1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 TargetIRAnalysis getTargetIRAnalysis() const { 122 if (TM) 123 return TM->getTargetIRAnalysis(); 124 125 return TargetIRAnalysis(); 126 } 127 128 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 129 130 /// Generates the TargetMachine. 131 /// Leaves TM unchanged if it is unable to create the target machine. 132 /// Some of our clang tests specify triples which are not built 133 /// into clang. This is okay because these tests check the generated 134 /// IR, and they require DataLayout which depends on the triple. 135 /// In this case, we allow this method to fail and not report an error. 136 /// When MustCreateTM is used, we print an error if we are unable to load 137 /// the requested target. 138 void CreateTargetMachine(bool MustCreateTM); 139 140 /// Add passes necessary to emit assembly or LLVM IR. 141 /// 142 /// \return True on success. 143 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 144 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 145 146 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 147 std::error_code EC; 148 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 149 llvm::sys::fs::OF_None); 150 if (EC) { 151 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 152 F.reset(); 153 } 154 return F; 155 } 156 157 void 158 RunOptimizationPipeline(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> &OS, 160 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 161 void RunCodegenPipeline(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> &OS, 163 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 164 165 public: 166 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 167 const HeaderSearchOptions &HeaderSearchOpts, 168 const CodeGenOptions &CGOpts, 169 const clang::TargetOptions &TOpts, 170 const LangOptions &LOpts, Module *M) 171 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 172 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 173 CodeGenerationTime("codegen", "Code Generation Time") {} 174 175 ~EmitAssemblyHelper() { 176 if (CodeGenOpts.DisableFree) 177 BuryPointer(std::move(TM)); 178 } 179 180 std::unique_ptr<TargetMachine> TM; 181 182 // Emit output using the legacy pass manager for the optimization pipeline. 183 // This will be removed soon when using the legacy pass manager for the 184 // optimization pipeline is no longer supported. 185 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 186 std::unique_ptr<raw_pwrite_stream> OS); 187 188 // Emit output using the new pass manager for the optimization pipeline. This 189 // is the default. 190 void EmitAssembly(BackendAction Action, 191 std::unique_ptr<raw_pwrite_stream> OS); 192 }; 193 194 // We need this wrapper to access LangOpts and CGOpts from extension functions 195 // that we add to the PassManagerBuilder. 196 class PassManagerBuilderWrapper : public PassManagerBuilder { 197 public: 198 PassManagerBuilderWrapper(const Triple &TargetTriple, 199 const CodeGenOptions &CGOpts, 200 const LangOptions &LangOpts) 201 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 202 const Triple &getTargetTriple() const { return TargetTriple; } 203 const CodeGenOptions &getCGOpts() const { return CGOpts; } 204 const LangOptions &getLangOpts() const { return LangOpts; } 205 206 private: 207 const Triple &TargetTriple; 208 const CodeGenOptions &CGOpts; 209 const LangOptions &LangOpts; 210 }; 211 } 212 213 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 214 if (Builder.OptLevel > 0) 215 PM.add(createObjCARCAPElimPass()); 216 } 217 218 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 219 if (Builder.OptLevel > 0) 220 PM.add(createObjCARCExpandPass()); 221 } 222 223 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 224 if (Builder.OptLevel > 0) 225 PM.add(createObjCARCOptPass()); 226 } 227 228 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 229 legacy::PassManagerBase &PM) { 230 PM.add(createAddDiscriminatorsPass()); 231 } 232 233 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createBoundsCheckingLegacyPass()); 236 } 237 238 static SanitizerCoverageOptions 239 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 240 SanitizerCoverageOptions Opts; 241 Opts.CoverageType = 242 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 243 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 244 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 245 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 246 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 247 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 248 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 249 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 250 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 251 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 252 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 253 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 254 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 255 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 256 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 257 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 258 return Opts; 259 } 260 261 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 const PassManagerBuilderWrapper &BuilderWrapper = 264 static_cast<const PassManagerBuilderWrapper &>(Builder); 265 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 266 auto Opts = getSancovOptsFromCGOpts(CGOpts); 267 PM.add(createModuleSanitizerCoverageLegacyPassPass( 268 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 269 CGOpts.SanitizeCoverageIgnorelistFiles)); 270 } 271 272 // Check if ASan should use GC-friendly instrumentation for globals. 273 // First of all, there is no point if -fdata-sections is off (expect for MachO, 274 // where this is not a factor). Also, on ELF this feature requires an assembler 275 // extension that only works with -integrated-as at the moment. 276 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 277 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 278 return false; 279 switch (T.getObjectFormat()) { 280 case Triple::MachO: 281 case Triple::COFF: 282 return true; 283 case Triple::ELF: 284 return !CGOpts.DisableIntegratedAS; 285 case Triple::GOFF: 286 llvm::report_fatal_error("ASan not implemented for GOFF"); 287 case Triple::XCOFF: 288 llvm::report_fatal_error("ASan not implemented for XCOFF."); 289 case Triple::Wasm: 290 case Triple::DXContainer: 291 case Triple::UnknownObjectFormat: 292 break; 293 } 294 return false; 295 } 296 297 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 298 legacy::PassManagerBase &PM) { 299 PM.add(createMemProfilerFunctionPass()); 300 PM.add(createModuleMemProfilerLegacyPassPass()); 301 } 302 303 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper&>(Builder); 307 const Triple &T = BuilderWrapper.getTargetTriple(); 308 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 309 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 310 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 311 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 312 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 313 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 314 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 315 CGOpts.getSanitizeAddressUseAfterReturn(); 316 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 317 UseAfterScope, UseAfterReturn)); 318 PM.add(createModuleAddressSanitizerLegacyPassPass( 319 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 320 DestructorKind)); 321 } 322 323 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM) { 325 PM.add(createAddressSanitizerFunctionPass( 326 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 327 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 328 PM.add(createModuleAddressSanitizerLegacyPassPass( 329 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 330 /*UseOdrIndicator*/ false)); 331 } 332 333 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 334 legacy::PassManagerBase &PM) { 335 const PassManagerBuilderWrapper &BuilderWrapper = 336 static_cast<const PassManagerBuilderWrapper &>(Builder); 337 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 338 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 339 PM.add(createHWAddressSanitizerLegacyPassPass( 340 /*CompileKernel*/ false, Recover, 341 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 342 } 343 344 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 345 legacy::PassManagerBase &PM) { 346 const PassManagerBuilderWrapper &BuilderWrapper = 347 static_cast<const PassManagerBuilderWrapper &>(Builder); 348 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 349 PM.add(createHWAddressSanitizerLegacyPassPass( 350 /*CompileKernel*/ true, /*Recover*/ true, 351 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 352 } 353 354 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 355 legacy::PassManagerBase &PM, 356 bool CompileKernel) { 357 const PassManagerBuilderWrapper &BuilderWrapper = 358 static_cast<const PassManagerBuilderWrapper&>(Builder); 359 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 360 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 361 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 362 PM.add(createMemorySanitizerLegacyPassPass( 363 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 364 CGOpts.SanitizeMemoryParamRetval != 0})); 365 366 // MemorySanitizer inserts complex instrumentation that mostly follows 367 // the logic of the original code, but operates on "shadow" values. 368 // It can benefit from re-running some general purpose optimization passes. 369 if (Builder.OptLevel > 0) { 370 PM.add(createEarlyCSEPass()); 371 PM.add(createReassociatePass()); 372 PM.add(createLICMPass()); 373 PM.add(createGVNPass()); 374 PM.add(createInstructionCombiningPass()); 375 PM.add(createDeadStoreEliminationPass()); 376 } 377 } 378 379 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 380 legacy::PassManagerBase &PM) { 381 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 382 } 383 384 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 385 legacy::PassManagerBase &PM) { 386 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 387 } 388 389 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 390 legacy::PassManagerBase &PM) { 391 PM.add(createThreadSanitizerLegacyPassPass()); 392 } 393 394 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 395 legacy::PassManagerBase &PM) { 396 const PassManagerBuilderWrapper &BuilderWrapper = 397 static_cast<const PassManagerBuilderWrapper&>(Builder); 398 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 399 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 400 } 401 402 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 403 legacy::PassManagerBase &PM) { 404 PM.add(createEntryExitInstrumenterPass()); 405 } 406 407 static void 408 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 409 legacy::PassManagerBase &PM) { 410 PM.add(createPostInlineEntryExitInstrumenterPass()); 411 } 412 413 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 414 const CodeGenOptions &CodeGenOpts) { 415 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 416 417 switch (CodeGenOpts.getVecLib()) { 418 case CodeGenOptions::Accelerate: 419 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 420 break; 421 case CodeGenOptions::LIBMVEC: 422 switch(TargetTriple.getArch()) { 423 default: 424 break; 425 case llvm::Triple::x86_64: 426 TLII->addVectorizableFunctionsFromVecLib 427 (TargetLibraryInfoImpl::LIBMVEC_X86); 428 break; 429 } 430 break; 431 case CodeGenOptions::MASSV: 432 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 433 break; 434 case CodeGenOptions::SVML: 435 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 436 break; 437 case CodeGenOptions::Darwin_libsystem_m: 438 TLII->addVectorizableFunctionsFromVecLib( 439 TargetLibraryInfoImpl::DarwinLibSystemM); 440 break; 441 default: 442 break; 443 } 444 return TLII; 445 } 446 447 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 448 legacy::PassManager *MPM) { 449 llvm::SymbolRewriter::RewriteDescriptorList DL; 450 451 llvm::SymbolRewriter::RewriteMapParser MapParser; 452 for (const auto &MapFile : Opts.RewriteMapFiles) 453 MapParser.parse(MapFile, &DL); 454 455 MPM->add(createRewriteSymbolsPass(DL)); 456 } 457 458 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 459 switch (CodeGenOpts.OptimizationLevel) { 460 default: 461 llvm_unreachable("Invalid optimization level!"); 462 case 0: 463 return CodeGenOpt::None; 464 case 1: 465 return CodeGenOpt::Less; 466 case 2: 467 return CodeGenOpt::Default; // O2/Os/Oz 468 case 3: 469 return CodeGenOpt::Aggressive; 470 } 471 } 472 473 static Optional<llvm::CodeModel::Model> 474 getCodeModel(const CodeGenOptions &CodeGenOpts) { 475 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 476 .Case("tiny", llvm::CodeModel::Tiny) 477 .Case("small", llvm::CodeModel::Small) 478 .Case("kernel", llvm::CodeModel::Kernel) 479 .Case("medium", llvm::CodeModel::Medium) 480 .Case("large", llvm::CodeModel::Large) 481 .Case("default", ~1u) 482 .Default(~0u); 483 assert(CodeModel != ~0u && "invalid code model!"); 484 if (CodeModel == ~1u) 485 return None; 486 return static_cast<llvm::CodeModel::Model>(CodeModel); 487 } 488 489 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 490 if (Action == Backend_EmitObj) 491 return CGFT_ObjectFile; 492 else if (Action == Backend_EmitMCNull) 493 return CGFT_Null; 494 else { 495 assert(Action == Backend_EmitAssembly && "Invalid action!"); 496 return CGFT_AssemblyFile; 497 } 498 } 499 500 static bool actionRequiresCodeGen(BackendAction Action) { 501 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 502 Action != Backend_EmitLL; 503 } 504 505 static bool initTargetOptions(DiagnosticsEngine &Diags, 506 llvm::TargetOptions &Options, 507 const CodeGenOptions &CodeGenOpts, 508 const clang::TargetOptions &TargetOpts, 509 const LangOptions &LangOpts, 510 const HeaderSearchOptions &HSOpts) { 511 switch (LangOpts.getThreadModel()) { 512 case LangOptions::ThreadModelKind::POSIX: 513 Options.ThreadModel = llvm::ThreadModel::POSIX; 514 break; 515 case LangOptions::ThreadModelKind::Single: 516 Options.ThreadModel = llvm::ThreadModel::Single; 517 break; 518 } 519 520 // Set float ABI type. 521 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 522 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 523 "Invalid Floating Point ABI!"); 524 Options.FloatABIType = 525 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 526 .Case("soft", llvm::FloatABI::Soft) 527 .Case("softfp", llvm::FloatABI::Soft) 528 .Case("hard", llvm::FloatABI::Hard) 529 .Default(llvm::FloatABI::Default); 530 531 // Set FP fusion mode. 532 switch (LangOpts.getDefaultFPContractMode()) { 533 case LangOptions::FPM_Off: 534 // Preserve any contraction performed by the front-end. (Strict performs 535 // splitting of the muladd intrinsic in the backend.) 536 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 537 break; 538 case LangOptions::FPM_On: 539 case LangOptions::FPM_FastHonorPragmas: 540 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 541 break; 542 case LangOptions::FPM_Fast: 543 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 544 break; 545 } 546 547 Options.BinutilsVersion = 548 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 549 Options.UseInitArray = CodeGenOpts.UseInitArray; 550 Options.LowerGlobalDtorsViaCxaAtExit = 551 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 552 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 553 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 554 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 555 556 // Set EABI version. 557 Options.EABIVersion = TargetOpts.EABIVersion; 558 559 if (LangOpts.hasSjLjExceptions()) 560 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 561 if (LangOpts.hasSEHExceptions()) 562 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 563 if (LangOpts.hasDWARFExceptions()) 564 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 565 if (LangOpts.hasWasmExceptions()) 566 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 567 568 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 569 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 570 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 571 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 572 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 573 574 Options.BBSections = 575 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 576 .Case("all", llvm::BasicBlockSection::All) 577 .Case("labels", llvm::BasicBlockSection::Labels) 578 .StartsWith("list=", llvm::BasicBlockSection::List) 579 .Case("none", llvm::BasicBlockSection::None) 580 .Default(llvm::BasicBlockSection::None); 581 582 if (Options.BBSections == llvm::BasicBlockSection::List) { 583 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 584 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 585 if (!MBOrErr) { 586 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 587 << MBOrErr.getError().message(); 588 return false; 589 } 590 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 591 } 592 593 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 594 Options.FunctionSections = CodeGenOpts.FunctionSections; 595 Options.DataSections = CodeGenOpts.DataSections; 596 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 597 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 598 Options.UniqueBasicBlockSectionNames = 599 CodeGenOpts.UniqueBasicBlockSectionNames; 600 Options.TLSSize = CodeGenOpts.TLSSize; 601 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 602 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 603 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 604 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 605 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 606 Options.EmitAddrsig = CodeGenOpts.Addrsig; 607 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 608 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 609 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 610 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 611 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 612 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 613 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 614 Options.Hotpatch = CodeGenOpts.HotPatch; 615 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 616 617 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 618 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 619 Options.SwiftAsyncFramePointer = 620 SwiftAsyncFramePointerMode::DeploymentBased; 621 break; 622 623 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 624 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 625 break; 626 627 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 628 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 629 break; 630 } 631 632 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 633 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 634 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 635 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 636 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 637 Options.MCOptions.MCIncrementalLinkerCompatible = 638 CodeGenOpts.IncrementalLinkerCompatible; 639 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 640 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 641 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 642 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 643 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 644 Options.MCOptions.ABIName = TargetOpts.ABI; 645 for (const auto &Entry : HSOpts.UserEntries) 646 if (!Entry.IsFramework && 647 (Entry.Group == frontend::IncludeDirGroup::Quoted || 648 Entry.Group == frontend::IncludeDirGroup::Angled || 649 Entry.Group == frontend::IncludeDirGroup::System)) 650 Options.MCOptions.IASSearchPaths.push_back( 651 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 652 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 653 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 654 655 return true; 656 } 657 658 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 659 const LangOptions &LangOpts) { 660 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 661 return None; 662 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 663 // LLVM's -default-gcov-version flag is set to something invalid. 664 GCOVOptions Options; 665 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 666 Options.EmitData = CodeGenOpts.EmitGcovArcs; 667 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 668 Options.NoRedZone = CodeGenOpts.DisableRedZone; 669 Options.Filter = CodeGenOpts.ProfileFilterFiles; 670 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 671 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 672 return Options; 673 } 674 675 static Optional<InstrProfOptions> 676 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 677 const LangOptions &LangOpts) { 678 if (!CodeGenOpts.hasProfileClangInstr()) 679 return None; 680 InstrProfOptions Options; 681 Options.NoRedZone = CodeGenOpts.DisableRedZone; 682 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 683 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 684 return Options; 685 } 686 687 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 688 legacy::FunctionPassManager &FPM) { 689 // Handle disabling of all LLVM passes, where we want to preserve the 690 // internal module before any optimization. 691 if (CodeGenOpts.DisableLLVMPasses) 692 return; 693 694 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 695 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 696 // are inserted before PMBuilder ones - they'd get the default-constructed 697 // TLI with an unknown target otherwise. 698 Triple TargetTriple(TheModule->getTargetTriple()); 699 std::unique_ptr<TargetLibraryInfoImpl> TLII( 700 createTLII(TargetTriple, CodeGenOpts)); 701 702 // If we reached here with a non-empty index file name, then the index file 703 // was empty and we are not performing ThinLTO backend compilation (used in 704 // testing in a distributed build environment). Drop any the type test 705 // assume sequences inserted for whole program vtables so that codegen doesn't 706 // complain. 707 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 708 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 709 /*ImportSummary=*/nullptr, 710 /*DropTypeTests=*/true)); 711 712 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 713 714 // At O0 and O1 we only run the always inliner which is more efficient. At 715 // higher optimization levels we run the normal inliner. 716 if (CodeGenOpts.OptimizationLevel <= 1) { 717 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 718 !CodeGenOpts.DisableLifetimeMarkers) || 719 LangOpts.Coroutines); 720 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 721 } else { 722 // We do not want to inline hot callsites for SamplePGO module-summary build 723 // because profile annotation will happen again in ThinLTO backend, and we 724 // want the IR of the hot path to match the profile. 725 PMBuilder.Inliner = createFunctionInliningPass( 726 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 727 (!CodeGenOpts.SampleProfileFile.empty() && 728 CodeGenOpts.PrepareForThinLTO)); 729 } 730 731 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 732 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 733 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 734 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 735 // Only enable CGProfilePass when using integrated assembler, since 736 // non-integrated assemblers don't recognize .cgprofile section. 737 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 738 739 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 740 // Loop interleaving in the loop vectorizer has historically been set to be 741 // enabled when loop unrolling is enabled. 742 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 743 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 744 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 745 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 746 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 747 748 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 749 750 if (TM) 751 TM->adjustPassManager(PMBuilder); 752 753 if (CodeGenOpts.DebugInfoForProfiling || 754 !CodeGenOpts.SampleProfileFile.empty()) 755 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 756 addAddDiscriminatorsPass); 757 758 // In ObjC ARC mode, add the main ARC optimization passes. 759 if (LangOpts.ObjCAutoRefCount) { 760 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 761 addObjCARCExpandPass); 762 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 763 addObjCARCAPElimPass); 764 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 765 addObjCARCOptPass); 766 } 767 768 if (LangOpts.Coroutines) 769 addCoroutinePassesToExtensionPoints(PMBuilder); 770 771 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 772 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 773 addMemProfilerPasses); 774 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 775 addMemProfilerPasses); 776 } 777 778 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 779 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 780 addBoundsCheckingPass); 781 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 782 addBoundsCheckingPass); 783 } 784 785 if (CodeGenOpts.hasSanitizeCoverage()) { 786 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 787 addSanitizerCoveragePass); 788 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 789 addSanitizerCoveragePass); 790 } 791 792 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 793 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 794 addAddressSanitizerPasses); 795 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 796 addAddressSanitizerPasses); 797 } 798 799 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 800 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 801 addKernelAddressSanitizerPasses); 802 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 803 addKernelAddressSanitizerPasses); 804 } 805 806 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 807 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 808 addHWAddressSanitizerPasses); 809 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 810 addHWAddressSanitizerPasses); 811 } 812 813 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 814 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 815 addKernelHWAddressSanitizerPasses); 816 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 817 addKernelHWAddressSanitizerPasses); 818 } 819 820 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 821 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 822 addMemorySanitizerPass); 823 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 824 addMemorySanitizerPass); 825 } 826 827 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 828 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 829 addKernelMemorySanitizerPass); 830 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 831 addKernelMemorySanitizerPass); 832 } 833 834 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 835 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 836 addThreadSanitizerPass); 837 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 838 addThreadSanitizerPass); 839 } 840 841 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 842 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 843 addDataFlowSanitizerPass); 844 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 845 addDataFlowSanitizerPass); 846 } 847 848 if (CodeGenOpts.InstrumentFunctions || 849 CodeGenOpts.InstrumentFunctionEntryBare || 850 CodeGenOpts.InstrumentFunctionsAfterInlining || 851 CodeGenOpts.InstrumentForProfiling) { 852 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 853 addEntryExitInstrumentationPass); 854 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 855 addEntryExitInstrumentationPass); 856 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 857 addPostInlineEntryExitInstrumentationPass); 858 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 859 addPostInlineEntryExitInstrumentationPass); 860 } 861 862 // Set up the per-function pass manager. 863 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 864 if (CodeGenOpts.VerifyModule) 865 FPM.add(createVerifierPass()); 866 867 // Set up the per-module pass manager. 868 if (!CodeGenOpts.RewriteMapFiles.empty()) 869 addSymbolRewriterPass(CodeGenOpts, &MPM); 870 871 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 872 MPM.add(createGCOVProfilerPass(*Options)); 873 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 874 MPM.add(createStripSymbolsPass(true)); 875 } 876 877 if (Optional<InstrProfOptions> Options = 878 getInstrProfOptions(CodeGenOpts, LangOpts)) 879 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 880 881 bool hasIRInstr = false; 882 if (CodeGenOpts.hasProfileIRInstr()) { 883 PMBuilder.EnablePGOInstrGen = true; 884 hasIRInstr = true; 885 } 886 if (CodeGenOpts.hasProfileCSIRInstr()) { 887 assert(!CodeGenOpts.hasProfileCSIRUse() && 888 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 889 "same time"); 890 assert(!hasIRInstr && 891 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 892 "same time"); 893 PMBuilder.EnablePGOCSInstrGen = true; 894 hasIRInstr = true; 895 } 896 if (hasIRInstr) { 897 if (!CodeGenOpts.InstrProfileOutput.empty()) 898 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 899 else 900 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 901 } 902 if (CodeGenOpts.hasProfileIRUse()) { 903 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 904 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 905 } 906 907 if (!CodeGenOpts.SampleProfileFile.empty()) 908 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 909 910 PMBuilder.populateFunctionPassManager(FPM); 911 PMBuilder.populateModulePassManager(MPM); 912 } 913 914 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 915 SmallVector<const char *, 16> BackendArgs; 916 BackendArgs.push_back("clang"); // Fake program name. 917 if (!CodeGenOpts.DebugPass.empty()) { 918 BackendArgs.push_back("-debug-pass"); 919 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 920 } 921 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 922 BackendArgs.push_back("-limit-float-precision"); 923 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 924 } 925 // Check for the default "clang" invocation that won't set any cl::opt values. 926 // Skip trying to parse the command line invocation to avoid the issues 927 // described below. 928 if (BackendArgs.size() == 1) 929 return; 930 BackendArgs.push_back(nullptr); 931 // FIXME: The command line parser below is not thread-safe and shares a global 932 // state, so this call might crash or overwrite the options of another Clang 933 // instance in the same process. 934 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 935 BackendArgs.data()); 936 } 937 938 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 939 // Create the TargetMachine for generating code. 940 std::string Error; 941 std::string Triple = TheModule->getTargetTriple(); 942 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 943 if (!TheTarget) { 944 if (MustCreateTM) 945 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 946 return; 947 } 948 949 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 950 std::string FeaturesStr = 951 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 952 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 953 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 954 955 llvm::TargetOptions Options; 956 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 957 HSOpts)) 958 return; 959 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 960 Options, RM, CM, OptLevel)); 961 } 962 963 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 964 BackendAction Action, 965 raw_pwrite_stream &OS, 966 raw_pwrite_stream *DwoOS) { 967 // Add LibraryInfo. 968 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 969 std::unique_ptr<TargetLibraryInfoImpl> TLII( 970 createTLII(TargetTriple, CodeGenOpts)); 971 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 972 973 // Normal mode, emit a .s or .o file by running the code generator. Note, 974 // this also adds codegenerator level optimization passes. 975 CodeGenFileType CGFT = getCodeGenFileType(Action); 976 977 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 978 // "codegen" passes so that it isn't run multiple times when there is 979 // inlining happening. 980 if (CodeGenOpts.OptimizationLevel > 0) 981 CodeGenPasses.add(createObjCARCContractPass()); 982 983 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 984 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 985 Diags.Report(diag::err_fe_unable_to_interface_with_target); 986 return false; 987 } 988 989 return true; 990 } 991 992 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 993 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 994 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 995 996 setCommandLineOpts(CodeGenOpts); 997 998 bool UsesCodeGen = actionRequiresCodeGen(Action); 999 CreateTargetMachine(UsesCodeGen); 1000 1001 if (UsesCodeGen && !TM) 1002 return; 1003 if (TM) 1004 TheModule->setDataLayout(TM->createDataLayout()); 1005 1006 DebugifyCustomPassManager PerModulePasses; 1007 DebugInfoPerPass DebugInfoBeforePass; 1008 if (CodeGenOpts.EnableDIPreservationVerify) { 1009 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1010 PerModulePasses.setDebugInfoBeforePass(DebugInfoBeforePass); 1011 1012 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1013 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1014 CodeGenOpts.DIBugsReportFilePath); 1015 } 1016 PerModulePasses.add( 1017 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1018 1019 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1020 PerFunctionPasses.add( 1021 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1022 1023 CreatePasses(PerModulePasses, PerFunctionPasses); 1024 1025 // Add a verifier pass if requested. We don't have to do this if the action 1026 // requires code generation because there will already be a verifier pass in 1027 // the code-generation pipeline. 1028 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1029 PerModulePasses.add(createVerifierPass()); 1030 1031 legacy::PassManager CodeGenPasses; 1032 CodeGenPasses.add( 1033 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1034 1035 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1036 1037 switch (Action) { 1038 case Backend_EmitNothing: 1039 break; 1040 1041 case Backend_EmitBC: 1042 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1043 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1044 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1045 if (!ThinLinkOS) 1046 return; 1047 } 1048 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1049 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1050 CodeGenOpts.EnableSplitLTOUnit); 1051 PerModulePasses.add(createWriteThinLTOBitcodePass( 1052 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1053 } else { 1054 // Emit a module summary by default for Regular LTO except for ld64 1055 // targets 1056 bool EmitLTOSummary = 1057 (CodeGenOpts.PrepareForLTO && 1058 !CodeGenOpts.DisableLLVMPasses && 1059 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1060 llvm::Triple::Apple); 1061 if (EmitLTOSummary) { 1062 if (!TheModule->getModuleFlag("ThinLTO")) 1063 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1064 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1065 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1066 uint32_t(1)); 1067 } 1068 1069 PerModulePasses.add(createBitcodeWriterPass( 1070 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1071 } 1072 break; 1073 1074 case Backend_EmitLL: 1075 PerModulePasses.add( 1076 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1077 break; 1078 1079 default: 1080 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1081 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1082 if (!DwoOS) 1083 return; 1084 } 1085 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1086 DwoOS ? &DwoOS->os() : nullptr)) 1087 return; 1088 } 1089 1090 // Before executing passes, print the final values of the LLVM options. 1091 cl::PrintOptionValues(); 1092 1093 // Run passes. For now we do all passes at once, but eventually we 1094 // would like to have the option of streaming code generation. 1095 1096 { 1097 PrettyStackTraceString CrashInfo("Per-function optimization"); 1098 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1099 1100 PerFunctionPasses.doInitialization(); 1101 for (Function &F : *TheModule) 1102 if (!F.isDeclaration()) 1103 PerFunctionPasses.run(F); 1104 PerFunctionPasses.doFinalization(); 1105 } 1106 1107 { 1108 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1109 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1110 PerModulePasses.run(*TheModule); 1111 } 1112 1113 { 1114 PrettyStackTraceString CrashInfo("Code generation"); 1115 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1116 CodeGenPasses.run(*TheModule); 1117 } 1118 1119 if (ThinLinkOS) 1120 ThinLinkOS->keep(); 1121 if (DwoOS) 1122 DwoOS->keep(); 1123 } 1124 1125 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1126 switch (Opts.OptimizationLevel) { 1127 default: 1128 llvm_unreachable("Invalid optimization level!"); 1129 1130 case 0: 1131 return OptimizationLevel::O0; 1132 1133 case 1: 1134 return OptimizationLevel::O1; 1135 1136 case 2: 1137 switch (Opts.OptimizeSize) { 1138 default: 1139 llvm_unreachable("Invalid optimization level for size!"); 1140 1141 case 0: 1142 return OptimizationLevel::O2; 1143 1144 case 1: 1145 return OptimizationLevel::Os; 1146 1147 case 2: 1148 return OptimizationLevel::Oz; 1149 } 1150 1151 case 3: 1152 return OptimizationLevel::O3; 1153 } 1154 } 1155 1156 static void addSanitizers(const Triple &TargetTriple, 1157 const CodeGenOptions &CodeGenOpts, 1158 const LangOptions &LangOpts, PassBuilder &PB) { 1159 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1160 OptimizationLevel Level) { 1161 if (CodeGenOpts.hasSanitizeCoverage()) { 1162 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1163 MPM.addPass(ModuleSanitizerCoveragePass( 1164 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1165 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1166 } 1167 1168 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1169 if (LangOpts.Sanitize.has(Mask)) { 1170 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1171 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1172 1173 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1174 CodeGenOpts.SanitizeMemoryParamRetval); 1175 MPM.addPass(ModuleMemorySanitizerPass(options)); 1176 FunctionPassManager FPM; 1177 FPM.addPass(MemorySanitizerPass(options)); 1178 if (Level != OptimizationLevel::O0) { 1179 // MemorySanitizer inserts complex instrumentation that mostly 1180 // follows the logic of the original code, but operates on 1181 // "shadow" values. It can benefit from re-running some 1182 // general purpose optimization passes. 1183 FPM.addPass(EarlyCSEPass()); 1184 // TODO: Consider add more passes like in 1185 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1186 // difference on size. It's not clear if the rest is still 1187 // usefull. InstCombinePass breakes 1188 // compiler-rt/test/msan/select_origin.cpp. 1189 } 1190 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1191 } 1192 }; 1193 MSanPass(SanitizerKind::Memory, false); 1194 MSanPass(SanitizerKind::KernelMemory, true); 1195 1196 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1197 MPM.addPass(ModuleThreadSanitizerPass()); 1198 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1199 } 1200 1201 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1202 if (LangOpts.Sanitize.has(Mask)) { 1203 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1204 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1205 llvm::AsanDtorKind DestructorKind = 1206 CodeGenOpts.getSanitizeAddressDtor(); 1207 AddressSanitizerOptions Opts; 1208 Opts.CompileKernel = CompileKernel; 1209 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1210 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1211 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1212 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1213 MPM.addPass(ModuleAddressSanitizerPass( 1214 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1215 } 1216 }; 1217 ASanPass(SanitizerKind::Address, false); 1218 ASanPass(SanitizerKind::KernelAddress, true); 1219 1220 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1221 if (LangOpts.Sanitize.has(Mask)) { 1222 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1223 MPM.addPass(HWAddressSanitizerPass( 1224 {CompileKernel, Recover, 1225 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1226 } 1227 }; 1228 HWASanPass(SanitizerKind::HWAddress, false); 1229 HWASanPass(SanitizerKind::KernelHWAddress, true); 1230 1231 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1232 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1233 } 1234 }); 1235 } 1236 1237 void EmitAssemblyHelper::RunOptimizationPipeline( 1238 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1239 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1240 Optional<PGOOptions> PGOOpt; 1241 1242 if (CodeGenOpts.hasProfileIRInstr()) 1243 // -fprofile-generate. 1244 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1245 ? getDefaultProfileGenName() 1246 : CodeGenOpts.InstrProfileOutput, 1247 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1248 CodeGenOpts.DebugInfoForProfiling); 1249 else if (CodeGenOpts.hasProfileIRUse()) { 1250 // -fprofile-use. 1251 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1252 : PGOOptions::NoCSAction; 1253 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1254 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1255 CSAction, CodeGenOpts.DebugInfoForProfiling); 1256 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1257 // -fprofile-sample-use 1258 PGOOpt = PGOOptions( 1259 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1260 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1261 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1262 else if (CodeGenOpts.PseudoProbeForProfiling) 1263 // -fpseudo-probe-for-profiling 1264 PGOOpt = 1265 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1266 CodeGenOpts.DebugInfoForProfiling, true); 1267 else if (CodeGenOpts.DebugInfoForProfiling) 1268 // -fdebug-info-for-profiling 1269 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1270 PGOOptions::NoCSAction, true); 1271 1272 // Check to see if we want to generate a CS profile. 1273 if (CodeGenOpts.hasProfileCSIRInstr()) { 1274 assert(!CodeGenOpts.hasProfileCSIRUse() && 1275 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1276 "the same time"); 1277 if (PGOOpt.hasValue()) { 1278 assert(PGOOpt->Action != PGOOptions::IRInstr && 1279 PGOOpt->Action != PGOOptions::SampleUse && 1280 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1281 " pass"); 1282 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1283 ? getDefaultProfileGenName() 1284 : CodeGenOpts.InstrProfileOutput; 1285 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1286 } else 1287 PGOOpt = PGOOptions("", 1288 CodeGenOpts.InstrProfileOutput.empty() 1289 ? getDefaultProfileGenName() 1290 : CodeGenOpts.InstrProfileOutput, 1291 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1292 CodeGenOpts.DebugInfoForProfiling); 1293 } 1294 if (TM) 1295 TM->setPGOOption(PGOOpt); 1296 1297 PipelineTuningOptions PTO; 1298 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1299 // For historical reasons, loop interleaving is set to mirror setting for loop 1300 // unrolling. 1301 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1302 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1303 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1304 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1305 // Only enable CGProfilePass when using integrated assembler, since 1306 // non-integrated assemblers don't recognize .cgprofile section. 1307 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1308 1309 LoopAnalysisManager LAM; 1310 FunctionAnalysisManager FAM; 1311 CGSCCAnalysisManager CGAM; 1312 ModuleAnalysisManager MAM; 1313 1314 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1315 PassInstrumentationCallbacks PIC; 1316 PrintPassOptions PrintPassOpts; 1317 PrintPassOpts.Indent = DebugPassStructure; 1318 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1319 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1320 DebugPassStructure, 1321 /*VerifyEach*/ false, PrintPassOpts); 1322 SI.registerCallbacks(PIC, &FAM); 1323 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1324 1325 // Attempt to load pass plugins and register their callbacks with PB. 1326 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1327 auto PassPlugin = PassPlugin::Load(PluginFN); 1328 if (PassPlugin) { 1329 PassPlugin->registerPassBuilderCallbacks(PB); 1330 } else { 1331 Diags.Report(diag::err_fe_unable_to_load_plugin) 1332 << PluginFN << toString(PassPlugin.takeError()); 1333 } 1334 } 1335 #define HANDLE_EXTENSION(Ext) \ 1336 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1337 #include "llvm/Support/Extension.def" 1338 1339 // Register the target library analysis directly and give it a customized 1340 // preset TLI. 1341 Triple TargetTriple(TheModule->getTargetTriple()); 1342 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1343 createTLII(TargetTriple, CodeGenOpts)); 1344 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1345 1346 // Register all the basic analyses with the managers. 1347 PB.registerModuleAnalyses(MAM); 1348 PB.registerCGSCCAnalyses(CGAM); 1349 PB.registerFunctionAnalyses(FAM); 1350 PB.registerLoopAnalyses(LAM); 1351 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1352 1353 ModulePassManager MPM; 1354 1355 if (!CodeGenOpts.DisableLLVMPasses) { 1356 // Map our optimization levels into one of the distinct levels used to 1357 // configure the pipeline. 1358 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1359 1360 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1361 bool IsLTO = CodeGenOpts.PrepareForLTO; 1362 1363 if (LangOpts.ObjCAutoRefCount) { 1364 PB.registerPipelineStartEPCallback( 1365 [](ModulePassManager &MPM, OptimizationLevel Level) { 1366 if (Level != OptimizationLevel::O0) 1367 MPM.addPass( 1368 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1369 }); 1370 PB.registerPipelineEarlySimplificationEPCallback( 1371 [](ModulePassManager &MPM, OptimizationLevel Level) { 1372 if (Level != OptimizationLevel::O0) 1373 MPM.addPass(ObjCARCAPElimPass()); 1374 }); 1375 PB.registerScalarOptimizerLateEPCallback( 1376 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1377 if (Level != OptimizationLevel::O0) 1378 FPM.addPass(ObjCARCOptPass()); 1379 }); 1380 } 1381 1382 // If we reached here with a non-empty index file name, then the index 1383 // file was empty and we are not performing ThinLTO backend compilation 1384 // (used in testing in a distributed build environment). 1385 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1386 // If so drop any the type test assume sequences inserted for whole program 1387 // vtables so that codegen doesn't complain. 1388 if (IsThinLTOPostLink) 1389 PB.registerPipelineStartEPCallback( 1390 [](ModulePassManager &MPM, OptimizationLevel Level) { 1391 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1392 /*ImportSummary=*/nullptr, 1393 /*DropTypeTests=*/true)); 1394 }); 1395 1396 if (CodeGenOpts.InstrumentFunctions || 1397 CodeGenOpts.InstrumentFunctionEntryBare || 1398 CodeGenOpts.InstrumentFunctionsAfterInlining || 1399 CodeGenOpts.InstrumentForProfiling) { 1400 PB.registerPipelineStartEPCallback( 1401 [](ModulePassManager &MPM, OptimizationLevel Level) { 1402 MPM.addPass(createModuleToFunctionPassAdaptor( 1403 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1404 }); 1405 PB.registerOptimizerLastEPCallback( 1406 [](ModulePassManager &MPM, OptimizationLevel Level) { 1407 MPM.addPass(createModuleToFunctionPassAdaptor( 1408 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1409 }); 1410 } 1411 1412 // Register callbacks to schedule sanitizer passes at the appropriate part 1413 // of the pipeline. 1414 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1415 PB.registerScalarOptimizerLateEPCallback( 1416 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1417 FPM.addPass(BoundsCheckingPass()); 1418 }); 1419 1420 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1421 // done on PreLink stage. 1422 if (!IsThinLTOPostLink) 1423 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1424 1425 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1426 PB.registerPipelineStartEPCallback( 1427 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1428 MPM.addPass(GCOVProfilerPass(*Options)); 1429 }); 1430 if (Optional<InstrProfOptions> Options = 1431 getInstrProfOptions(CodeGenOpts, LangOpts)) 1432 PB.registerPipelineStartEPCallback( 1433 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1434 MPM.addPass(InstrProfiling(*Options, false)); 1435 }); 1436 1437 if (CodeGenOpts.OptimizationLevel == 0) { 1438 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1439 } else if (IsThinLTO) { 1440 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1441 } else if (IsLTO) { 1442 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1443 } else { 1444 MPM = PB.buildPerModuleDefaultPipeline(Level); 1445 } 1446 1447 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1448 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1449 MPM.addPass(ModuleMemProfilerPass()); 1450 } 1451 } 1452 1453 // Add a verifier pass if requested. We don't have to do this if the action 1454 // requires code generation because there will already be a verifier pass in 1455 // the code-generation pipeline. 1456 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1457 MPM.addPass(VerifierPass()); 1458 1459 switch (Action) { 1460 case Backend_EmitBC: 1461 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1462 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1463 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1464 if (!ThinLinkOS) 1465 return; 1466 } 1467 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1468 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1469 CodeGenOpts.EnableSplitLTOUnit); 1470 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1471 : nullptr)); 1472 } else { 1473 // Emit a module summary by default for Regular LTO except for ld64 1474 // targets 1475 bool EmitLTOSummary = 1476 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1477 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1478 llvm::Triple::Apple); 1479 if (EmitLTOSummary) { 1480 if (!TheModule->getModuleFlag("ThinLTO")) 1481 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1482 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1483 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1484 uint32_t(1)); 1485 } 1486 MPM.addPass( 1487 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1488 } 1489 break; 1490 1491 case Backend_EmitLL: 1492 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1493 break; 1494 1495 default: 1496 break; 1497 } 1498 1499 // Now that we have all of the passes ready, run them. 1500 { 1501 PrettyStackTraceString CrashInfo("Optimizer"); 1502 llvm::TimeTraceScope TimeScope("Optimizer"); 1503 MPM.run(*TheModule, MAM); 1504 } 1505 } 1506 1507 void EmitAssemblyHelper::RunCodegenPipeline( 1508 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1509 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1510 // We still use the legacy PM to run the codegen pipeline since the new PM 1511 // does not work with the codegen pipeline. 1512 // FIXME: make the new PM work with the codegen pipeline. 1513 legacy::PassManager CodeGenPasses; 1514 1515 // Append any output we need to the pass manager. 1516 switch (Action) { 1517 case Backend_EmitAssembly: 1518 case Backend_EmitMCNull: 1519 case Backend_EmitObj: 1520 CodeGenPasses.add( 1521 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1522 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1523 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1524 if (!DwoOS) 1525 return; 1526 } 1527 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1528 DwoOS ? &DwoOS->os() : nullptr)) 1529 // FIXME: Should we handle this error differently? 1530 return; 1531 break; 1532 default: 1533 return; 1534 } 1535 1536 { 1537 PrettyStackTraceString CrashInfo("Code generation"); 1538 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1539 CodeGenPasses.run(*TheModule); 1540 } 1541 } 1542 1543 /// A clean version of `EmitAssembly` that uses the new pass manager. 1544 /// 1545 /// Not all features are currently supported in this system, but where 1546 /// necessary it falls back to the legacy pass manager to at least provide 1547 /// basic functionality. 1548 /// 1549 /// This API is planned to have its functionality finished and then to replace 1550 /// `EmitAssembly` at some point in the future when the default switches. 1551 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1552 std::unique_ptr<raw_pwrite_stream> OS) { 1553 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1554 setCommandLineOpts(CodeGenOpts); 1555 1556 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1557 CreateTargetMachine(RequiresCodeGen); 1558 1559 if (RequiresCodeGen && !TM) 1560 return; 1561 if (TM) 1562 TheModule->setDataLayout(TM->createDataLayout()); 1563 1564 // Before executing passes, print the final values of the LLVM options. 1565 cl::PrintOptionValues(); 1566 1567 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1568 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1569 RunCodegenPipeline(Action, OS, DwoOS); 1570 1571 if (ThinLinkOS) 1572 ThinLinkOS->keep(); 1573 if (DwoOS) 1574 DwoOS->keep(); 1575 } 1576 1577 static void runThinLTOBackend( 1578 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1579 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1580 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1581 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1582 std::string ProfileRemapping, BackendAction Action) { 1583 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1584 ModuleToDefinedGVSummaries; 1585 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1586 1587 setCommandLineOpts(CGOpts); 1588 1589 // We can simply import the values mentioned in the combined index, since 1590 // we should only invoke this using the individual indexes written out 1591 // via a WriteIndexesThinBackend. 1592 FunctionImporter::ImportMapTy ImportList; 1593 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1594 return; 1595 1596 auto AddStream = [&](size_t Task) { 1597 return std::make_unique<CachedFileStream>(std::move(OS), 1598 CGOpts.ObjectFilenameForDebug); 1599 }; 1600 lto::Config Conf; 1601 if (CGOpts.SaveTempsFilePrefix != "") { 1602 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1603 /* UseInputModulePath */ false)) { 1604 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1605 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1606 << '\n'; 1607 }); 1608 } 1609 } 1610 Conf.CPU = TOpts.CPU; 1611 Conf.CodeModel = getCodeModel(CGOpts); 1612 Conf.MAttrs = TOpts.Features; 1613 Conf.RelocModel = CGOpts.RelocationModel; 1614 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1615 Conf.OptLevel = CGOpts.OptimizationLevel; 1616 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1617 Conf.SampleProfile = std::move(SampleProfile); 1618 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1619 // For historical reasons, loop interleaving is set to mirror setting for loop 1620 // unrolling. 1621 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1622 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1623 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1624 // Only enable CGProfilePass when using integrated assembler, since 1625 // non-integrated assemblers don't recognize .cgprofile section. 1626 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1627 1628 // Context sensitive profile. 1629 if (CGOpts.hasProfileCSIRInstr()) { 1630 Conf.RunCSIRInstr = true; 1631 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1632 } else if (CGOpts.hasProfileCSIRUse()) { 1633 Conf.RunCSIRInstr = false; 1634 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1635 } 1636 1637 Conf.ProfileRemapping = std::move(ProfileRemapping); 1638 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1639 Conf.DebugPassManager = CGOpts.DebugPassManager; 1640 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1641 Conf.RemarksFilename = CGOpts.OptRecordFile; 1642 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1643 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1644 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1645 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1646 switch (Action) { 1647 case Backend_EmitNothing: 1648 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1649 return false; 1650 }; 1651 break; 1652 case Backend_EmitLL: 1653 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1654 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1655 return false; 1656 }; 1657 break; 1658 case Backend_EmitBC: 1659 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1660 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1661 return false; 1662 }; 1663 break; 1664 default: 1665 Conf.CGFileType = getCodeGenFileType(Action); 1666 break; 1667 } 1668 if (Error E = 1669 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1670 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1671 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1672 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1673 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1674 }); 1675 } 1676 } 1677 1678 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1679 const HeaderSearchOptions &HeaderOpts, 1680 const CodeGenOptions &CGOpts, 1681 const clang::TargetOptions &TOpts, 1682 const LangOptions &LOpts, 1683 StringRef TDesc, Module *M, 1684 BackendAction Action, 1685 std::unique_ptr<raw_pwrite_stream> OS) { 1686 1687 llvm::TimeTraceScope TimeScope("Backend"); 1688 1689 std::unique_ptr<llvm::Module> EmptyModule; 1690 if (!CGOpts.ThinLTOIndexFile.empty()) { 1691 // If we are performing a ThinLTO importing compile, load the function index 1692 // into memory and pass it into runThinLTOBackend, which will run the 1693 // function importer and invoke LTO passes. 1694 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1695 if (Error E = llvm::getModuleSummaryIndexForFile( 1696 CGOpts.ThinLTOIndexFile, 1697 /*IgnoreEmptyThinLTOIndexFile*/ true) 1698 .moveInto(CombinedIndex)) { 1699 logAllUnhandledErrors(std::move(E), errs(), 1700 "Error loading index file '" + 1701 CGOpts.ThinLTOIndexFile + "': "); 1702 return; 1703 } 1704 1705 // A null CombinedIndex means we should skip ThinLTO compilation 1706 // (LLVM will optionally ignore empty index files, returning null instead 1707 // of an error). 1708 if (CombinedIndex) { 1709 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1710 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1711 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1712 CGOpts.ProfileRemappingFile, Action); 1713 return; 1714 } 1715 // Distributed indexing detected that nothing from the module is needed 1716 // for the final linking. So we can skip the compilation. We sill need to 1717 // output an empty object file to make sure that a linker does not fail 1718 // trying to read it. Also for some features, like CFI, we must skip 1719 // the compilation as CombinedIndex does not contain all required 1720 // information. 1721 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1722 EmptyModule->setTargetTriple(M->getTargetTriple()); 1723 M = EmptyModule.get(); 1724 } 1725 } 1726 1727 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1728 1729 if (CGOpts.LegacyPassManager) 1730 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1731 else 1732 AsmHelper.EmitAssembly(Action, std::move(OS)); 1733 1734 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1735 // DataLayout. 1736 if (AsmHelper.TM) { 1737 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1738 if (DLDesc != TDesc) { 1739 unsigned DiagID = Diags.getCustomDiagID( 1740 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1741 "expected target description '%1'"); 1742 Diags.Report(DiagID) << DLDesc << TDesc; 1743 } 1744 } 1745 } 1746 1747 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1748 // __LLVM,__bitcode section. 1749 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1750 llvm::MemoryBufferRef Buf) { 1751 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1752 return; 1753 llvm::embedBitcodeInModule( 1754 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1755 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1756 CGOpts.CmdArgs); 1757 } 1758 1759 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1760 DiagnosticsEngine &Diags) { 1761 if (CGOpts.OffloadObjects.empty()) 1762 return; 1763 1764 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1765 if (OffloadObject.count(',') != 1) 1766 Diags.Report(Diags.getCustomDiagID( 1767 DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'")) 1768 << OffloadObject; 1769 auto FilenameAndSection = OffloadObject.split(','); 1770 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1771 llvm::MemoryBuffer::getFileOrSTDIN(FilenameAndSection.first); 1772 if (std::error_code EC = ObjectOrErr.getError()) { 1773 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1774 "could not open '%0' for embedding"); 1775 Diags.Report(DiagID) << FilenameAndSection.first; 1776 return; 1777 } 1778 1779 SmallString<128> SectionName( 1780 {".llvm.offloading.", FilenameAndSection.second}); 1781 llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName); 1782 } 1783 } 1784