1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Passes/StandardInstrumentations.h" 41 #include "llvm/Support/BuryPointer.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/PrettyStackTrace.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/Coroutines.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 56 #include "llvm/Transforms/InstCombine/InstCombine.h" 57 #include "llvm/Transforms/Instrumentation.h" 58 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 59 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 60 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 61 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 62 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 63 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 64 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 65 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 66 #include "llvm/Transforms/ObjCARC.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Scalar/GVN.h" 69 #include "llvm/Transforms/Utils.h" 70 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 71 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 72 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 73 #include "llvm/Transforms/Utils/SymbolRewriter.h" 74 #include <memory> 75 using namespace clang; 76 using namespace llvm; 77 78 namespace { 79 80 // Default filename used for profile generation. 81 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 82 83 class EmitAssemblyHelper { 84 DiagnosticsEngine &Diags; 85 const HeaderSearchOptions &HSOpts; 86 const CodeGenOptions &CodeGenOpts; 87 const clang::TargetOptions &TargetOpts; 88 const LangOptions &LangOpts; 89 Module *TheModule; 90 91 Timer CodeGenerationTime; 92 93 std::unique_ptr<raw_pwrite_stream> OS; 94 95 TargetIRAnalysis getTargetIRAnalysis() const { 96 if (TM) 97 return TM->getTargetIRAnalysis(); 98 99 return TargetIRAnalysis(); 100 } 101 102 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 103 104 /// Generates the TargetMachine. 105 /// Leaves TM unchanged if it is unable to create the target machine. 106 /// Some of our clang tests specify triples which are not built 107 /// into clang. This is okay because these tests check the generated 108 /// IR, and they require DataLayout which depends on the triple. 109 /// In this case, we allow this method to fail and not report an error. 110 /// When MustCreateTM is used, we print an error if we are unable to load 111 /// the requested target. 112 void CreateTargetMachine(bool MustCreateTM); 113 114 /// Add passes necessary to emit assembly or LLVM IR. 115 /// 116 /// \return True on success. 117 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 118 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 119 120 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 121 std::error_code EC; 122 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 123 llvm::sys::fs::OF_None); 124 if (EC) { 125 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 126 F.reset(); 127 } 128 return F; 129 } 130 131 public: 132 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 133 const HeaderSearchOptions &HeaderSearchOpts, 134 const CodeGenOptions &CGOpts, 135 const clang::TargetOptions &TOpts, 136 const LangOptions &LOpts, Module *M) 137 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 138 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 139 CodeGenerationTime("codegen", "Code Generation Time") {} 140 141 ~EmitAssemblyHelper() { 142 if (CodeGenOpts.DisableFree) 143 BuryPointer(std::move(TM)); 144 } 145 146 std::unique_ptr<TargetMachine> TM; 147 148 void EmitAssembly(BackendAction Action, 149 std::unique_ptr<raw_pwrite_stream> OS); 150 151 void EmitAssemblyWithNewPassManager(BackendAction Action, 152 std::unique_ptr<raw_pwrite_stream> OS); 153 }; 154 155 // We need this wrapper to access LangOpts and CGOpts from extension functions 156 // that we add to the PassManagerBuilder. 157 class PassManagerBuilderWrapper : public PassManagerBuilder { 158 public: 159 PassManagerBuilderWrapper(const Triple &TargetTriple, 160 const CodeGenOptions &CGOpts, 161 const LangOptions &LangOpts) 162 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 163 LangOpts(LangOpts) {} 164 const Triple &getTargetTriple() const { return TargetTriple; } 165 const CodeGenOptions &getCGOpts() const { return CGOpts; } 166 const LangOptions &getLangOpts() const { return LangOpts; } 167 168 private: 169 const Triple &TargetTriple; 170 const CodeGenOptions &CGOpts; 171 const LangOptions &LangOpts; 172 }; 173 } 174 175 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 176 if (Builder.OptLevel > 0) 177 PM.add(createObjCARCAPElimPass()); 178 } 179 180 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 181 if (Builder.OptLevel > 0) 182 PM.add(createObjCARCExpandPass()); 183 } 184 185 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCOptPass()); 188 } 189 190 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddDiscriminatorsPass()); 193 } 194 195 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 PM.add(createBoundsCheckingLegacyPass()); 198 } 199 200 static SanitizerCoverageOptions 201 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 209 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 210 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 211 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 212 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 213 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 214 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 217 return Opts; 218 } 219 220 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 221 legacy::PassManagerBase &PM) { 222 const PassManagerBuilderWrapper &BuilderWrapper = 223 static_cast<const PassManagerBuilderWrapper &>(Builder); 224 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 225 auto Opts = getSancovOptsFromCGOpts(CGOpts); 226 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 227 } 228 229 // Check if ASan should use GC-friendly instrumentation for globals. 230 // First of all, there is no point if -fdata-sections is off (expect for MachO, 231 // where this is not a factor). Also, on ELF this feature requires an assembler 232 // extension that only works with -integrated-as at the moment. 233 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 234 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 235 return false; 236 switch (T.getObjectFormat()) { 237 case Triple::MachO: 238 case Triple::COFF: 239 return true; 240 case Triple::ELF: 241 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 242 case Triple::XCOFF: 243 llvm::report_fatal_error("ASan not implemented for XCOFF."); 244 case Triple::Wasm: 245 case Triple::UnknownObjectFormat: 246 break; 247 } 248 return false; 249 } 250 251 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 const PassManagerBuilderWrapper &BuilderWrapper = 254 static_cast<const PassManagerBuilderWrapper&>(Builder); 255 const Triple &T = BuilderWrapper.getTargetTriple(); 256 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 257 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 258 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 259 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 260 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 261 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 262 UseAfterScope)); 263 PM.add(createModuleAddressSanitizerLegacyPassPass( 264 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 265 } 266 267 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createAddressSanitizerFunctionPass( 270 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 271 PM.add(createModuleAddressSanitizerLegacyPassPass( 272 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 273 /*UseOdrIndicator*/ false)); 274 } 275 276 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper &>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 282 PM.add( 283 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 284 } 285 286 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createHWAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true)); 290 } 291 292 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM, 294 bool CompileKernel) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper&>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 299 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 300 PM.add(createMemorySanitizerLegacyPassPass( 301 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 302 303 // MemorySanitizer inserts complex instrumentation that mostly follows 304 // the logic of the original code, but operates on "shadow" values. 305 // It can benefit from re-running some general purpose optimization passes. 306 if (Builder.OptLevel > 0) { 307 PM.add(createEarlyCSEPass()); 308 PM.add(createReassociatePass()); 309 PM.add(createLICMPass()); 310 PM.add(createGVNPass()); 311 PM.add(createInstructionCombiningPass()); 312 PM.add(createDeadStoreEliminationPass()); 313 } 314 } 315 316 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 317 legacy::PassManagerBase &PM) { 318 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 319 } 320 321 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 324 } 325 326 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 PM.add(createThreadSanitizerLegacyPassPass()); 329 } 330 331 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper&>(Builder); 335 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 336 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 337 } 338 339 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 340 const CodeGenOptions &CodeGenOpts) { 341 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 342 if (!CodeGenOpts.SimplifyLibCalls) 343 TLII->disableAllFunctions(); 344 else { 345 // Disable individual libc/libm calls in TargetLibraryInfo. 346 LibFunc F; 347 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 348 if (TLII->getLibFunc(FuncName, F)) 349 TLII->setUnavailable(F); 350 } 351 352 switch (CodeGenOpts.getVecLib()) { 353 case CodeGenOptions::Accelerate: 354 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 355 break; 356 case CodeGenOptions::MASSV: 357 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 358 break; 359 case CodeGenOptions::SVML: 360 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 361 break; 362 default: 363 break; 364 } 365 return TLII; 366 } 367 368 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 369 legacy::PassManager *MPM) { 370 llvm::SymbolRewriter::RewriteDescriptorList DL; 371 372 llvm::SymbolRewriter::RewriteMapParser MapParser; 373 for (const auto &MapFile : Opts.RewriteMapFiles) 374 MapParser.parse(MapFile, &DL); 375 376 MPM->add(createRewriteSymbolsPass(DL)); 377 } 378 379 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 380 switch (CodeGenOpts.OptimizationLevel) { 381 default: 382 llvm_unreachable("Invalid optimization level!"); 383 case 0: 384 return CodeGenOpt::None; 385 case 1: 386 return CodeGenOpt::Less; 387 case 2: 388 return CodeGenOpt::Default; // O2/Os/Oz 389 case 3: 390 return CodeGenOpt::Aggressive; 391 } 392 } 393 394 static Optional<llvm::CodeModel::Model> 395 getCodeModel(const CodeGenOptions &CodeGenOpts) { 396 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 397 .Case("tiny", llvm::CodeModel::Tiny) 398 .Case("small", llvm::CodeModel::Small) 399 .Case("kernel", llvm::CodeModel::Kernel) 400 .Case("medium", llvm::CodeModel::Medium) 401 .Case("large", llvm::CodeModel::Large) 402 .Case("default", ~1u) 403 .Default(~0u); 404 assert(CodeModel != ~0u && "invalid code model!"); 405 if (CodeModel == ~1u) 406 return None; 407 return static_cast<llvm::CodeModel::Model>(CodeModel); 408 } 409 410 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 411 if (Action == Backend_EmitObj) 412 return TargetMachine::CGFT_ObjectFile; 413 else if (Action == Backend_EmitMCNull) 414 return TargetMachine::CGFT_Null; 415 else { 416 assert(Action == Backend_EmitAssembly && "Invalid action!"); 417 return TargetMachine::CGFT_AssemblyFile; 418 } 419 } 420 421 static void initTargetOptions(llvm::TargetOptions &Options, 422 const CodeGenOptions &CodeGenOpts, 423 const clang::TargetOptions &TargetOpts, 424 const LangOptions &LangOpts, 425 const HeaderSearchOptions &HSOpts) { 426 Options.ThreadModel = 427 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 428 .Case("posix", llvm::ThreadModel::POSIX) 429 .Case("single", llvm::ThreadModel::Single); 430 431 // Set float ABI type. 432 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 433 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 434 "Invalid Floating Point ABI!"); 435 Options.FloatABIType = 436 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 437 .Case("soft", llvm::FloatABI::Soft) 438 .Case("softfp", llvm::FloatABI::Soft) 439 .Case("hard", llvm::FloatABI::Hard) 440 .Default(llvm::FloatABI::Default); 441 442 // Set FP fusion mode. 443 switch (LangOpts.getDefaultFPContractMode()) { 444 case LangOptions::FPC_Off: 445 // Preserve any contraction performed by the front-end. (Strict performs 446 // splitting of the muladd intrinsic in the backend.) 447 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 448 break; 449 case LangOptions::FPC_On: 450 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 451 break; 452 case LangOptions::FPC_Fast: 453 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 454 break; 455 } 456 457 Options.UseInitArray = CodeGenOpts.UseInitArray; 458 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 459 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 460 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 461 462 // Set EABI version. 463 Options.EABIVersion = TargetOpts.EABIVersion; 464 465 if (LangOpts.SjLjExceptions) 466 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 467 if (LangOpts.SEHExceptions) 468 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 469 if (LangOpts.DWARFExceptions) 470 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 471 if (LangOpts.WasmExceptions) 472 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 473 474 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 475 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 476 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 477 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 478 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 479 Options.FunctionSections = CodeGenOpts.FunctionSections; 480 Options.DataSections = CodeGenOpts.DataSections; 481 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 482 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 483 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 484 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 485 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 486 Options.EmitAddrsig = CodeGenOpts.Addrsig; 487 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 488 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 489 490 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 491 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 492 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 493 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 494 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 495 Options.MCOptions.MCIncrementalLinkerCompatible = 496 CodeGenOpts.IncrementalLinkerCompatible; 497 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 498 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 499 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 500 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 501 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 502 Options.MCOptions.ABIName = TargetOpts.ABI; 503 for (const auto &Entry : HSOpts.UserEntries) 504 if (!Entry.IsFramework && 505 (Entry.Group == frontend::IncludeDirGroup::Quoted || 506 Entry.Group == frontend::IncludeDirGroup::Angled || 507 Entry.Group == frontend::IncludeDirGroup::System)) 508 Options.MCOptions.IASSearchPaths.push_back( 509 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 510 } 511 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 512 if (CodeGenOpts.DisableGCov) 513 return None; 514 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 515 return None; 516 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 517 // LLVM's -default-gcov-version flag is set to something invalid. 518 GCOVOptions Options; 519 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 520 Options.EmitData = CodeGenOpts.EmitGcovArcs; 521 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 522 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 523 Options.NoRedZone = CodeGenOpts.DisableRedZone; 524 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 525 Options.Filter = CodeGenOpts.ProfileFilterFiles; 526 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 527 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 528 return Options; 529 } 530 531 static Optional<InstrProfOptions> 532 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 533 const LangOptions &LangOpts) { 534 if (!CodeGenOpts.hasProfileClangInstr()) 535 return None; 536 InstrProfOptions Options; 537 Options.NoRedZone = CodeGenOpts.DisableRedZone; 538 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 539 540 // TODO: Surface the option to emit atomic profile counter increments at 541 // the driver level. 542 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 543 return Options; 544 } 545 546 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 547 legacy::FunctionPassManager &FPM) { 548 // Handle disabling of all LLVM passes, where we want to preserve the 549 // internal module before any optimization. 550 if (CodeGenOpts.DisableLLVMPasses) 551 return; 552 553 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 554 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 555 // are inserted before PMBuilder ones - they'd get the default-constructed 556 // TLI with an unknown target otherwise. 557 Triple TargetTriple(TheModule->getTargetTriple()); 558 std::unique_ptr<TargetLibraryInfoImpl> TLII( 559 createTLII(TargetTriple, CodeGenOpts)); 560 561 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 562 563 // At O0 and O1 we only run the always inliner which is more efficient. At 564 // higher optimization levels we run the normal inliner. 565 if (CodeGenOpts.OptimizationLevel <= 1) { 566 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 567 !CodeGenOpts.DisableLifetimeMarkers); 568 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 569 } else { 570 // We do not want to inline hot callsites for SamplePGO module-summary build 571 // because profile annotation will happen again in ThinLTO backend, and we 572 // want the IR of the hot path to match the profile. 573 PMBuilder.Inliner = createFunctionInliningPass( 574 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 575 (!CodeGenOpts.SampleProfileFile.empty() && 576 CodeGenOpts.PrepareForThinLTO)); 577 } 578 579 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 580 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 581 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 582 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 583 584 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 585 // Loop interleaving in the loop vectorizer has historically been set to be 586 // enabled when loop unrolling is enabled. 587 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 588 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 589 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 590 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 591 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 592 593 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 594 595 if (TM) 596 TM->adjustPassManager(PMBuilder); 597 598 if (CodeGenOpts.DebugInfoForProfiling || 599 !CodeGenOpts.SampleProfileFile.empty()) 600 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 601 addAddDiscriminatorsPass); 602 603 // In ObjC ARC mode, add the main ARC optimization passes. 604 if (LangOpts.ObjCAutoRefCount) { 605 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 606 addObjCARCExpandPass); 607 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 608 addObjCARCAPElimPass); 609 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 610 addObjCARCOptPass); 611 } 612 613 if (LangOpts.Coroutines) 614 addCoroutinePassesToExtensionPoints(PMBuilder); 615 616 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 617 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 618 addBoundsCheckingPass); 619 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 620 addBoundsCheckingPass); 621 } 622 623 if (CodeGenOpts.SanitizeCoverageType || 624 CodeGenOpts.SanitizeCoverageIndirectCalls || 625 CodeGenOpts.SanitizeCoverageTraceCmp) { 626 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 627 addSanitizerCoveragePass); 628 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 629 addSanitizerCoveragePass); 630 } 631 632 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 633 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 634 addAddressSanitizerPasses); 635 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 636 addAddressSanitizerPasses); 637 } 638 639 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 640 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 641 addKernelAddressSanitizerPasses); 642 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 643 addKernelAddressSanitizerPasses); 644 } 645 646 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 647 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 648 addHWAddressSanitizerPasses); 649 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 650 addHWAddressSanitizerPasses); 651 } 652 653 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 654 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 655 addKernelHWAddressSanitizerPasses); 656 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 657 addKernelHWAddressSanitizerPasses); 658 } 659 660 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 661 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 662 addMemorySanitizerPass); 663 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 664 addMemorySanitizerPass); 665 } 666 667 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 668 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 669 addKernelMemorySanitizerPass); 670 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 671 addKernelMemorySanitizerPass); 672 } 673 674 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 675 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 676 addThreadSanitizerPass); 677 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 678 addThreadSanitizerPass); 679 } 680 681 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 682 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 683 addDataFlowSanitizerPass); 684 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 685 addDataFlowSanitizerPass); 686 } 687 688 // Set up the per-function pass manager. 689 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 690 if (CodeGenOpts.VerifyModule) 691 FPM.add(createVerifierPass()); 692 693 // Set up the per-module pass manager. 694 if (!CodeGenOpts.RewriteMapFiles.empty()) 695 addSymbolRewriterPass(CodeGenOpts, &MPM); 696 697 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 698 MPM.add(createGCOVProfilerPass(*Options)); 699 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 700 MPM.add(createStripSymbolsPass(true)); 701 } 702 703 if (Optional<InstrProfOptions> Options = 704 getInstrProfOptions(CodeGenOpts, LangOpts)) 705 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 706 707 bool hasIRInstr = false; 708 if (CodeGenOpts.hasProfileIRInstr()) { 709 PMBuilder.EnablePGOInstrGen = true; 710 hasIRInstr = true; 711 } 712 if (CodeGenOpts.hasProfileCSIRInstr()) { 713 assert(!CodeGenOpts.hasProfileCSIRUse() && 714 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 715 "same time"); 716 assert(!hasIRInstr && 717 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 718 "same time"); 719 PMBuilder.EnablePGOCSInstrGen = true; 720 hasIRInstr = true; 721 } 722 if (hasIRInstr) { 723 if (!CodeGenOpts.InstrProfileOutput.empty()) 724 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 725 else 726 PMBuilder.PGOInstrGen = DefaultProfileGenName; 727 } 728 if (CodeGenOpts.hasProfileIRUse()) { 729 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 730 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 731 } 732 733 if (!CodeGenOpts.SampleProfileFile.empty()) 734 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 735 736 PMBuilder.populateFunctionPassManager(FPM); 737 PMBuilder.populateModulePassManager(MPM); 738 } 739 740 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 741 SmallVector<const char *, 16> BackendArgs; 742 BackendArgs.push_back("clang"); // Fake program name. 743 if (!CodeGenOpts.DebugPass.empty()) { 744 BackendArgs.push_back("-debug-pass"); 745 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 746 } 747 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 748 BackendArgs.push_back("-limit-float-precision"); 749 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 750 } 751 BackendArgs.push_back(nullptr); 752 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 753 BackendArgs.data()); 754 } 755 756 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 757 // Create the TargetMachine for generating code. 758 std::string Error; 759 std::string Triple = TheModule->getTargetTriple(); 760 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 761 if (!TheTarget) { 762 if (MustCreateTM) 763 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 764 return; 765 } 766 767 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 768 std::string FeaturesStr = 769 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 770 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 771 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 772 773 llvm::TargetOptions Options; 774 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 775 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 776 Options, RM, CM, OptLevel)); 777 } 778 779 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 780 BackendAction Action, 781 raw_pwrite_stream &OS, 782 raw_pwrite_stream *DwoOS) { 783 // Add LibraryInfo. 784 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 785 std::unique_ptr<TargetLibraryInfoImpl> TLII( 786 createTLII(TargetTriple, CodeGenOpts)); 787 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 788 789 // Normal mode, emit a .s or .o file by running the code generator. Note, 790 // this also adds codegenerator level optimization passes. 791 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 792 793 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 794 // "codegen" passes so that it isn't run multiple times when there is 795 // inlining happening. 796 if (CodeGenOpts.OptimizationLevel > 0) 797 CodeGenPasses.add(createObjCARCContractPass()); 798 799 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 800 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 801 Diags.Report(diag::err_fe_unable_to_interface_with_target); 802 return false; 803 } 804 805 return true; 806 } 807 808 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 809 std::unique_ptr<raw_pwrite_stream> OS) { 810 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 811 812 setCommandLineOpts(CodeGenOpts); 813 814 bool UsesCodeGen = (Action != Backend_EmitNothing && 815 Action != Backend_EmitBC && 816 Action != Backend_EmitLL); 817 CreateTargetMachine(UsesCodeGen); 818 819 if (UsesCodeGen && !TM) 820 return; 821 if (TM) 822 TheModule->setDataLayout(TM->createDataLayout()); 823 824 legacy::PassManager PerModulePasses; 825 PerModulePasses.add( 826 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 827 828 legacy::FunctionPassManager PerFunctionPasses(TheModule); 829 PerFunctionPasses.add( 830 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 831 832 CreatePasses(PerModulePasses, PerFunctionPasses); 833 834 legacy::PassManager CodeGenPasses; 835 CodeGenPasses.add( 836 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 837 838 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 839 840 switch (Action) { 841 case Backend_EmitNothing: 842 break; 843 844 case Backend_EmitBC: 845 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 846 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 847 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 848 if (!ThinLinkOS) 849 return; 850 } 851 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 852 CodeGenOpts.EnableSplitLTOUnit); 853 PerModulePasses.add(createWriteThinLTOBitcodePass( 854 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 855 } else { 856 // Emit a module summary by default for Regular LTO except for ld64 857 // targets 858 bool EmitLTOSummary = 859 (CodeGenOpts.PrepareForLTO && 860 !CodeGenOpts.DisableLLVMPasses && 861 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 862 llvm::Triple::Apple); 863 if (EmitLTOSummary) { 864 if (!TheModule->getModuleFlag("ThinLTO")) 865 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 866 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 867 uint32_t(1)); 868 } 869 870 PerModulePasses.add(createBitcodeWriterPass( 871 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 872 } 873 break; 874 875 case Backend_EmitLL: 876 PerModulePasses.add( 877 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 878 break; 879 880 default: 881 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 882 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 883 if (!DwoOS) 884 return; 885 } 886 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 887 DwoOS ? &DwoOS->os() : nullptr)) 888 return; 889 } 890 891 // Before executing passes, print the final values of the LLVM options. 892 cl::PrintOptionValues(); 893 894 // Run passes. For now we do all passes at once, but eventually we 895 // would like to have the option of streaming code generation. 896 897 { 898 PrettyStackTraceString CrashInfo("Per-function optimization"); 899 llvm::TimeTraceScope TimeScope("PerFunctionPasses", StringRef("")); 900 901 PerFunctionPasses.doInitialization(); 902 for (Function &F : *TheModule) 903 if (!F.isDeclaration()) 904 PerFunctionPasses.run(F); 905 PerFunctionPasses.doFinalization(); 906 } 907 908 { 909 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 910 llvm::TimeTraceScope TimeScope("PerModulePasses", StringRef("")); 911 PerModulePasses.run(*TheModule); 912 } 913 914 { 915 PrettyStackTraceString CrashInfo("Code generation"); 916 llvm::TimeTraceScope TimeScope("CodeGenPasses", StringRef("")); 917 CodeGenPasses.run(*TheModule); 918 } 919 920 if (ThinLinkOS) 921 ThinLinkOS->keep(); 922 if (DwoOS) 923 DwoOS->keep(); 924 } 925 926 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 927 switch (Opts.OptimizationLevel) { 928 default: 929 llvm_unreachable("Invalid optimization level!"); 930 931 case 1: 932 return PassBuilder::O1; 933 934 case 2: 935 switch (Opts.OptimizeSize) { 936 default: 937 llvm_unreachable("Invalid optimization level for size!"); 938 939 case 0: 940 return PassBuilder::O2; 941 942 case 1: 943 return PassBuilder::Os; 944 945 case 2: 946 return PassBuilder::Oz; 947 } 948 949 case 3: 950 return PassBuilder::O3; 951 } 952 } 953 954 static void addSanitizersAtO0(ModulePassManager &MPM, 955 const Triple &TargetTriple, 956 const LangOptions &LangOpts, 957 const CodeGenOptions &CodeGenOpts) { 958 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 959 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 960 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 961 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 962 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 963 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 964 MPM.addPass( 965 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 966 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 967 }; 968 969 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 970 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 971 } 972 973 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 974 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 975 } 976 977 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 978 MPM.addPass(MemorySanitizerPass({})); 979 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 980 } 981 982 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 983 MPM.addPass(createModuleToFunctionPassAdaptor( 984 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 985 } 986 987 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 988 MPM.addPass(ThreadSanitizerPass()); 989 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 990 } 991 } 992 993 /// A clean version of `EmitAssembly` that uses the new pass manager. 994 /// 995 /// Not all features are currently supported in this system, but where 996 /// necessary it falls back to the legacy pass manager to at least provide 997 /// basic functionality. 998 /// 999 /// This API is planned to have its functionality finished and then to replace 1000 /// `EmitAssembly` at some point in the future when the default switches. 1001 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1002 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1003 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1004 setCommandLineOpts(CodeGenOpts); 1005 1006 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1007 Action != Backend_EmitBC && 1008 Action != Backend_EmitLL); 1009 CreateTargetMachine(RequiresCodeGen); 1010 1011 if (RequiresCodeGen && !TM) 1012 return; 1013 if (TM) 1014 TheModule->setDataLayout(TM->createDataLayout()); 1015 1016 Optional<PGOOptions> PGOOpt; 1017 1018 if (CodeGenOpts.hasProfileIRInstr()) 1019 // -fprofile-generate. 1020 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1021 ? DefaultProfileGenName 1022 : CodeGenOpts.InstrProfileOutput, 1023 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1024 CodeGenOpts.DebugInfoForProfiling); 1025 else if (CodeGenOpts.hasProfileIRUse()) { 1026 // -fprofile-use. 1027 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1028 : PGOOptions::NoCSAction; 1029 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1030 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1031 CSAction, CodeGenOpts.DebugInfoForProfiling); 1032 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1033 // -fprofile-sample-use 1034 PGOOpt = 1035 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1036 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1037 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1038 else if (CodeGenOpts.DebugInfoForProfiling) 1039 // -fdebug-info-for-profiling 1040 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1041 PGOOptions::NoCSAction, true); 1042 1043 // Check to see if we want to generate a CS profile. 1044 if (CodeGenOpts.hasProfileCSIRInstr()) { 1045 assert(!CodeGenOpts.hasProfileCSIRUse() && 1046 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1047 "the same time"); 1048 if (PGOOpt.hasValue()) { 1049 assert(PGOOpt->Action != PGOOptions::IRInstr && 1050 PGOOpt->Action != PGOOptions::SampleUse && 1051 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1052 " pass"); 1053 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1054 ? DefaultProfileGenName 1055 : CodeGenOpts.InstrProfileOutput; 1056 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1057 } else 1058 PGOOpt = PGOOptions("", 1059 CodeGenOpts.InstrProfileOutput.empty() 1060 ? DefaultProfileGenName 1061 : CodeGenOpts.InstrProfileOutput, 1062 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1063 CodeGenOpts.DebugInfoForProfiling); 1064 } 1065 1066 PipelineTuningOptions PTO; 1067 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1068 // For historical reasons, loop interleaving is set to mirror setting for loop 1069 // unrolling. 1070 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1071 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1072 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1073 1074 PassInstrumentationCallbacks PIC; 1075 StandardInstrumentations SI; 1076 SI.registerCallbacks(PIC); 1077 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1078 1079 // Attempt to load pass plugins and register their callbacks with PB. 1080 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1081 auto PassPlugin = PassPlugin::Load(PluginFN); 1082 if (PassPlugin) { 1083 PassPlugin->registerPassBuilderCallbacks(PB); 1084 } else { 1085 Diags.Report(diag::err_fe_unable_to_load_plugin) 1086 << PluginFN << toString(PassPlugin.takeError()); 1087 } 1088 } 1089 1090 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1091 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1092 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1093 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1094 1095 // Register the AA manager first so that our version is the one used. 1096 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1097 1098 // Register the target library analysis directly and give it a customized 1099 // preset TLI. 1100 Triple TargetTriple(TheModule->getTargetTriple()); 1101 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1102 createTLII(TargetTriple, CodeGenOpts)); 1103 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1104 1105 // Register all the basic analyses with the managers. 1106 PB.registerModuleAnalyses(MAM); 1107 PB.registerCGSCCAnalyses(CGAM); 1108 PB.registerFunctionAnalyses(FAM); 1109 PB.registerLoopAnalyses(LAM); 1110 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1111 1112 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1113 1114 if (!CodeGenOpts.DisableLLVMPasses) { 1115 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1116 bool IsLTO = CodeGenOpts.PrepareForLTO; 1117 1118 if (CodeGenOpts.OptimizationLevel == 0) { 1119 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1120 MPM.addPass(GCOVProfilerPass(*Options)); 1121 if (Optional<InstrProfOptions> Options = 1122 getInstrProfOptions(CodeGenOpts, LangOpts)) 1123 MPM.addPass(InstrProfiling(*Options, false)); 1124 1125 // Build a minimal pipeline based on the semantics required by Clang, 1126 // which is just that always inlining occurs. Further, disable generating 1127 // lifetime intrinsics to avoid enabling further optimizations during 1128 // code generation. 1129 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1130 1131 // At -O0, we can still do PGO. Add all the requested passes for 1132 // instrumentation PGO, if requested. 1133 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1134 PGOOpt->Action == PGOOptions::IRUse)) 1135 PB.addPGOInstrPassesForO0( 1136 MPM, CodeGenOpts.DebugPassManager, 1137 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1138 /* IsCS */ false, PGOOpt->ProfileFile, 1139 PGOOpt->ProfileRemappingFile); 1140 1141 // At -O0 we directly run necessary sanitizer passes. 1142 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1143 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1144 1145 // Lastly, add semantically necessary passes for LTO. 1146 if (IsLTO || IsThinLTO) { 1147 MPM.addPass(CanonicalizeAliasesPass()); 1148 MPM.addPass(NameAnonGlobalPass()); 1149 } 1150 } else { 1151 // Map our optimization levels into one of the distinct levels used to 1152 // configure the pipeline. 1153 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1154 1155 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1156 MPM.addPass(createModuleToFunctionPassAdaptor( 1157 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1158 }); 1159 1160 // Register callbacks to schedule sanitizer passes at the appropriate part of 1161 // the pipeline. 1162 // FIXME: either handle asan/the remaining sanitizers or error out 1163 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1164 PB.registerScalarOptimizerLateEPCallback( 1165 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1166 FPM.addPass(BoundsCheckingPass()); 1167 }); 1168 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1169 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1170 MPM.addPass(MemorySanitizerPass({})); 1171 }); 1172 PB.registerOptimizerLastEPCallback( 1173 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1174 FPM.addPass(MemorySanitizerPass({})); 1175 }); 1176 } 1177 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1178 PB.registerPipelineStartEPCallback( 1179 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1180 PB.registerOptimizerLastEPCallback( 1181 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1182 FPM.addPass(ThreadSanitizerPass()); 1183 }); 1184 } 1185 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1186 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1187 MPM.addPass( 1188 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1189 }); 1190 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1191 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1192 PB.registerOptimizerLastEPCallback( 1193 [Recover, UseAfterScope](FunctionPassManager &FPM, 1194 PassBuilder::OptimizationLevel Level) { 1195 FPM.addPass(AddressSanitizerPass( 1196 /*CompileKernel=*/false, Recover, UseAfterScope)); 1197 }); 1198 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1199 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1200 PB.registerPipelineStartEPCallback( 1201 [Recover, ModuleUseAfterScope, 1202 UseOdrIndicator](ModulePassManager &MPM) { 1203 MPM.addPass(ModuleAddressSanitizerPass( 1204 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1205 UseOdrIndicator)); 1206 }); 1207 } 1208 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1209 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1210 MPM.addPass(GCOVProfilerPass(*Options)); 1211 }); 1212 if (Optional<InstrProfOptions> Options = 1213 getInstrProfOptions(CodeGenOpts, LangOpts)) 1214 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1215 MPM.addPass(InstrProfiling(*Options, false)); 1216 }); 1217 1218 if (IsThinLTO) { 1219 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1220 Level, CodeGenOpts.DebugPassManager); 1221 MPM.addPass(CanonicalizeAliasesPass()); 1222 MPM.addPass(NameAnonGlobalPass()); 1223 } else if (IsLTO) { 1224 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1225 CodeGenOpts.DebugPassManager); 1226 MPM.addPass(CanonicalizeAliasesPass()); 1227 MPM.addPass(NameAnonGlobalPass()); 1228 } else { 1229 MPM = PB.buildPerModuleDefaultPipeline(Level, 1230 CodeGenOpts.DebugPassManager); 1231 } 1232 } 1233 1234 if (CodeGenOpts.SanitizeCoverageType || 1235 CodeGenOpts.SanitizeCoverageIndirectCalls || 1236 CodeGenOpts.SanitizeCoverageTraceCmp) { 1237 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1238 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1239 } 1240 1241 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1242 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1243 MPM.addPass(HWAddressSanitizerPass( 1244 /*CompileKernel=*/false, Recover)); 1245 } 1246 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1247 MPM.addPass(HWAddressSanitizerPass( 1248 /*CompileKernel=*/true, /*Recover=*/true)); 1249 } 1250 1251 if (CodeGenOpts.OptimizationLevel == 0) { 1252 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1253 } 1254 } 1255 1256 // FIXME: We still use the legacy pass manager to do code generation. We 1257 // create that pass manager here and use it as needed below. 1258 legacy::PassManager CodeGenPasses; 1259 bool NeedCodeGen = false; 1260 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1261 1262 // Append any output we need to the pass manager. 1263 switch (Action) { 1264 case Backend_EmitNothing: 1265 break; 1266 1267 case Backend_EmitBC: 1268 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1269 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1270 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1271 if (!ThinLinkOS) 1272 return; 1273 } 1274 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1275 CodeGenOpts.EnableSplitLTOUnit); 1276 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1277 : nullptr)); 1278 } else { 1279 // Emit a module summary by default for Regular LTO except for ld64 1280 // targets 1281 bool EmitLTOSummary = 1282 (CodeGenOpts.PrepareForLTO && 1283 !CodeGenOpts.DisableLLVMPasses && 1284 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1285 llvm::Triple::Apple); 1286 if (EmitLTOSummary) { 1287 if (!TheModule->getModuleFlag("ThinLTO")) 1288 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1289 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1290 uint32_t(1)); 1291 } 1292 MPM.addPass( 1293 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1294 } 1295 break; 1296 1297 case Backend_EmitLL: 1298 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1299 break; 1300 1301 case Backend_EmitAssembly: 1302 case Backend_EmitMCNull: 1303 case Backend_EmitObj: 1304 NeedCodeGen = true; 1305 CodeGenPasses.add( 1306 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1307 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1308 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1309 if (!DwoOS) 1310 return; 1311 } 1312 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1313 DwoOS ? &DwoOS->os() : nullptr)) 1314 // FIXME: Should we handle this error differently? 1315 return; 1316 break; 1317 } 1318 1319 // Before executing passes, print the final values of the LLVM options. 1320 cl::PrintOptionValues(); 1321 1322 // Now that we have all of the passes ready, run them. 1323 { 1324 PrettyStackTraceString CrashInfo("Optimizer"); 1325 MPM.run(*TheModule, MAM); 1326 } 1327 1328 // Now if needed, run the legacy PM for codegen. 1329 if (NeedCodeGen) { 1330 PrettyStackTraceString CrashInfo("Code generation"); 1331 CodeGenPasses.run(*TheModule); 1332 } 1333 1334 if (ThinLinkOS) 1335 ThinLinkOS->keep(); 1336 if (DwoOS) 1337 DwoOS->keep(); 1338 } 1339 1340 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1341 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1342 if (!BMsOrErr) 1343 return BMsOrErr.takeError(); 1344 1345 // The bitcode file may contain multiple modules, we want the one that is 1346 // marked as being the ThinLTO module. 1347 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1348 return *Bm; 1349 1350 return make_error<StringError>("Could not find module summary", 1351 inconvertibleErrorCode()); 1352 } 1353 1354 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1355 for (BitcodeModule &BM : BMs) { 1356 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1357 if (LTOInfo && LTOInfo->IsThinLTO) 1358 return &BM; 1359 } 1360 return nullptr; 1361 } 1362 1363 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1364 const HeaderSearchOptions &HeaderOpts, 1365 const CodeGenOptions &CGOpts, 1366 const clang::TargetOptions &TOpts, 1367 const LangOptions &LOpts, 1368 std::unique_ptr<raw_pwrite_stream> OS, 1369 std::string SampleProfile, 1370 std::string ProfileRemapping, 1371 BackendAction Action) { 1372 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1373 ModuleToDefinedGVSummaries; 1374 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1375 1376 setCommandLineOpts(CGOpts); 1377 1378 // We can simply import the values mentioned in the combined index, since 1379 // we should only invoke this using the individual indexes written out 1380 // via a WriteIndexesThinBackend. 1381 FunctionImporter::ImportMapTy ImportList; 1382 for (auto &GlobalList : *CombinedIndex) { 1383 // Ignore entries for undefined references. 1384 if (GlobalList.second.SummaryList.empty()) 1385 continue; 1386 1387 auto GUID = GlobalList.first; 1388 for (auto &Summary : GlobalList.second.SummaryList) { 1389 // Skip the summaries for the importing module. These are included to 1390 // e.g. record required linkage changes. 1391 if (Summary->modulePath() == M->getModuleIdentifier()) 1392 continue; 1393 // Add an entry to provoke importing by thinBackend. 1394 ImportList[Summary->modulePath()].insert(GUID); 1395 } 1396 } 1397 1398 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1399 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1400 1401 for (auto &I : ImportList) { 1402 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1403 llvm::MemoryBuffer::getFile(I.first()); 1404 if (!MBOrErr) { 1405 errs() << "Error loading imported file '" << I.first() 1406 << "': " << MBOrErr.getError().message() << "\n"; 1407 return; 1408 } 1409 1410 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1411 if (!BMOrErr) { 1412 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1413 errs() << "Error loading imported file '" << I.first() 1414 << "': " << EIB.message() << '\n'; 1415 }); 1416 return; 1417 } 1418 ModuleMap.insert({I.first(), *BMOrErr}); 1419 1420 OwnedImports.push_back(std::move(*MBOrErr)); 1421 } 1422 auto AddStream = [&](size_t Task) { 1423 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1424 }; 1425 lto::Config Conf; 1426 if (CGOpts.SaveTempsFilePrefix != "") { 1427 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1428 /* UseInputModulePath */ false)) { 1429 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1430 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1431 << '\n'; 1432 }); 1433 } 1434 } 1435 Conf.CPU = TOpts.CPU; 1436 Conf.CodeModel = getCodeModel(CGOpts); 1437 Conf.MAttrs = TOpts.Features; 1438 Conf.RelocModel = CGOpts.RelocationModel; 1439 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1440 Conf.OptLevel = CGOpts.OptimizationLevel; 1441 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1442 Conf.SampleProfile = std::move(SampleProfile); 1443 1444 // Context sensitive profile. 1445 if (CGOpts.hasProfileCSIRInstr()) { 1446 Conf.RunCSIRInstr = true; 1447 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1448 } else if (CGOpts.hasProfileCSIRUse()) { 1449 Conf.RunCSIRInstr = false; 1450 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1451 } 1452 1453 Conf.ProfileRemapping = std::move(ProfileRemapping); 1454 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1455 Conf.DebugPassManager = CGOpts.DebugPassManager; 1456 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1457 Conf.RemarksFilename = CGOpts.OptRecordFile; 1458 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1459 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1460 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1461 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1462 switch (Action) { 1463 case Backend_EmitNothing: 1464 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1465 return false; 1466 }; 1467 break; 1468 case Backend_EmitLL: 1469 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1470 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1471 return false; 1472 }; 1473 break; 1474 case Backend_EmitBC: 1475 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1476 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1477 return false; 1478 }; 1479 break; 1480 default: 1481 Conf.CGFileType = getCodeGenFileType(Action); 1482 break; 1483 } 1484 if (Error E = thinBackend( 1485 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1486 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1487 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1488 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1489 }); 1490 } 1491 } 1492 1493 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1494 const HeaderSearchOptions &HeaderOpts, 1495 const CodeGenOptions &CGOpts, 1496 const clang::TargetOptions &TOpts, 1497 const LangOptions &LOpts, 1498 const llvm::DataLayout &TDesc, Module *M, 1499 BackendAction Action, 1500 std::unique_ptr<raw_pwrite_stream> OS) { 1501 1502 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1503 1504 std::unique_ptr<llvm::Module> EmptyModule; 1505 if (!CGOpts.ThinLTOIndexFile.empty()) { 1506 // If we are performing a ThinLTO importing compile, load the function index 1507 // into memory and pass it into runThinLTOBackend, which will run the 1508 // function importer and invoke LTO passes. 1509 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1510 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1511 /*IgnoreEmptyThinLTOIndexFile*/true); 1512 if (!IndexOrErr) { 1513 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1514 "Error loading index file '" + 1515 CGOpts.ThinLTOIndexFile + "': "); 1516 return; 1517 } 1518 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1519 // A null CombinedIndex means we should skip ThinLTO compilation 1520 // (LLVM will optionally ignore empty index files, returning null instead 1521 // of an error). 1522 if (CombinedIndex) { 1523 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1524 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1525 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1526 CGOpts.ProfileRemappingFile, Action); 1527 return; 1528 } 1529 // Distributed indexing detected that nothing from the module is needed 1530 // for the final linking. So we can skip the compilation. We sill need to 1531 // output an empty object file to make sure that a linker does not fail 1532 // trying to read it. Also for some features, like CFI, we must skip 1533 // the compilation as CombinedIndex does not contain all required 1534 // information. 1535 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1536 EmptyModule->setTargetTriple(M->getTargetTriple()); 1537 M = EmptyModule.get(); 1538 } 1539 } 1540 1541 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1542 1543 if (CGOpts.ExperimentalNewPassManager) 1544 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1545 else 1546 AsmHelper.EmitAssembly(Action, std::move(OS)); 1547 1548 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1549 // DataLayout. 1550 if (AsmHelper.TM) { 1551 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1552 if (DLDesc != TDesc.getStringRepresentation()) { 1553 unsigned DiagID = Diags.getCustomDiagID( 1554 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1555 "expected target description '%1'"); 1556 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1557 } 1558 } 1559 } 1560 1561 static const char* getSectionNameForBitcode(const Triple &T) { 1562 switch (T.getObjectFormat()) { 1563 case Triple::MachO: 1564 return "__LLVM,__bitcode"; 1565 case Triple::COFF: 1566 case Triple::ELF: 1567 case Triple::Wasm: 1568 case Triple::UnknownObjectFormat: 1569 return ".llvmbc"; 1570 case Triple::XCOFF: 1571 llvm_unreachable("XCOFF is not yet implemented"); 1572 break; 1573 } 1574 llvm_unreachable("Unimplemented ObjectFormatType"); 1575 } 1576 1577 static const char* getSectionNameForCommandline(const Triple &T) { 1578 switch (T.getObjectFormat()) { 1579 case Triple::MachO: 1580 return "__LLVM,__cmdline"; 1581 case Triple::COFF: 1582 case Triple::ELF: 1583 case Triple::Wasm: 1584 case Triple::UnknownObjectFormat: 1585 return ".llvmcmd"; 1586 case Triple::XCOFF: 1587 llvm_unreachable("XCOFF is not yet implemented"); 1588 break; 1589 } 1590 llvm_unreachable("Unimplemented ObjectFormatType"); 1591 } 1592 1593 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1594 // __LLVM,__bitcode section. 1595 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1596 llvm::MemoryBufferRef Buf) { 1597 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1598 return; 1599 1600 // Save llvm.compiler.used and remote it. 1601 SmallVector<Constant*, 2> UsedArray; 1602 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1603 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1604 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1605 for (auto *GV : UsedGlobals) { 1606 if (GV->getName() != "llvm.embedded.module" && 1607 GV->getName() != "llvm.cmdline") 1608 UsedArray.push_back( 1609 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1610 } 1611 if (Used) 1612 Used->eraseFromParent(); 1613 1614 // Embed the bitcode for the llvm module. 1615 std::string Data; 1616 ArrayRef<uint8_t> ModuleData; 1617 Triple T(M->getTargetTriple()); 1618 // Create a constant that contains the bitcode. 1619 // In case of embedding a marker, ignore the input Buf and use the empty 1620 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1621 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1622 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1623 (const unsigned char *)Buf.getBufferEnd())) { 1624 // If the input is LLVM Assembly, bitcode is produced by serializing 1625 // the module. Use-lists order need to be perserved in this case. 1626 llvm::raw_string_ostream OS(Data); 1627 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1628 ModuleData = 1629 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1630 } else 1631 // If the input is LLVM bitcode, write the input byte stream directly. 1632 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1633 Buf.getBufferSize()); 1634 } 1635 llvm::Constant *ModuleConstant = 1636 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1637 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1638 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1639 ModuleConstant); 1640 GV->setSection(getSectionNameForBitcode(T)); 1641 UsedArray.push_back( 1642 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1643 if (llvm::GlobalVariable *Old = 1644 M->getGlobalVariable("llvm.embedded.module", true)) { 1645 assert(Old->hasOneUse() && 1646 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1647 GV->takeName(Old); 1648 Old->eraseFromParent(); 1649 } else { 1650 GV->setName("llvm.embedded.module"); 1651 } 1652 1653 // Skip if only bitcode needs to be embedded. 1654 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1655 // Embed command-line options. 1656 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1657 CGOpts.CmdArgs.size()); 1658 llvm::Constant *CmdConstant = 1659 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1660 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1661 llvm::GlobalValue::PrivateLinkage, 1662 CmdConstant); 1663 GV->setSection(getSectionNameForCommandline(T)); 1664 UsedArray.push_back( 1665 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1666 if (llvm::GlobalVariable *Old = 1667 M->getGlobalVariable("llvm.cmdline", true)) { 1668 assert(Old->hasOneUse() && 1669 "llvm.cmdline can only be used once in llvm.compiler.used"); 1670 GV->takeName(Old); 1671 Old->eraseFromParent(); 1672 } else { 1673 GV->setName("llvm.cmdline"); 1674 } 1675 } 1676 1677 if (UsedArray.empty()) 1678 return; 1679 1680 // Recreate llvm.compiler.used. 1681 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1682 auto *NewUsed = new GlobalVariable( 1683 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1684 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1685 NewUsed->setSection("llvm.metadata"); 1686 } 1687