts.DisableFree) 111 BuryPointer(std::move(TM)); 112 } 113 114 std::unique_ptr<TargetMachine> TM; 115 116 void EmitAssembly(BackendAction Action, 117 std::unique_ptr<raw_pwrite_stream> OS); 118 119 void EmitAssemblyWithNewPassManager(BackendAction Action, 120 std::unique_ptr<raw_pwrite_stream> OS); 121 }; 122 123 // We need this wrapper to access LangOpts and CGOpts from extension functions 124 // that we add to the PassManagerBuilder. 125 class PassManagerBuilderWrapper : public PassManagerBuilder { 126 public: 127 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 128 const LangOptions &LangOpts) 129 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 130 const CodeGenOptions &getCGOpts() const { return CGOpts; } 131 const LangOptions &getLangOpts() const { return LangOpts; } 132 private: 133 const CodeGenOptions &CGOpts; 134 const LangOptions &LangOpts; 135 }; 136 137 } 138 139 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 140 if (Builder.OptLevel > 0) 141 PM.add(createObjCARCAPElimPass()); 142 } 143 144 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 145 if (Builder.OptLevel > 0) 146 PM.add(createObjCARCExpandPass()); 147 } 148 149 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 150 if (Builder.OptLevel > 0) 151 PM.add(createObjCARCOptPass()); 152 } 153 154 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 155 legacy::PassManagerBase &PM) { 156 PM.add(createAddDiscriminatorsPass()); 157 } 158 159 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 160 legacy::PassManagerBase &PM) { 161 PM.add(createBoundsCheckingPass()); 162 } 163 164 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 165 legacy::PassManagerBase &PM) { 166 const PassManagerBuilderWrapper &BuilderWrapper = 167 static_cast<const PassManagerBuilderWrapper&>(Builder); 168 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 169 SanitizerCoverageOptions Opts; 170 Opts.CoverageType = 171 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 172 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 173 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 174 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 175 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 176 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 177 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 178 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 179 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 180 PM.add(createSanitizerCoverageModulePass(Opts)); 181 } 182 183 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 184 legacy::PassManagerBase &PM) { 185 const PassManagerBuilderWrapper &BuilderWrapper = 186 static_cast<const PassManagerBuilderWrapper&>(Builder); 187 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 188 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 189 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 190 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 191 UseAfterScope)); 192 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 193 } 194 195 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 PM.add(createAddressSanitizerFunctionPass( 198 /*CompileKernel*/ true, 199 /*Recover*/ true, /*UseAfterScope*/ false)); 200 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 201 /*Recover*/true)); 202 } 203 204 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 205 legacy::PassManagerBase &PM) { 206 const PassManagerBuilderWrapper &BuilderWrapper = 207 static_cast<const PassManagerBuilderWrapper&>(Builder); 208 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 209 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 210 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 211 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 212 213 // MemorySanitizer inserts complex instrumentation that mostly follows 214 // the logic of the original code, but operates on "shadow" values. 215 // It can benefit from re-running some general purpose optimization passes. 216 if (Builder.OptLevel > 0) { 217 PM.add(createEarlyCSEPass()); 218 PM.add(createReassociatePass()); 219 PM.add(createLICMPass()); 220 PM.add(createGVNPass()); 221 PM.add(createInstructionCombiningPass()); 222 PM.add(createDeadStoreEliminationPass()); 223 } 224 } 225 226 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 227 legacy::PassManagerBase &PM) { 228 PM.add(createThreadSanitizerPass()); 229 } 230 231 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 const PassManagerBuilderWrapper &BuilderWrapper = 234 static_cast<const PassManagerBuilderWrapper&>(Builder); 235 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 236 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 237 } 238 239 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper&>(Builder); 243 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 244 EfficiencySanitizerOptions Opts; 245 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 246 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 247 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 248 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 249 PM.add(createEfficiencySanitizerPass(Opts)); 250 } 251 252 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 253 const CodeGenOptions &CodeGenOpts) { 254 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 255 if (!CodeGenOpts.SimplifyLibCalls) 256 TLII->disableAllFunctions(); 257 else { 258 // Disable individual libc/libm calls in TargetLibraryInfo. 259 LibFunc::Func F; 260 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 261 if (TLII->getLibFunc(FuncName, F)) 262 TLII->setUnavailable(F); 263 } 264 265 switch (CodeGenOpts.getVecLib()) { 266 case CodeGenOptions::Accelerate: 267 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 268 break; 269 case CodeGenOptions::SVML: 270 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 271 break; 272 default: 273 break; 274 } 275 return TLII; 276 } 277 278 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 279 legacy::PassManager *MPM) { 280 llvm::SymbolRewriter::RewriteDescriptorList DL; 281 282 llvm::SymbolRewriter::RewriteMapParser MapParser; 283 for (const auto &MapFile : Opts.RewriteMapFiles) 284 MapParser.parse(MapFile, &DL); 285 286 MPM->add(createRewriteSymbolsPass(DL)); 287 } 288 289 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 290 legacy::FunctionPassManager &FPM) { 291 // Handle disabling of all LLVM passes, where we want to preserve the 292 // internal module before any optimization. 293 if (CodeGenOpts.DisableLLVMPasses) 294 return; 295 296 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 297 298 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 299 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 300 // are inserted before PMBuilder ones - they'd get the default-constructed 301 // TLI with an unknown target otherwise. 302 Triple TargetTriple(TheModule->getTargetTriple()); 303 std::unique_ptr<TargetLibraryInfoImpl> TLII( 304 createTLII(TargetTriple, CodeGenOpts)); 305 306 // At O0 and O1 we only run the always inliner which is more efficient. At 307 // higher optimization levels we run the normal inliner. 308 if (CodeGenOpts.OptimizationLevel <= 1) { 309 bool InsertLifetimeIntrinsics = CodeGenOpts.OptimizationLevel != 0; 310 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 311 } else { 312 PMBuilder.Inliner = createFunctionInliningPass( 313 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize); 314 } 315 316 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 317 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 318 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 319 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 320 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 321 322 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 323 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 324 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 325 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 326 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 327 328 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 329 330 // Add target-specific passes that need to run as early as possible. 331 if (TM) 332 PMBuilder.addExtension( 333 PassManagerBuilder::EP_EarlyAsPossible, 334 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 335 TM->addEarlyAsPossiblePasses(PM); 336 }); 337 338 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 339 addAddDiscriminatorsPass); 340 341 // In ObjC ARC mode, add the main ARC optimization passes. 342 if (LangOpts.ObjCAutoRefCount) { 343 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 344 addObjCARCExpandPass); 345 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 346 addObjCARCAPElimPass); 347 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 348 addObjCARCOptPass); 349 } 350 351 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 352 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 353 addBoundsCheckingPass); 354 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 355 addBoundsCheckingPass); 356 } 357 358 if (CodeGenOpts.SanitizeCoverageType || 359 CodeGenOpts.SanitizeCoverageIndirectCalls || 360 CodeGenOpts.SanitizeCoverageTraceCmp) { 361 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 362 addSanitizerCoveragePass); 363 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 364 addSanitizerCoveragePass); 365 } 366 367 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 368 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 369 addAddressSanitizerPasses); 370 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 371 addAddressSanitizerPasses); 372 } 373 374 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 375 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 376 addKernelAddressSanitizerPasses); 377 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 378 addKernelAddressSanitizerPasses); 379 } 380 381 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 382 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 383 addMemorySanitizerPass); 384 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 385 addMemorySanitizerPass); 386 } 387 388 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 389 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 390 addThreadSanitizerPass); 391 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 392 addThreadSanitizerPass); 393 } 394 395 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 396 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 397 addDataFlowSanitizerPass); 398 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 399 addDataFlowSanitizerPass); 400 } 401 402 if (LangOpts.CoroutinesTS) 403 addCoroutinePassesToExtensionPoints(PMBuilder); 404 405 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 406 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 407 addEfficiencySanitizerPass); 408 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 409 addEfficiencySanitizerPass); 410 } 411 412 // Set up the per-function pass manager. 413 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 414 if (CodeGenOpts.VerifyModule) 415 FPM.add(createVerifierPass()); 416 417 // Set up the per-module pass manager. 418 if (!CodeGenOpts.RewriteMapFiles.empty()) 419 addSymbolRewriterPass(CodeGenOpts, &MPM); 420 421 if (!CodeGenOpts.DisableGCov && 422 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 423 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 424 // LLVM's -default-gcov-version flag is set to something invalid. 425 GCOVOptions Options; 426 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 427 Options.EmitData = CodeGenOpts.EmitGcovArcs; 428 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 429 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 430 Options.NoRedZone = CodeGenOpts.DisableRedZone; 431 Options.FunctionNamesInData = 432 !CodeGenOpts.CoverageNoFunctionNamesInData; 433 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 434 MPM.add(createGCOVProfilerPass(Options)); 435 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 436 MPM.add(createStripSymbolsPass(true)); 437 } 438 439 if (CodeGenOpts.hasProfileClangInstr()) { 440 InstrProfOptions Options; 441 Options.NoRedZone = CodeGenOpts.DisableRedZone; 442 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 443 MPM.add(createInstrProfilingLegacyPass(Options)); 444 } 445 if (CodeGenOpts.hasProfileIRInstr()) { 446 PMBuilder.EnablePGOInstrGen = true; 447 if (!CodeGenOpts.InstrProfileOutput.empty()) 448 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 449 else 450 PMBuilder.PGOInstrGen = "default_%m.profraw"; 451 } 452 if (CodeGenOpts.hasProfileIRUse()) 453 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 454 455 if (!CodeGenOpts.SampleProfileFile.empty()) 456 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 457 458 PMBuilder.populateFunctionPassManager(FPM); 459 PMBuilder.populateModulePassManager(MPM); 460 } 461 462 void EmitAssemblyHelper::setCommandLineOpts() { 463 SmallVector<const char *, 16> BackendArgs; 464 BackendArgs.push_back("clang"); // Fake program name. 465 if (!CodeGenOpts.DebugPass.empty()) { 466 BackendArgs.push_back("-debug-pass"); 467 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 468 } 469 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 470 BackendArgs.push_back("-limit-float-precision"); 471 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 472 } 473 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 474 BackendArgs.push_back(BackendOption.c_str()); 475 BackendArgs.push_back(nullptr); 476 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 477 BackendArgs.data()); 478 } 479 480 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 481 // Create the TargetMachine for generating code. 482 std::string Error; 483 std::string Triple = TheModule->getTargetTriple(); 484 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 485 if (!TheTarget) { 486 if (MustCreateTM) 487 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 488 return; 489 } 490 491 unsigned CodeModel = 492 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 493 .Case("small", llvm::CodeModel::Small) 494 .Case("kernel", llvm::CodeModel::Kernel) 495 .Case("medium", llvm::CodeModel::Medium) 496 .Case("large", llvm::CodeModel::Large) 497 .Case("default", llvm::CodeModel::Default) 498 .Default(~0u); 499 assert(CodeModel != ~0u && "invalid code model!"); 500 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 501 502 std::string FeaturesStr = 503 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 504 505 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 506 llvm::Optional<llvm::Reloc::Model> RM; 507 if (CodeGenOpts.RelocationModel == "static") { 508 RM = llvm::Reloc::Static; 509 } else if (CodeGenOpts.RelocationModel == "pic") { 510 RM = llvm::Reloc::PIC_; 511 } else if (CodeGenOpts.RelocationModel == "ropi") { 512 RM = llvm::Reloc::ROPI; 513 } else if (CodeGenOpts.RelocationModel == "rwpi") { 514 RM = llvm::Reloc::RWPI; 515 } else if (CodeGenOpts.RelocationModel == "ropi-rwpi") { 516 RM = llvm::Reloc::ROPI_RWPI; 517 } else { 518 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 519 "Invalid PIC model!"); 520 RM = llvm::Reloc::DynamicNoPIC; 521 } 522 523 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 524 switch (CodeGenOpts.OptimizationLevel) { 525 default: break; 526 case 0: OptLevel = CodeGenOpt::None; break; 527 case 3: OptLevel = CodeGenOpt::Aggressive; break; 528 } 529 530 llvm::TargetOptions Options; 531 532 Options.ThreadModel = 533 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 534 .Case("posix", llvm::ThreadModel::POSIX) 535 .Case("single", llvm::ThreadModel::Single); 536 537 // Set float ABI type. 538 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 539 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 540 "Invalid Floating Point ABI!"); 541 Options.FloatABIType = 542 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 543 .Case("soft", llvm::FloatABI::Soft) 544 .Case("softfp", llvm::FloatABI::Soft) 545 .Case("hard", llvm::FloatABI::Hard) 546 .Default(llvm::FloatABI::Default); 547 548 // Set FP fusion mode. 549 switch (CodeGenOpts.getFPContractMode()) { 550 case CodeGenOptions::FPC_Off: 551 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 552 break; 553 case CodeGenOptions::FPC_On: 554 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 555 break; 556 case CodeGenOptions::FPC_Fast: 557 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 558 break; 559 } 560 561 Options.UseInitArray = CodeGenOpts.UseInitArray; 562 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 563 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 564 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 565 566 // Set EABI version. 567 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 568 .Case("4", llvm::EABI::EABI4) 569 .Case("5", llvm::EABI::EABI5) 570 .Case("gnu", llvm::EABI::GNU) 571 .Default(llvm::EABI::Default); 572 573 if (LangOpts.SjLjExceptions) 574 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 575 576 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 577 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 578 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 579 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 580 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 581 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 582 Options.FunctionSections = CodeGenOpts.FunctionSections; 583 Options.DataSections = CodeGenOpts.DataSections; 584 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 585 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 586 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 587 588 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 589 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 590 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 591 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 592 Options.MCOptions.MCIncrementalLinkerCompatible = 593 CodeGenOpts.IncrementalLinkerCompatible; 594 Options.MCOptions.MCPIECopyRelocations = 595 CodeGenOpts.PIECopyRelocations; 596 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 597 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 598 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 599 Options.MCOptions.ABIName = TargetOpts.ABI; 600 601 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 602 Options, RM, CM, OptLevel)); 603 } 604 605 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 606 BackendAction Action, 607 raw_pwrite_stream &OS) { 608 // Add LibraryInfo. 609 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 610 std::unique_ptr<TargetLibraryInfoImpl> TLII( 611 createTLII(TargetTriple, CodeGenOpts)); 612 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 613 614 // Normal mode, emit a .s or .o file by running the code generator. Note, 615 // this also adds codegenerator level optimization passes. 616 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 617 if (Action == Backend_EmitObj) 618 CGFT = TargetMachine::CGFT_ObjectFile; 619 else if (Action == Backend_EmitMCNull) 620 CGFT = TargetMachine::CGFT_Null; 621 else 622 assert(Action == Backend_EmitAssembly && "Invalid action!"); 623 624 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 625 // "codegen" passes so that it isn't run multiple times when there is 626 // inlining happening. 627 if (CodeGenOpts.OptimizationLevel > 0) 628 CodeGenPasses.add(createObjCARCContractPass()); 629 630 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 631 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 632 Diags.Report(diag::err_fe_unable_to_interface_with_target); 633 return false; 634 } 635 636 return true; 637 } 638 639 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 640 std::unique_ptr<raw_pwrite_stream> OS) { 641 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 642 643 setCommandLineOpts(); 644 645 bool UsesCodeGen = (Action != Backend_EmitNothing && 646 Action != Backend_EmitBC && 647 Action != Backend_EmitLL); 648 CreateTargetMachine(UsesCodeGen); 649 650 if (UsesCodeGen && !TM) 651 return; 652 if (TM) 653 TheModule->setDataLayout(TM->createDataLayout()); 654 655 legacy::PassManager PerModulePasses; 656 PerModulePasses.add( 657 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 658 659 legacy::FunctionPassManager PerFunctionPasses(TheModule); 660 PerFunctionPasses.add( 661 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 662 663 CreatePasses(PerModulePasses, PerFunctionPasses); 664 665 legacy::PassManager CodeGenPasses; 666 CodeGenPasses.add( 667 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 668 669 switch (Action) { 670 case Backend_EmitNothing: 671 break; 672 673 case Backend_EmitBC: 674 PerModulePasses.add(createBitcodeWriterPass( 675 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 676 CodeGenOpts.EmitSummaryIndex)); 677 break; 678 679 case Backend_EmitLL: 680 PerModulePasses.add( 681 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 682 break; 683 684 default: 685 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 686 return; 687 } 688 689 // Before executing passes, print the final values of the LLVM options. 690 cl::PrintOptionValues(); 691 692 // Run passes. For now we do all passes at once, but eventually we 693 // would like to have the option of streaming code generation. 694 695 { 696 PrettyStackTraceString CrashInfo("Per-function optimization"); 697 698 PerFunctionPasses.doInitialization(); 699 for (Function &F : *TheModule) 700 if (!F.isDeclaration()) 701 PerFunctionPasses.run(F); 702 PerFunctionPasses.doFinalization(); 703 } 704 705 { 706 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 707 PerModulePasses.run(*TheModule); 708 } 709 710 { 711 PrettyStackTraceString CrashInfo("Code generation"); 712 CodeGenPasses.run(*TheModule); 713 } 714 } 715 716 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 717 switch (Opts.OptimizationLevel) { 718 default: 719 llvm_unreachable("Invalid optimization level!"); 720 721 case 1: 722 return PassBuilder::O1; 723 724 case 2: 725 switch (Opts.OptimizeSize) { 726 default: 727 llvm_unreachable("Invalide optimization level for size!"); 728 729 case 0: 730 return PassBuilder::O2; 731 732 case 1: 733 return PassBuilder::Os; 734 735 case 2: 736 return PassBuilder::Oz; 737 } 738 739 case 3: 740 return PassBuilder::O3; 741 } 742 } 743 744 /// A clean version of `EmitAssembly` that uses the new pass manager. 745 /// 746 /// Not all features are currently supported in this system, but where 747 /// necessary it falls back to the legacy pass manager to at least provide 748 /// basic functionality. 749 /// 750 /// This API is planned to have its functionality finished and then to replace 751 /// `EmitAssembly` at some point in the future when the default switches. 752 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 753 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 754 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 755 setCommandLineOpts(); 756 757 // The new pass manager always makes a target machine available to passes 758 // during construction. 759 CreateTargetMachine(/*MustCreateTM*/ true); 760 if (!TM) 761 // This will already be diagnosed, just bail. 762 return; 763 TheModule->setDataLayout(TM->createDataLayout()); 764 765 PassBuilder PB(TM.get()); 766 767 LoopAnalysisManager LAM; 768 FunctionAnalysisManager FAM; 769 CGSCCAnalysisManager CGAM; 770 ModuleAnalysisManager MAM; 771 772 // Register the AA manager first so that our version is the one used. 773 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 774 775 // Register all the basic analyses with the managers. 776 PB.registerModuleAnalyses(MAM); 777 PB.registerCGSCCAnalyses(CGAM); 778 PB.registerFunctionAnalyses(FAM); 779 PB.registerLoopAnalyses(LAM); 780 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 781 782 ModulePassManager MPM; 783 if (CodeGenOpts.OptimizationLevel == 0) { 784 // Build a minimal pipeline based on the semantics required by Clang, which 785 // is just that always inlining occurs. 786 MPM.addPass(AlwaysInlinerPass()); 787 } else { 788 // Otherwise, use the default pass pipeline. We also have to map our 789 // optimization levels into one of the distinct levels used to configure 790 // the pipeline. 791 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 792 793 MPM = PB.buildPerModuleDefaultPipeline(Level); 794 } 795 796 // FIXME: We still use the legacy pass manager to do code generation. We 797 // create that pass manager here and use it as needed below. 798 legacy::PassManager CodeGenPasses; 799 bool NeedCodeGen = false; 800 801 // Append any output we need to the pass manager. 802 switch (Action) { 803 case Backend_EmitNothing: 804 break; 805 806 case Backend_EmitBC: 807 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 808 CodeGenOpts.EmitSummaryIndex, 809 CodeGenOpts.EmitSummaryIndex)); 810 break; 811 812 case Backend_EmitLL: 813 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 814 break; 815 816 case Backend_EmitAssembly: 817 case Backend_EmitMCNull: 818 case Backend_EmitObj: 819 NeedCodeGen = true; 820 CodeGenPasses.add( 821 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 822 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 823 // FIXME: Should we handle this error differently? 824 return; 825 break; 826 } 827 828 // Before executing passes, print the final values of the LLVM options. 829 cl::PrintOptionValues(); 830 831 // Now that we have all of the passes ready, run them. 832 { 833 PrettyStackTraceString CrashInfo("Optimizer"); 834 MPM.run(*TheModule, MAM); 835 } 836 837 // Now if needed, run the legacy PM for codegen. 838 if (NeedCodeGen) { 839 PrettyStackTraceString CrashInfo("Code generation"); 840 CodeGenPasses.run(*TheModule); 841 } 842 } 843 844 static void runThinLTOBackend(const CodeGenOptions &CGOpts, Module *M, 845 std::unique_ptr<raw_pwrite_stream> OS) { 846 // If we are performing a ThinLTO importing compile, load the function index 847 // into memory and pass it into thinBackend, which will run the function 848 // importer and invoke LTO passes. 849 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 850 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 851 if (!IndexOrErr) { 852 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 853 "Error loading index file '" + 854 CGOpts.ThinLTOIndexFile + "': "); 855 return; 856 } 857 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 858 859 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 860 ModuleToDefinedGVSummaries; 861 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 862 863 // FIXME: We could simply import the modules mentioned in the combined index 864 // here. 865 FunctionImporter::ImportMapTy ImportList; 866 ComputeCrossModuleImportForModule(M->getModuleIdentifier(), *CombinedIndex, 867 ImportList); 868 869 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 870 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 871 872 for (auto &I : ImportList) { 873 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 874 llvm::MemoryBuffer::getFile(I.first()); 875 if (!MBOrErr) { 876 errs() << "Error loading imported file '" << I.first() 877 << "': " << MBOrErr.getError().message() << "\n"; 878 return; 879 } 880 881 Expected<std::vector<BitcodeModule>> BMsOrErr = 882 getBitcodeModuleList(**MBOrErr); 883 if (!BMsOrErr) { 884 handleAllErrors(BMsOrErr.takeError(), [&](ErrorInfoBase &EIB) { 885 errs() << "Error loading imported file '" << I.first() 886 << "': " << EIB.message() << '\n'; 887 }); 888 return; 889 } 890 891 // The bitcode file may contain multiple modules, we want the one with a 892 // summary. 893 bool FoundModule = false; 894 for (BitcodeModule &BM : *BMsOrErr) { 895 Expected<bool> HasSummary = BM.hasSummary(); 896 if (HasSummary && *HasSummary) { 897 ModuleMap.insert({I.first(), BM}); 898 FoundModule = true; 899 break; 900 } 901 } 902 if (!FoundModule) { 903 errs() << "Error loading imported file '" << I.first() 904 << "': Could not find module summary\n"; 905 return; 906 } 907 908 OwnedImports.push_back(std::move(*MBOrErr)); 909 } 910 auto AddStream = [&](size_t Task) { 911 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 912 }; 913 lto::Config Conf; 914 if (Error E = thinBackend( 915 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 916 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 917 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 918 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 919 }); 920 } 921 } 922 923 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 924 const CodeGenOptions &CGOpts, 925 const clang::TargetOptions &TOpts, 926 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 927 Module *M, BackendAction Action, 928 std::unique_ptr<raw_pwrite_stream> OS) { 929 if (!CGOpts.ThinLTOIndexFile.empty()) { 930 runThinLTOBackend(CGOpts, M, std::move(OS)); 931 return; 932 } 933 934 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 935 936 if (CGOpts.ExperimentalNewPassManager) 937 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 938 else 939 AsmHelper.EmitAssembly(Action, std::move(OS)); 940 941 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 942 // DataLayout. 943 if (AsmHelper.TM) { 944 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 945 if (DLDesc != TDesc.getStringRepresentation()) { 946 unsigned DiagID = Diags.getCustomDiagID( 947 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 948 "expected target description '%1'"); 949 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 950 } 951 } 952 } 953 954 static const char* getSectionNameForBitcode(const Triple &T) { 955 switch (T.getObjectFormat()) { 956 case Triple::MachO: 957 return "__LLVM,__bitcode"; 958 case Triple::COFF: 959 case Triple::ELF: 960 case Triple::UnknownObjectFormat: 961 return ".llvmbc"; 962 } 963 llvm_unreachable("Unimplemented ObjectFormatType"); 964 } 965 966 static const char* getSectionNameForCommandline(const Triple &T) { 967 switch (T.getObjectFormat()) { 968 case Triple::MachO: 969 return "__LLVM,__cmdline"; 970 case Triple::COFF: 971 case Triple::ELF: 972 case Triple::UnknownObjectFormat: 973 return ".llvmcmd"; 974 } 975 llvm_unreachable("Unimplemented ObjectFormatType"); 976 } 977 978 // With -fembed-bitcode, save a copy of the llvm IR as data in the 979 // __LLVM,__bitcode section. 980 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 981 llvm::MemoryBufferRef Buf) { 982 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 983 return; 984 985 // Save llvm.compiler.used and remote it. 986 SmallVector<Constant*, 2> UsedArray; 987 SmallSet<GlobalValue*, 4> UsedGlobals; 988 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 989 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 990 for (auto *GV : UsedGlobals) { 991 if (GV->getName() != "llvm.embedded.module" && 992 GV->getName() != "llvm.cmdline") 993 UsedArray.push_back( 994 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 995 } 996 if (Used) 997 Used->eraseFromParent(); 998 999 // Embed the bitcode for the llvm module. 1000 std::string Data; 1001 ArrayRef<uint8_t> ModuleData; 1002 Triple T(M->getTargetTriple()); 1003 // Create a constant that contains the bitcode. 1004 // In case of embedding a marker, ignore the input Buf and use the empty 1005 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1006 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1007 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1008 (const unsigned char *)Buf.getBufferEnd())) { 1009 // If the input is LLVM Assembly, bitcode is produced by serializing 1010 // the module. Use-lists order need to be perserved in this case. 1011 llvm::raw_string_ostream OS(Data); 1012 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1013 ModuleData = 1014 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1015 } else 1016 // If the input is LLVM bitcode, write the input byte stream directly. 1017 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1018 Buf.getBufferSize()); 1019 } 1020 llvm::Constant *ModuleConstant = 1021 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1022 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1023 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1024 ModuleConstant); 1025 GV->setSection(getSectionNameForBitcode(T)); 1026 UsedArray.push_back( 1027 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1028 if (llvm::GlobalVariable *Old = 1029 M->getGlobalVariable("llvm.embedded.module", true)) { 1030 assert(Old->hasOneUse() && 1031 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1032 GV->takeName(Old); 1033 Old->eraseFromParent(); 1034 } else { 1035 GV->setName("llvm.embedded.module"); 1036 } 1037 1038 // Skip if only bitcode needs to be embedded. 1039 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1040 // Embed command-line options. 1041 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1042 CGOpts.CmdArgs.size()); 1043 llvm::Constant *CmdConstant = 1044 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1045 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1046 llvm::GlobalValue::PrivateLinkage, 1047 CmdConstant); 1048 GV->setSection(getSectionNameForCommandline(T)); 1049 UsedArray.push_back( 1050 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1051 if (llvm::GlobalVariable *Old = 1052 M->getGlobalVariable("llvm.cmdline", true)) { 1053 assert(Old->hasOneUse() && 1054 "llvm.cmdline can only be used once in llvm.compiler.used"); 1055 GV->takeName(Old); 1056 Old->eraseFromParent(); 1057 } else { 1058 GV->setName("llvm.cmdline"); 1059 } 1060 } 1061 1062 if (UsedArray.empty()) 1063 return; 1064 1065 // Recreate llvm.compiler.used. 1066 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1067 auto *NewUsed = new GlobalVariable( 1068 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1069 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1070 NewUsed->setSection("llvm.metadata"); 1071 } 1072