1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace { 98 99 // Default filename used for profile generation. 100 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 101 102 class EmitAssemblyHelper { 103 DiagnosticsEngine &Diags; 104 const HeaderSearchOptions &HSOpts; 105 const CodeGenOptions &CodeGenOpts; 106 const clang::TargetOptions &TargetOpts; 107 const LangOptions &LangOpts; 108 Module *TheModule; 109 110 Timer CodeGenerationTime; 111 112 std::unique_ptr<raw_pwrite_stream> OS; 113 114 TargetIRAnalysis getTargetIRAnalysis() const { 115 if (TM) 116 return TM->getTargetIRAnalysis(); 117 118 return TargetIRAnalysis(); 119 } 120 121 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 122 123 /// Generates the TargetMachine. 124 /// Leaves TM unchanged if it is unable to create the target machine. 125 /// Some of our clang tests specify triples which are not built 126 /// into clang. This is okay because these tests check the generated 127 /// IR, and they require DataLayout which depends on the triple. 128 /// In this case, we allow this method to fail and not report an error. 129 /// When MustCreateTM is used, we print an error if we are unable to load 130 /// the requested target. 131 void CreateTargetMachine(bool MustCreateTM); 132 133 /// Add passes necessary to emit assembly or LLVM IR. 134 /// 135 /// \return True on success. 136 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 137 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 138 139 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 140 std::error_code EC; 141 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 142 llvm::sys::fs::OF_None); 143 if (EC) { 144 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 145 F.reset(); 146 } 147 return F; 148 } 149 150 public: 151 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 152 const HeaderSearchOptions &HeaderSearchOpts, 153 const CodeGenOptions &CGOpts, 154 const clang::TargetOptions &TOpts, 155 const LangOptions &LOpts, Module *M) 156 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 157 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 158 CodeGenerationTime("codegen", "Code Generation Time") {} 159 160 ~EmitAssemblyHelper() { 161 if (CodeGenOpts.DisableFree) 162 BuryPointer(std::move(TM)); 163 } 164 165 std::unique_ptr<TargetMachine> TM; 166 167 void EmitAssembly(BackendAction Action, 168 std::unique_ptr<raw_pwrite_stream> OS); 169 170 void EmitAssemblyWithNewPassManager(BackendAction Action, 171 std::unique_ptr<raw_pwrite_stream> OS); 172 }; 173 174 // We need this wrapper to access LangOpts and CGOpts from extension functions 175 // that we add to the PassManagerBuilder. 176 class PassManagerBuilderWrapper : public PassManagerBuilder { 177 public: 178 PassManagerBuilderWrapper(const Triple &TargetTriple, 179 const CodeGenOptions &CGOpts, 180 const LangOptions &LangOpts) 181 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 182 LangOpts(LangOpts) {} 183 const Triple &getTargetTriple() const { return TargetTriple; } 184 const CodeGenOptions &getCGOpts() const { return CGOpts; } 185 const LangOptions &getLangOpts() const { return LangOpts; } 186 187 private: 188 const Triple &TargetTriple; 189 const CodeGenOptions &CGOpts; 190 const LangOptions &LangOpts; 191 }; 192 } 193 194 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCAPElimPass()); 197 } 198 199 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCExpandPass()); 202 } 203 204 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 205 if (Builder.OptLevel > 0) 206 PM.add(createObjCARCOptPass()); 207 } 208 209 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createAddDiscriminatorsPass()); 212 } 213 214 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 215 legacy::PassManagerBase &PM) { 216 PM.add(createBoundsCheckingLegacyPass()); 217 } 218 219 static SanitizerCoverageOptions 220 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 221 SanitizerCoverageOptions Opts; 222 Opts.CoverageType = 223 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 224 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 225 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 226 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 227 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 228 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 229 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 230 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 231 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 232 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 233 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 234 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 235 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 236 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 237 return Opts; 238 } 239 240 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper &>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 auto Opts = getSancovOptsFromCGOpts(CGOpts); 246 PM.add(createModuleSanitizerCoverageLegacyPassPass( 247 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 248 CGOpts.SanitizeCoverageIgnorelistFiles)); 249 } 250 251 // Check if ASan should use GC-friendly instrumentation for globals. 252 // First of all, there is no point if -fdata-sections is off (expect for MachO, 253 // where this is not a factor). Also, on ELF this feature requires an assembler 254 // extension that only works with -integrated-as at the moment. 255 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 256 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 257 return false; 258 switch (T.getObjectFormat()) { 259 case Triple::MachO: 260 case Triple::COFF: 261 return true; 262 case Triple::ELF: 263 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 264 case Triple::GOFF: 265 llvm::report_fatal_error("ASan not implemented for GOFF"); 266 case Triple::XCOFF: 267 llvm::report_fatal_error("ASan not implemented for XCOFF."); 268 case Triple::Wasm: 269 case Triple::UnknownObjectFormat: 270 break; 271 } 272 return false; 273 } 274 275 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM) { 277 PM.add(createMemProfilerFunctionPass()); 278 PM.add(createModuleMemProfilerLegacyPassPass()); 279 } 280 281 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 282 legacy::PassManagerBase &PM) { 283 const PassManagerBuilderWrapper &BuilderWrapper = 284 static_cast<const PassManagerBuilderWrapper&>(Builder); 285 const Triple &T = BuilderWrapper.getTargetTriple(); 286 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 287 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 288 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 289 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 290 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 291 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 292 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 293 CGOpts.getSanitizeAddressUseAfterReturn(); 294 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 295 UseAfterScope, UseAfterReturn)); 296 PM.add(createModuleAddressSanitizerLegacyPassPass( 297 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 298 DestructorKind)); 299 } 300 301 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 PM.add(createAddressSanitizerFunctionPass( 304 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 305 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 306 PM.add(createModuleAddressSanitizerLegacyPassPass( 307 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 308 /*UseOdrIndicator*/ false)); 309 } 310 311 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 312 legacy::PassManagerBase &PM) { 313 const PassManagerBuilderWrapper &BuilderWrapper = 314 static_cast<const PassManagerBuilderWrapper &>(Builder); 315 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 316 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 317 PM.add(createHWAddressSanitizerLegacyPassPass( 318 /*CompileKernel*/ false, Recover, 319 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 320 } 321 322 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 const PassManagerBuilderWrapper &BuilderWrapper = 325 static_cast<const PassManagerBuilderWrapper &>(Builder); 326 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 327 PM.add(createHWAddressSanitizerLegacyPassPass( 328 /*CompileKernel*/ true, /*Recover*/ true, 329 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 330 } 331 332 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM, 334 bool CompileKernel) { 335 const PassManagerBuilderWrapper &BuilderWrapper = 336 static_cast<const PassManagerBuilderWrapper&>(Builder); 337 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 338 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 339 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 340 PM.add(createMemorySanitizerLegacyPassPass( 341 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 342 343 // MemorySanitizer inserts complex instrumentation that mostly follows 344 // the logic of the original code, but operates on "shadow" values. 345 // It can benefit from re-running some general purpose optimization passes. 346 if (Builder.OptLevel > 0) { 347 PM.add(createEarlyCSEPass()); 348 PM.add(createReassociatePass()); 349 PM.add(createLICMPass()); 350 PM.add(createGVNPass()); 351 PM.add(createInstructionCombiningPass()); 352 PM.add(createDeadStoreEliminationPass()); 353 } 354 } 355 356 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 357 legacy::PassManagerBase &PM) { 358 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 359 } 360 361 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 362 legacy::PassManagerBase &PM) { 363 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 364 } 365 366 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 367 legacy::PassManagerBase &PM) { 368 PM.add(createThreadSanitizerLegacyPassPass()); 369 } 370 371 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 372 legacy::PassManagerBase &PM) { 373 const PassManagerBuilderWrapper &BuilderWrapper = 374 static_cast<const PassManagerBuilderWrapper&>(Builder); 375 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 376 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 377 } 378 379 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 380 legacy::PassManagerBase &PM) { 381 PM.add(createEntryExitInstrumenterPass()); 382 } 383 384 static void 385 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 386 legacy::PassManagerBase &PM) { 387 PM.add(createPostInlineEntryExitInstrumenterPass()); 388 } 389 390 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 391 const CodeGenOptions &CodeGenOpts) { 392 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 393 394 switch (CodeGenOpts.getVecLib()) { 395 case CodeGenOptions::Accelerate: 396 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 397 break; 398 case CodeGenOptions::LIBMVEC: 399 switch(TargetTriple.getArch()) { 400 default: 401 break; 402 case llvm::Triple::x86_64: 403 TLII->addVectorizableFunctionsFromVecLib 404 (TargetLibraryInfoImpl::LIBMVEC_X86); 405 break; 406 } 407 break; 408 case CodeGenOptions::MASSV: 409 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 410 break; 411 case CodeGenOptions::SVML: 412 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 413 break; 414 case CodeGenOptions::Darwin_libsystem_m: 415 TLII->addVectorizableFunctionsFromVecLib( 416 TargetLibraryInfoImpl::DarwinLibSystemM); 417 break; 418 default: 419 break; 420 } 421 return TLII; 422 } 423 424 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 425 legacy::PassManager *MPM) { 426 llvm::SymbolRewriter::RewriteDescriptorList DL; 427 428 llvm::SymbolRewriter::RewriteMapParser MapParser; 429 for (const auto &MapFile : Opts.RewriteMapFiles) 430 MapParser.parse(MapFile, &DL); 431 432 MPM->add(createRewriteSymbolsPass(DL)); 433 } 434 435 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 436 switch (CodeGenOpts.OptimizationLevel) { 437 default: 438 llvm_unreachable("Invalid optimization level!"); 439 case 0: 440 return CodeGenOpt::None; 441 case 1: 442 return CodeGenOpt::Less; 443 case 2: 444 return CodeGenOpt::Default; // O2/Os/Oz 445 case 3: 446 return CodeGenOpt::Aggressive; 447 } 448 } 449 450 static Optional<llvm::CodeModel::Model> 451 getCodeModel(const CodeGenOptions &CodeGenOpts) { 452 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 453 .Case("tiny", llvm::CodeModel::Tiny) 454 .Case("small", llvm::CodeModel::Small) 455 .Case("kernel", llvm::CodeModel::Kernel) 456 .Case("medium", llvm::CodeModel::Medium) 457 .Case("large", llvm::CodeModel::Large) 458 .Case("default", ~1u) 459 .Default(~0u); 460 assert(CodeModel != ~0u && "invalid code model!"); 461 if (CodeModel == ~1u) 462 return None; 463 return static_cast<llvm::CodeModel::Model>(CodeModel); 464 } 465 466 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 467 if (Action == Backend_EmitObj) 468 return CGFT_ObjectFile; 469 else if (Action == Backend_EmitMCNull) 470 return CGFT_Null; 471 else { 472 assert(Action == Backend_EmitAssembly && "Invalid action!"); 473 return CGFT_AssemblyFile; 474 } 475 } 476 477 static bool initTargetOptions(DiagnosticsEngine &Diags, 478 llvm::TargetOptions &Options, 479 const CodeGenOptions &CodeGenOpts, 480 const clang::TargetOptions &TargetOpts, 481 const LangOptions &LangOpts, 482 const HeaderSearchOptions &HSOpts) { 483 switch (LangOpts.getThreadModel()) { 484 case LangOptions::ThreadModelKind::POSIX: 485 Options.ThreadModel = llvm::ThreadModel::POSIX; 486 break; 487 case LangOptions::ThreadModelKind::Single: 488 Options.ThreadModel = llvm::ThreadModel::Single; 489 break; 490 } 491 492 // Set float ABI type. 493 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 494 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 495 "Invalid Floating Point ABI!"); 496 Options.FloatABIType = 497 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 498 .Case("soft", llvm::FloatABI::Soft) 499 .Case("softfp", llvm::FloatABI::Soft) 500 .Case("hard", llvm::FloatABI::Hard) 501 .Default(llvm::FloatABI::Default); 502 503 // Set FP fusion mode. 504 switch (LangOpts.getDefaultFPContractMode()) { 505 case LangOptions::FPM_Off: 506 // Preserve any contraction performed by the front-end. (Strict performs 507 // splitting of the muladd intrinsic in the backend.) 508 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 509 break; 510 case LangOptions::FPM_On: 511 case LangOptions::FPM_FastHonorPragmas: 512 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 513 break; 514 case LangOptions::FPM_Fast: 515 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 516 break; 517 } 518 519 Options.BinutilsVersion = 520 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 521 Options.UseInitArray = CodeGenOpts.UseInitArray; 522 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 523 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 524 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 525 526 // Set EABI version. 527 Options.EABIVersion = TargetOpts.EABIVersion; 528 529 if (LangOpts.hasSjLjExceptions()) 530 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 531 if (LangOpts.hasSEHExceptions()) 532 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 533 if (LangOpts.hasDWARFExceptions()) 534 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 535 if (LangOpts.hasWasmExceptions()) 536 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 537 538 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 539 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 540 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 541 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 542 543 Options.BBSections = 544 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 545 .Case("all", llvm::BasicBlockSection::All) 546 .Case("labels", llvm::BasicBlockSection::Labels) 547 .StartsWith("list=", llvm::BasicBlockSection::List) 548 .Case("none", llvm::BasicBlockSection::None) 549 .Default(llvm::BasicBlockSection::None); 550 551 if (Options.BBSections == llvm::BasicBlockSection::List) { 552 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 553 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 554 if (!MBOrErr) { 555 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 556 << MBOrErr.getError().message(); 557 return false; 558 } 559 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 560 } 561 562 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 563 Options.FunctionSections = CodeGenOpts.FunctionSections; 564 Options.DataSections = CodeGenOpts.DataSections; 565 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 566 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 567 Options.UniqueBasicBlockSectionNames = 568 CodeGenOpts.UniqueBasicBlockSectionNames; 569 Options.TLSSize = CodeGenOpts.TLSSize; 570 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 571 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 572 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 573 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 574 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 575 Options.EmitAddrsig = CodeGenOpts.Addrsig; 576 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 577 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 578 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 579 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 580 Options.ValueTrackingVariableLocations = 581 CodeGenOpts.ValueTrackingVariableLocations; 582 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 583 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 584 585 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 586 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 587 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 588 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 589 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 590 Options.MCOptions.MCIncrementalLinkerCompatible = 591 CodeGenOpts.IncrementalLinkerCompatible; 592 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 593 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 594 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 595 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 596 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 597 Options.MCOptions.ABIName = TargetOpts.ABI; 598 for (const auto &Entry : HSOpts.UserEntries) 599 if (!Entry.IsFramework && 600 (Entry.Group == frontend::IncludeDirGroup::Quoted || 601 Entry.Group == frontend::IncludeDirGroup::Angled || 602 Entry.Group == frontend::IncludeDirGroup::System)) 603 Options.MCOptions.IASSearchPaths.push_back( 604 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 605 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 606 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 607 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 608 609 return true; 610 } 611 612 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 613 const LangOptions &LangOpts) { 614 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 615 return None; 616 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 617 // LLVM's -default-gcov-version flag is set to something invalid. 618 GCOVOptions Options; 619 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 620 Options.EmitData = CodeGenOpts.EmitGcovArcs; 621 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 622 Options.NoRedZone = CodeGenOpts.DisableRedZone; 623 Options.Filter = CodeGenOpts.ProfileFilterFiles; 624 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 625 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 626 return Options; 627 } 628 629 static Optional<InstrProfOptions> 630 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 631 const LangOptions &LangOpts) { 632 if (!CodeGenOpts.hasProfileClangInstr()) 633 return None; 634 InstrProfOptions Options; 635 Options.NoRedZone = CodeGenOpts.DisableRedZone; 636 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 637 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 638 return Options; 639 } 640 641 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 642 legacy::FunctionPassManager &FPM) { 643 // Handle disabling of all LLVM passes, where we want to preserve the 644 // internal module before any optimization. 645 if (CodeGenOpts.DisableLLVMPasses) 646 return; 647 648 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 649 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 650 // are inserted before PMBuilder ones - they'd get the default-constructed 651 // TLI with an unknown target otherwise. 652 Triple TargetTriple(TheModule->getTargetTriple()); 653 std::unique_ptr<TargetLibraryInfoImpl> TLII( 654 createTLII(TargetTriple, CodeGenOpts)); 655 656 // If we reached here with a non-empty index file name, then the index file 657 // was empty and we are not performing ThinLTO backend compilation (used in 658 // testing in a distributed build environment). Drop any the type test 659 // assume sequences inserted for whole program vtables so that codegen doesn't 660 // complain. 661 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 662 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 663 /*ImportSummary=*/nullptr, 664 /*DropTypeTests=*/true)); 665 666 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 667 668 // At O0 and O1 we only run the always inliner which is more efficient. At 669 // higher optimization levels we run the normal inliner. 670 if (CodeGenOpts.OptimizationLevel <= 1) { 671 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 672 !CodeGenOpts.DisableLifetimeMarkers) || 673 LangOpts.Coroutines); 674 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 675 } else { 676 // We do not want to inline hot callsites for SamplePGO module-summary build 677 // because profile annotation will happen again in ThinLTO backend, and we 678 // want the IR of the hot path to match the profile. 679 PMBuilder.Inliner = createFunctionInliningPass( 680 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 681 (!CodeGenOpts.SampleProfileFile.empty() && 682 CodeGenOpts.PrepareForThinLTO)); 683 } 684 685 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 686 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 687 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 688 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 689 // Only enable CGProfilePass when using integrated assembler, since 690 // non-integrated assemblers don't recognize .cgprofile section. 691 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 692 693 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 694 // Loop interleaving in the loop vectorizer has historically been set to be 695 // enabled when loop unrolling is enabled. 696 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 697 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 698 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 699 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 700 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 701 702 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 703 704 if (TM) 705 TM->adjustPassManager(PMBuilder); 706 707 if (CodeGenOpts.DebugInfoForProfiling || 708 !CodeGenOpts.SampleProfileFile.empty()) 709 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 710 addAddDiscriminatorsPass); 711 712 // In ObjC ARC mode, add the main ARC optimization passes. 713 if (LangOpts.ObjCAutoRefCount) { 714 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 715 addObjCARCExpandPass); 716 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 717 addObjCARCAPElimPass); 718 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 719 addObjCARCOptPass); 720 } 721 722 if (LangOpts.Coroutines) 723 addCoroutinePassesToExtensionPoints(PMBuilder); 724 725 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 726 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 727 addMemProfilerPasses); 728 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 729 addMemProfilerPasses); 730 } 731 732 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 733 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 734 addBoundsCheckingPass); 735 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 736 addBoundsCheckingPass); 737 } 738 739 if (CodeGenOpts.hasSanitizeCoverage()) { 740 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 741 addSanitizerCoveragePass); 742 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 743 addSanitizerCoveragePass); 744 } 745 746 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 747 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 748 addAddressSanitizerPasses); 749 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 750 addAddressSanitizerPasses); 751 } 752 753 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 754 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 755 addKernelAddressSanitizerPasses); 756 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 757 addKernelAddressSanitizerPasses); 758 } 759 760 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 761 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 762 addHWAddressSanitizerPasses); 763 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 764 addHWAddressSanitizerPasses); 765 } 766 767 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 768 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 769 addKernelHWAddressSanitizerPasses); 770 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 771 addKernelHWAddressSanitizerPasses); 772 } 773 774 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 775 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 776 addMemorySanitizerPass); 777 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 778 addMemorySanitizerPass); 779 } 780 781 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 782 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 783 addKernelMemorySanitizerPass); 784 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 785 addKernelMemorySanitizerPass); 786 } 787 788 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 789 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 790 addThreadSanitizerPass); 791 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 792 addThreadSanitizerPass); 793 } 794 795 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 796 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 797 addDataFlowSanitizerPass); 798 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 799 addDataFlowSanitizerPass); 800 } 801 802 if (CodeGenOpts.InstrumentFunctions || 803 CodeGenOpts.InstrumentFunctionEntryBare || 804 CodeGenOpts.InstrumentFunctionsAfterInlining || 805 CodeGenOpts.InstrumentForProfiling) { 806 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 807 addEntryExitInstrumentationPass); 808 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 809 addEntryExitInstrumentationPass); 810 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 811 addPostInlineEntryExitInstrumentationPass); 812 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 813 addPostInlineEntryExitInstrumentationPass); 814 } 815 816 // Set up the per-function pass manager. 817 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 818 if (CodeGenOpts.VerifyModule) 819 FPM.add(createVerifierPass()); 820 821 // Set up the per-module pass manager. 822 if (!CodeGenOpts.RewriteMapFiles.empty()) 823 addSymbolRewriterPass(CodeGenOpts, &MPM); 824 825 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 826 MPM.add(createGCOVProfilerPass(*Options)); 827 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 828 MPM.add(createStripSymbolsPass(true)); 829 } 830 831 if (Optional<InstrProfOptions> Options = 832 getInstrProfOptions(CodeGenOpts, LangOpts)) 833 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 834 835 bool hasIRInstr = false; 836 if (CodeGenOpts.hasProfileIRInstr()) { 837 PMBuilder.EnablePGOInstrGen = true; 838 hasIRInstr = true; 839 } 840 if (CodeGenOpts.hasProfileCSIRInstr()) { 841 assert(!CodeGenOpts.hasProfileCSIRUse() && 842 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 843 "same time"); 844 assert(!hasIRInstr && 845 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 846 "same time"); 847 PMBuilder.EnablePGOCSInstrGen = true; 848 hasIRInstr = true; 849 } 850 if (hasIRInstr) { 851 if (!CodeGenOpts.InstrProfileOutput.empty()) 852 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 853 else 854 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 855 } 856 if (CodeGenOpts.hasProfileIRUse()) { 857 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 858 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 859 } 860 861 if (!CodeGenOpts.SampleProfileFile.empty()) 862 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 863 864 PMBuilder.populateFunctionPassManager(FPM); 865 PMBuilder.populateModulePassManager(MPM); 866 } 867 868 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 869 SmallVector<const char *, 16> BackendArgs; 870 BackendArgs.push_back("clang"); // Fake program name. 871 if (!CodeGenOpts.DebugPass.empty()) { 872 BackendArgs.push_back("-debug-pass"); 873 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 874 } 875 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 876 BackendArgs.push_back("-limit-float-precision"); 877 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 878 } 879 // Check for the default "clang" invocation that won't set any cl::opt values. 880 // Skip trying to parse the command line invocation to avoid the issues 881 // described below. 882 if (BackendArgs.size() == 1) 883 return; 884 BackendArgs.push_back(nullptr); 885 // FIXME: The command line parser below is not thread-safe and shares a global 886 // state, so this call might crash or overwrite the options of another Clang 887 // instance in the same process. 888 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 889 BackendArgs.data()); 890 } 891 892 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 893 // Create the TargetMachine for generating code. 894 std::string Error; 895 std::string Triple = TheModule->getTargetTriple(); 896 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 897 if (!TheTarget) { 898 if (MustCreateTM) 899 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 900 return; 901 } 902 903 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 904 std::string FeaturesStr = 905 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 906 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 907 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 908 909 llvm::TargetOptions Options; 910 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 911 HSOpts)) 912 return; 913 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 914 Options, RM, CM, OptLevel)); 915 } 916 917 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 918 BackendAction Action, 919 raw_pwrite_stream &OS, 920 raw_pwrite_stream *DwoOS) { 921 // Add LibraryInfo. 922 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 923 std::unique_ptr<TargetLibraryInfoImpl> TLII( 924 createTLII(TargetTriple, CodeGenOpts)); 925 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 926 927 // Normal mode, emit a .s or .o file by running the code generator. Note, 928 // this also adds codegenerator level optimization passes. 929 CodeGenFileType CGFT = getCodeGenFileType(Action); 930 931 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 932 // "codegen" passes so that it isn't run multiple times when there is 933 // inlining happening. 934 if (CodeGenOpts.OptimizationLevel > 0) 935 CodeGenPasses.add(createObjCARCContractPass()); 936 937 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 938 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 939 Diags.Report(diag::err_fe_unable_to_interface_with_target); 940 return false; 941 } 942 943 return true; 944 } 945 946 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 947 std::unique_ptr<raw_pwrite_stream> OS) { 948 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 949 950 setCommandLineOpts(CodeGenOpts); 951 952 bool UsesCodeGen = (Action != Backend_EmitNothing && 953 Action != Backend_EmitBC && 954 Action != Backend_EmitLL); 955 CreateTargetMachine(UsesCodeGen); 956 957 if (UsesCodeGen && !TM) 958 return; 959 if (TM) 960 TheModule->setDataLayout(TM->createDataLayout()); 961 962 DebugifyCustomPassManager PerModulePasses; 963 DebugInfoPerPassMap DIPreservationMap; 964 if (CodeGenOpts.EnableDIPreservationVerify) { 965 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 966 PerModulePasses.setDIPreservationMap(DIPreservationMap); 967 968 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 969 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 970 CodeGenOpts.DIBugsReportFilePath); 971 } 972 PerModulePasses.add( 973 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 974 975 legacy::FunctionPassManager PerFunctionPasses(TheModule); 976 PerFunctionPasses.add( 977 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 978 979 CreatePasses(PerModulePasses, PerFunctionPasses); 980 981 legacy::PassManager CodeGenPasses; 982 CodeGenPasses.add( 983 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 984 985 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 986 987 switch (Action) { 988 case Backend_EmitNothing: 989 break; 990 991 case Backend_EmitBC: 992 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 993 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 994 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 995 if (!ThinLinkOS) 996 return; 997 } 998 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 999 CodeGenOpts.EnableSplitLTOUnit); 1000 PerModulePasses.add(createWriteThinLTOBitcodePass( 1001 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1002 } else { 1003 // Emit a module summary by default for Regular LTO except for ld64 1004 // targets 1005 bool EmitLTOSummary = 1006 (CodeGenOpts.PrepareForLTO && 1007 !CodeGenOpts.DisableLLVMPasses && 1008 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1009 llvm::Triple::Apple); 1010 if (EmitLTOSummary) { 1011 if (!TheModule->getModuleFlag("ThinLTO")) 1012 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1013 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1014 uint32_t(1)); 1015 } 1016 1017 PerModulePasses.add(createBitcodeWriterPass( 1018 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1019 } 1020 break; 1021 1022 case Backend_EmitLL: 1023 PerModulePasses.add( 1024 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1025 break; 1026 1027 default: 1028 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1029 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1030 if (!DwoOS) 1031 return; 1032 } 1033 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1034 DwoOS ? &DwoOS->os() : nullptr)) 1035 return; 1036 } 1037 1038 // Before executing passes, print the final values of the LLVM options. 1039 cl::PrintOptionValues(); 1040 1041 // Run passes. For now we do all passes at once, but eventually we 1042 // would like to have the option of streaming code generation. 1043 1044 { 1045 PrettyStackTraceString CrashInfo("Per-function optimization"); 1046 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1047 1048 PerFunctionPasses.doInitialization(); 1049 for (Function &F : *TheModule) 1050 if (!F.isDeclaration()) 1051 PerFunctionPasses.run(F); 1052 PerFunctionPasses.doFinalization(); 1053 } 1054 1055 { 1056 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1057 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1058 PerModulePasses.run(*TheModule); 1059 } 1060 1061 { 1062 PrettyStackTraceString CrashInfo("Code generation"); 1063 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1064 CodeGenPasses.run(*TheModule); 1065 } 1066 1067 if (ThinLinkOS) 1068 ThinLinkOS->keep(); 1069 if (DwoOS) 1070 DwoOS->keep(); 1071 } 1072 1073 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1074 switch (Opts.OptimizationLevel) { 1075 default: 1076 llvm_unreachable("Invalid optimization level!"); 1077 1078 case 0: 1079 return OptimizationLevel::O0; 1080 1081 case 1: 1082 return OptimizationLevel::O1; 1083 1084 case 2: 1085 switch (Opts.OptimizeSize) { 1086 default: 1087 llvm_unreachable("Invalid optimization level for size!"); 1088 1089 case 0: 1090 return OptimizationLevel::O2; 1091 1092 case 1: 1093 return OptimizationLevel::Os; 1094 1095 case 2: 1096 return OptimizationLevel::Oz; 1097 } 1098 1099 case 3: 1100 return OptimizationLevel::O3; 1101 } 1102 } 1103 1104 static void addSanitizers(const Triple &TargetTriple, 1105 const CodeGenOptions &CodeGenOpts, 1106 const LangOptions &LangOpts, PassBuilder &PB) { 1107 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1108 OptimizationLevel Level) { 1109 if (CodeGenOpts.hasSanitizeCoverage()) { 1110 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1111 MPM.addPass(ModuleSanitizerCoveragePass( 1112 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1113 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1114 } 1115 1116 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1117 if (LangOpts.Sanitize.has(Mask)) { 1118 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1119 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1120 1121 MPM.addPass( 1122 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1123 FunctionPassManager FPM; 1124 FPM.addPass( 1125 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1126 if (Level != OptimizationLevel::O0) { 1127 // MemorySanitizer inserts complex instrumentation that mostly 1128 // follows the logic of the original code, but operates on 1129 // "shadow" values. It can benefit from re-running some 1130 // general purpose optimization passes. 1131 FPM.addPass(EarlyCSEPass()); 1132 // TODO: Consider add more passes like in 1133 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1134 // difference on size. It's not clear if the rest is still 1135 // usefull. InstCombinePass breakes 1136 // compiler-rt/test/msan/select_origin.cpp. 1137 } 1138 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1139 } 1140 }; 1141 MSanPass(SanitizerKind::Memory, false); 1142 MSanPass(SanitizerKind::KernelMemory, true); 1143 1144 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1145 MPM.addPass(ThreadSanitizerPass()); 1146 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1147 } 1148 1149 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1150 if (LangOpts.Sanitize.has(Mask)) { 1151 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1152 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1153 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1154 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1155 llvm::AsanDtorKind DestructorKind = 1156 CodeGenOpts.getSanitizeAddressDtor(); 1157 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 1158 CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1159 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1160 MPM.addPass(ModuleAddressSanitizerPass( 1161 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1162 DestructorKind)); 1163 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1164 {CompileKernel, Recover, UseAfterScope, UseAfterReturn}))); 1165 } 1166 }; 1167 ASanPass(SanitizerKind::Address, false); 1168 ASanPass(SanitizerKind::KernelAddress, true); 1169 1170 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1171 if (LangOpts.Sanitize.has(Mask)) { 1172 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1173 MPM.addPass(HWAddressSanitizerPass( 1174 {CompileKernel, Recover, 1175 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1176 } 1177 }; 1178 HWASanPass(SanitizerKind::HWAddress, false); 1179 HWASanPass(SanitizerKind::KernelHWAddress, true); 1180 1181 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1182 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1183 } 1184 }); 1185 } 1186 1187 /// A clean version of `EmitAssembly` that uses the new pass manager. 1188 /// 1189 /// Not all features are currently supported in this system, but where 1190 /// necessary it falls back to the legacy pass manager to at least provide 1191 /// basic functionality. 1192 /// 1193 /// This API is planned to have its functionality finished and then to replace 1194 /// `EmitAssembly` at some point in the future when the default switches. 1195 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1196 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1197 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1198 setCommandLineOpts(CodeGenOpts); 1199 1200 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1201 Action != Backend_EmitBC && 1202 Action != Backend_EmitLL); 1203 CreateTargetMachine(RequiresCodeGen); 1204 1205 if (RequiresCodeGen && !TM) 1206 return; 1207 if (TM) 1208 TheModule->setDataLayout(TM->createDataLayout()); 1209 1210 Optional<PGOOptions> PGOOpt; 1211 1212 if (CodeGenOpts.hasProfileIRInstr()) 1213 // -fprofile-generate. 1214 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1215 ? std::string(DefaultProfileGenName) 1216 : CodeGenOpts.InstrProfileOutput, 1217 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1218 CodeGenOpts.DebugInfoForProfiling); 1219 else if (CodeGenOpts.hasProfileIRUse()) { 1220 // -fprofile-use. 1221 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1222 : PGOOptions::NoCSAction; 1223 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1224 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1225 CSAction, CodeGenOpts.DebugInfoForProfiling); 1226 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1227 // -fprofile-sample-use 1228 PGOOpt = PGOOptions( 1229 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1230 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1231 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1232 else if (CodeGenOpts.PseudoProbeForProfiling) 1233 // -fpseudo-probe-for-profiling 1234 PGOOpt = 1235 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1236 CodeGenOpts.DebugInfoForProfiling, true); 1237 else if (CodeGenOpts.DebugInfoForProfiling) 1238 // -fdebug-info-for-profiling 1239 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1240 PGOOptions::NoCSAction, true); 1241 1242 // Check to see if we want to generate a CS profile. 1243 if (CodeGenOpts.hasProfileCSIRInstr()) { 1244 assert(!CodeGenOpts.hasProfileCSIRUse() && 1245 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1246 "the same time"); 1247 if (PGOOpt.hasValue()) { 1248 assert(PGOOpt->Action != PGOOptions::IRInstr && 1249 PGOOpt->Action != PGOOptions::SampleUse && 1250 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1251 " pass"); 1252 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1253 ? std::string(DefaultProfileGenName) 1254 : CodeGenOpts.InstrProfileOutput; 1255 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1256 } else 1257 PGOOpt = PGOOptions("", 1258 CodeGenOpts.InstrProfileOutput.empty() 1259 ? std::string(DefaultProfileGenName) 1260 : CodeGenOpts.InstrProfileOutput, 1261 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1262 CodeGenOpts.DebugInfoForProfiling); 1263 } 1264 if (TM) 1265 TM->setPGOOption(PGOOpt); 1266 1267 PipelineTuningOptions PTO; 1268 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1269 // For historical reasons, loop interleaving is set to mirror setting for loop 1270 // unrolling. 1271 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1272 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1273 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1274 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1275 // Only enable CGProfilePass when using integrated assembler, since 1276 // non-integrated assemblers don't recognize .cgprofile section. 1277 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1278 1279 LoopAnalysisManager LAM; 1280 FunctionAnalysisManager FAM; 1281 CGSCCAnalysisManager CGAM; 1282 ModuleAnalysisManager MAM; 1283 1284 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1285 PassInstrumentationCallbacks PIC; 1286 PrintPassOptions PrintPassOpts; 1287 PrintPassOpts.Indent = DebugPassStructure; 1288 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1289 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1290 DebugPassStructure, 1291 /*VerifyEach*/ false, PrintPassOpts); 1292 SI.registerCallbacks(PIC, &FAM); 1293 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1294 1295 // Attempt to load pass plugins and register their callbacks with PB. 1296 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1297 auto PassPlugin = PassPlugin::Load(PluginFN); 1298 if (PassPlugin) { 1299 PassPlugin->registerPassBuilderCallbacks(PB); 1300 } else { 1301 Diags.Report(diag::err_fe_unable_to_load_plugin) 1302 << PluginFN << toString(PassPlugin.takeError()); 1303 } 1304 } 1305 #define HANDLE_EXTENSION(Ext) \ 1306 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1307 #include "llvm/Support/Extension.def" 1308 1309 // Register the AA manager first so that our version is the one used. 1310 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1311 1312 // Register the target library analysis directly and give it a customized 1313 // preset TLI. 1314 Triple TargetTriple(TheModule->getTargetTriple()); 1315 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1316 createTLII(TargetTriple, CodeGenOpts)); 1317 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1318 1319 // Register all the basic analyses with the managers. 1320 PB.registerModuleAnalyses(MAM); 1321 PB.registerCGSCCAnalyses(CGAM); 1322 PB.registerFunctionAnalyses(FAM); 1323 PB.registerLoopAnalyses(LAM); 1324 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1325 1326 ModulePassManager MPM; 1327 1328 if (!CodeGenOpts.DisableLLVMPasses) { 1329 // Map our optimization levels into one of the distinct levels used to 1330 // configure the pipeline. 1331 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1332 1333 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1334 bool IsLTO = CodeGenOpts.PrepareForLTO; 1335 1336 if (LangOpts.ObjCAutoRefCount) { 1337 PB.registerPipelineStartEPCallback( 1338 [](ModulePassManager &MPM, OptimizationLevel Level) { 1339 if (Level != OptimizationLevel::O0) 1340 MPM.addPass( 1341 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1342 }); 1343 PB.registerPipelineEarlySimplificationEPCallback( 1344 [](ModulePassManager &MPM, OptimizationLevel Level) { 1345 if (Level != OptimizationLevel::O0) 1346 MPM.addPass(ObjCARCAPElimPass()); 1347 }); 1348 PB.registerScalarOptimizerLateEPCallback( 1349 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1350 if (Level != OptimizationLevel::O0) 1351 FPM.addPass(ObjCARCOptPass()); 1352 }); 1353 } 1354 1355 // If we reached here with a non-empty index file name, then the index 1356 // file was empty and we are not performing ThinLTO backend compilation 1357 // (used in testing in a distributed build environment). 1358 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1359 // If so drop any the type test assume sequences inserted for whole program 1360 // vtables so that codegen doesn't complain. 1361 if (IsThinLTOPostLink) 1362 PB.registerPipelineStartEPCallback( 1363 [](ModulePassManager &MPM, OptimizationLevel Level) { 1364 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1365 /*ImportSummary=*/nullptr, 1366 /*DropTypeTests=*/true)); 1367 }); 1368 1369 if (CodeGenOpts.InstrumentFunctions || 1370 CodeGenOpts.InstrumentFunctionEntryBare || 1371 CodeGenOpts.InstrumentFunctionsAfterInlining || 1372 CodeGenOpts.InstrumentForProfiling) { 1373 PB.registerPipelineStartEPCallback( 1374 [](ModulePassManager &MPM, OptimizationLevel Level) { 1375 MPM.addPass(createModuleToFunctionPassAdaptor( 1376 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1377 }); 1378 PB.registerOptimizerLastEPCallback( 1379 [](ModulePassManager &MPM, OptimizationLevel Level) { 1380 MPM.addPass(createModuleToFunctionPassAdaptor( 1381 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1382 }); 1383 } 1384 1385 // Register callbacks to schedule sanitizer passes at the appropriate part 1386 // of the pipeline. 1387 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1388 PB.registerScalarOptimizerLateEPCallback( 1389 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1390 FPM.addPass(BoundsCheckingPass()); 1391 }); 1392 1393 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1394 // done on PreLink stage. 1395 if (!IsThinLTOPostLink) 1396 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1397 1398 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1399 PB.registerPipelineStartEPCallback( 1400 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1401 MPM.addPass(GCOVProfilerPass(*Options)); 1402 }); 1403 if (Optional<InstrProfOptions> Options = 1404 getInstrProfOptions(CodeGenOpts, LangOpts)) 1405 PB.registerPipelineStartEPCallback( 1406 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1407 MPM.addPass(InstrProfiling(*Options, false)); 1408 }); 1409 1410 if (CodeGenOpts.OptimizationLevel == 0) { 1411 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1412 } else if (IsThinLTO) { 1413 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1414 } else if (IsLTO) { 1415 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1416 } else { 1417 MPM = PB.buildPerModuleDefaultPipeline(Level); 1418 } 1419 1420 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1421 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1422 MPM.addPass(ModuleMemProfilerPass()); 1423 } 1424 } 1425 1426 // FIXME: We still use the legacy pass manager to do code generation. We 1427 // create that pass manager here and use it as needed below. 1428 legacy::PassManager CodeGenPasses; 1429 bool NeedCodeGen = false; 1430 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1431 1432 // Append any output we need to the pass manager. 1433 switch (Action) { 1434 case Backend_EmitNothing: 1435 break; 1436 1437 case Backend_EmitBC: 1438 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1439 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1440 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1441 if (!ThinLinkOS) 1442 return; 1443 } 1444 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1445 CodeGenOpts.EnableSplitLTOUnit); 1446 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1447 : nullptr)); 1448 } else { 1449 // Emit a module summary by default for Regular LTO except for ld64 1450 // targets 1451 bool EmitLTOSummary = 1452 (CodeGenOpts.PrepareForLTO && 1453 !CodeGenOpts.DisableLLVMPasses && 1454 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1455 llvm::Triple::Apple); 1456 if (EmitLTOSummary) { 1457 if (!TheModule->getModuleFlag("ThinLTO")) 1458 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1459 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1460 uint32_t(1)); 1461 } 1462 MPM.addPass( 1463 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1464 } 1465 break; 1466 1467 case Backend_EmitLL: 1468 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1469 break; 1470 1471 case Backend_EmitAssembly: 1472 case Backend_EmitMCNull: 1473 case Backend_EmitObj: 1474 NeedCodeGen = true; 1475 CodeGenPasses.add( 1476 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1477 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1478 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1479 if (!DwoOS) 1480 return; 1481 } 1482 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1483 DwoOS ? &DwoOS->os() : nullptr)) 1484 // FIXME: Should we handle this error differently? 1485 return; 1486 break; 1487 } 1488 1489 // Before executing passes, print the final values of the LLVM options. 1490 cl::PrintOptionValues(); 1491 1492 // Now that we have all of the passes ready, run them. 1493 { 1494 PrettyStackTraceString CrashInfo("Optimizer"); 1495 MPM.run(*TheModule, MAM); 1496 } 1497 1498 // Now if needed, run the legacy PM for codegen. 1499 if (NeedCodeGen) { 1500 PrettyStackTraceString CrashInfo("Code generation"); 1501 CodeGenPasses.run(*TheModule); 1502 } 1503 1504 if (ThinLinkOS) 1505 ThinLinkOS->keep(); 1506 if (DwoOS) 1507 DwoOS->keep(); 1508 } 1509 1510 static void runThinLTOBackend( 1511 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1512 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1513 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1514 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1515 std::string ProfileRemapping, BackendAction Action) { 1516 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1517 ModuleToDefinedGVSummaries; 1518 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1519 1520 setCommandLineOpts(CGOpts); 1521 1522 // We can simply import the values mentioned in the combined index, since 1523 // we should only invoke this using the individual indexes written out 1524 // via a WriteIndexesThinBackend. 1525 FunctionImporter::ImportMapTy ImportList; 1526 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1527 return; 1528 1529 auto AddStream = [&](size_t Task) { 1530 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1531 }; 1532 lto::Config Conf; 1533 if (CGOpts.SaveTempsFilePrefix != "") { 1534 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1535 /* UseInputModulePath */ false)) { 1536 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1537 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1538 << '\n'; 1539 }); 1540 } 1541 } 1542 Conf.CPU = TOpts.CPU; 1543 Conf.CodeModel = getCodeModel(CGOpts); 1544 Conf.MAttrs = TOpts.Features; 1545 Conf.RelocModel = CGOpts.RelocationModel; 1546 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1547 Conf.OptLevel = CGOpts.OptimizationLevel; 1548 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1549 Conf.SampleProfile = std::move(SampleProfile); 1550 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1551 // For historical reasons, loop interleaving is set to mirror setting for loop 1552 // unrolling. 1553 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1554 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1555 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1556 // Only enable CGProfilePass when using integrated assembler, since 1557 // non-integrated assemblers don't recognize .cgprofile section. 1558 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1559 1560 // Context sensitive profile. 1561 if (CGOpts.hasProfileCSIRInstr()) { 1562 Conf.RunCSIRInstr = true; 1563 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1564 } else if (CGOpts.hasProfileCSIRUse()) { 1565 Conf.RunCSIRInstr = false; 1566 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1567 } 1568 1569 Conf.ProfileRemapping = std::move(ProfileRemapping); 1570 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1571 Conf.DebugPassManager = CGOpts.DebugPassManager; 1572 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1573 Conf.RemarksFilename = CGOpts.OptRecordFile; 1574 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1575 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1576 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1577 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1578 switch (Action) { 1579 case Backend_EmitNothing: 1580 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1581 return false; 1582 }; 1583 break; 1584 case Backend_EmitLL: 1585 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1586 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1587 return false; 1588 }; 1589 break; 1590 case Backend_EmitBC: 1591 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1592 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1593 return false; 1594 }; 1595 break; 1596 default: 1597 Conf.CGFileType = getCodeGenFileType(Action); 1598 break; 1599 } 1600 if (Error E = 1601 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1602 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1603 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1604 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1605 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1606 }); 1607 } 1608 } 1609 1610 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1611 const HeaderSearchOptions &HeaderOpts, 1612 const CodeGenOptions &CGOpts, 1613 const clang::TargetOptions &TOpts, 1614 const LangOptions &LOpts, 1615 StringRef TDesc, Module *M, 1616 BackendAction Action, 1617 std::unique_ptr<raw_pwrite_stream> OS) { 1618 1619 llvm::TimeTraceScope TimeScope("Backend"); 1620 1621 std::unique_ptr<llvm::Module> EmptyModule; 1622 if (!CGOpts.ThinLTOIndexFile.empty()) { 1623 // If we are performing a ThinLTO importing compile, load the function index 1624 // into memory and pass it into runThinLTOBackend, which will run the 1625 // function importer and invoke LTO passes. 1626 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1627 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1628 /*IgnoreEmptyThinLTOIndexFile*/true); 1629 if (!IndexOrErr) { 1630 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1631 "Error loading index file '" + 1632 CGOpts.ThinLTOIndexFile + "': "); 1633 return; 1634 } 1635 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1636 // A null CombinedIndex means we should skip ThinLTO compilation 1637 // (LLVM will optionally ignore empty index files, returning null instead 1638 // of an error). 1639 if (CombinedIndex) { 1640 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1641 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1642 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1643 CGOpts.ProfileRemappingFile, Action); 1644 return; 1645 } 1646 // Distributed indexing detected that nothing from the module is needed 1647 // for the final linking. So we can skip the compilation. We sill need to 1648 // output an empty object file to make sure that a linker does not fail 1649 // trying to read it. Also for some features, like CFI, we must skip 1650 // the compilation as CombinedIndex does not contain all required 1651 // information. 1652 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1653 EmptyModule->setTargetTriple(M->getTargetTriple()); 1654 M = EmptyModule.get(); 1655 } 1656 } 1657 1658 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1659 1660 if (!CGOpts.LegacyPassManager) 1661 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1662 else 1663 AsmHelper.EmitAssembly(Action, std::move(OS)); 1664 1665 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1666 // DataLayout. 1667 if (AsmHelper.TM) { 1668 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1669 if (DLDesc != TDesc) { 1670 unsigned DiagID = Diags.getCustomDiagID( 1671 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1672 "expected target description '%1'"); 1673 Diags.Report(DiagID) << DLDesc << TDesc; 1674 } 1675 } 1676 } 1677 1678 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1679 // __LLVM,__bitcode section. 1680 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1681 llvm::MemoryBufferRef Buf) { 1682 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1683 return; 1684 llvm::EmbedBitcodeInModule( 1685 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1686 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1687 CGOpts.CmdArgs); 1688 } 1689