1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/CodeGen/RegAllocRegistry.h" 26 #include "llvm/CodeGen/SchedulerRegistry.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/IRPrintingPasses.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/MC/SubtargetFeature.h" 35 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/PrettyStackTrace.h" 39 #include "llvm/Support/TargetRegistry.h" 40 #include "llvm/Support/Timer.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Coroutines.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Instrumentation.h" 50 #include "llvm/Transforms/ObjCARC.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Scalar/GVN.h" 53 #include "llvm/Transforms/Utils/SymbolRewriter.h" 54 #include <memory> 55 using namespace clang; 56 using namespace llvm; 57 58 namespace { 59 60 class EmitAssemblyHelper { 61 DiagnosticsEngine &Diags; 62 const CodeGenOptions &CodeGenOpts; 63 const clang::TargetOptions &TargetOpts; 64 const LangOptions &LangOpts; 65 Module *TheModule; 66 67 Timer CodeGenerationTime; 68 69 std::unique_ptr<raw_pwrite_stream> OS; 70 71 private: 72 TargetIRAnalysis getTargetIRAnalysis() const { 73 if (TM) 74 return TM->getTargetIRAnalysis(); 75 76 return TargetIRAnalysis(); 77 } 78 79 /// Set LLVM command line options passed through -backend-option. 80 void setCommandLineOpts(); 81 82 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 83 84 /// Generates the TargetMachine. 85 /// Leaves TM unchanged if it is unable to create the target machine. 86 /// Some of our clang tests specify triples which are not built 87 /// into clang. This is okay because these tests check the generated 88 /// IR, and they require DataLayout which depends on the triple. 89 /// In this case, we allow this method to fail and not report an error. 90 /// When MustCreateTM is used, we print an error if we are unable to load 91 /// the requested target. 92 void CreateTargetMachine(bool MustCreateTM); 93 94 /// Add passes necessary to emit assembly or LLVM IR. 95 /// 96 /// \return True on success. 97 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 98 raw_pwrite_stream &OS); 99 100 public: 101 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 102 const clang::TargetOptions &TOpts, 103 const LangOptions &LOpts, Module *M) 104 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 105 TheModule(M), CodeGenerationTime("Code Generation Time") {} 106 107 ~EmitAssemblyHelper() { 108 if (CodeGenOpts.DisableFree) 109 BuryPointer(std::move(TM)); 110 } 111 112 std::unique_ptr<TargetMachine> TM; 113 114 void EmitAssembly(BackendAction Action, 115 std::unique_ptr<raw_pwrite_stream> OS); 116 }; 117 118 // We need this wrapper to access LangOpts and CGOpts from extension functions 119 // that we add to the PassManagerBuilder. 120 class PassManagerBuilderWrapper : public PassManagerBuilder { 121 public: 122 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 123 const LangOptions &LangOpts) 124 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 125 const CodeGenOptions &getCGOpts() const { return CGOpts; } 126 const LangOptions &getLangOpts() const { return LangOpts; } 127 private: 128 const CodeGenOptions &CGOpts; 129 const LangOptions &LangOpts; 130 }; 131 132 } 133 134 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 135 if (Builder.OptLevel > 0) 136 PM.add(createObjCARCAPElimPass()); 137 } 138 139 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 140 if (Builder.OptLevel > 0) 141 PM.add(createObjCARCExpandPass()); 142 } 143 144 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 145 if (Builder.OptLevel > 0) 146 PM.add(createObjCARCOptPass()); 147 } 148 149 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 150 legacy::PassManagerBase &PM) { 151 PM.add(createAddDiscriminatorsPass()); 152 } 153 154 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 155 legacy::PassManagerBase &PM) { 156 PM.add(createBoundsCheckingPass()); 157 } 158 159 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 160 legacy::PassManagerBase &PM) { 161 const PassManagerBuilderWrapper &BuilderWrapper = 162 static_cast<const PassManagerBuilderWrapper&>(Builder); 163 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 164 SanitizerCoverageOptions Opts; 165 Opts.CoverageType = 166 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 167 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 168 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 169 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 170 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 171 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 172 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 173 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 174 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 175 PM.add(createSanitizerCoverageModulePass(Opts)); 176 } 177 178 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 179 legacy::PassManagerBase &PM) { 180 const PassManagerBuilderWrapper &BuilderWrapper = 181 static_cast<const PassManagerBuilderWrapper&>(Builder); 182 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 183 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 184 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 185 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 186 UseAfterScope)); 187 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 188 } 189 190 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddressSanitizerFunctionPass( 193 /*CompileKernel*/ true, 194 /*Recover*/ true, /*UseAfterScope*/ false)); 195 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 196 /*Recover*/true)); 197 } 198 199 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 200 legacy::PassManagerBase &PM) { 201 const PassManagerBuilderWrapper &BuilderWrapper = 202 static_cast<const PassManagerBuilderWrapper&>(Builder); 203 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 204 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 205 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 206 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 207 208 // MemorySanitizer inserts complex instrumentation that mostly follows 209 // the logic of the original code, but operates on "shadow" values. 210 // It can benefit from re-running some general purpose optimization passes. 211 if (Builder.OptLevel > 0) { 212 PM.add(createEarlyCSEPass()); 213 PM.add(createReassociatePass()); 214 PM.add(createLICMPass()); 215 PM.add(createGVNPass()); 216 PM.add(createInstructionCombiningPass()); 217 PM.add(createDeadStoreEliminationPass()); 218 } 219 } 220 221 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 222 legacy::PassManagerBase &PM) { 223 PM.add(createThreadSanitizerPass()); 224 } 225 226 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 227 legacy::PassManagerBase &PM) { 228 const PassManagerBuilderWrapper &BuilderWrapper = 229 static_cast<const PassManagerBuilderWrapper&>(Builder); 230 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 231 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 232 } 233 234 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 239 EfficiencySanitizerOptions Opts; 240 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 241 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 242 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 243 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 244 PM.add(createEfficiencySanitizerPass(Opts)); 245 } 246 247 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 248 const CodeGenOptions &CodeGenOpts) { 249 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 250 if (!CodeGenOpts.SimplifyLibCalls) 251 TLII->disableAllFunctions(); 252 else { 253 // Disable individual libc/libm calls in TargetLibraryInfo. 254 LibFunc::Func F; 255 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 256 if (TLII->getLibFunc(FuncName, F)) 257 TLII->setUnavailable(F); 258 } 259 260 switch (CodeGenOpts.getVecLib()) { 261 case CodeGenOptions::Accelerate: 262 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 263 break; 264 case CodeGenOptions::SVML: 265 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 266 break; 267 default: 268 break; 269 } 270 return TLII; 271 } 272 273 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 274 legacy::PassManager *MPM) { 275 llvm::SymbolRewriter::RewriteDescriptorList DL; 276 277 llvm::SymbolRewriter::RewriteMapParser MapParser; 278 for (const auto &MapFile : Opts.RewriteMapFiles) 279 MapParser.parse(MapFile, &DL); 280 281 MPM->add(createRewriteSymbolsPass(DL)); 282 } 283 284 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 285 legacy::FunctionPassManager &FPM) { 286 if (CodeGenOpts.DisableLLVMPasses) 287 return; 288 289 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 290 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 291 292 // Handle disabling of LLVM optimization, where we want to preserve the 293 // internal module before any optimization. 294 if (CodeGenOpts.DisableLLVMOpts) { 295 OptLevel = 0; 296 Inlining = CodeGenOpts.NoInlining; 297 } 298 299 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 300 301 // Figure out TargetLibraryInfo. 302 Triple TargetTriple(TheModule->getTargetTriple()); 303 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 304 305 switch (Inlining) { 306 case CodeGenOptions::NoInlining: 307 break; 308 case CodeGenOptions::NormalInlining: 309 case CodeGenOptions::OnlyHintInlining: { 310 PMBuilder.Inliner = 311 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 312 break; 313 } 314 case CodeGenOptions::OnlyAlwaysInlining: 315 // Respect always_inline. 316 if (OptLevel == 0) 317 // Do not insert lifetime intrinsics at -O0. 318 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(false); 319 else 320 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(); 321 break; 322 } 323 324 PMBuilder.OptLevel = OptLevel; 325 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 326 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 327 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 328 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 329 330 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 331 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 332 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 333 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 334 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 335 336 // Add target-specific passes that need to run as early as possible. 337 if (TM) 338 PMBuilder.addExtension( 339 PassManagerBuilder::EP_EarlyAsPossible, 340 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 341 TM->addEarlyAsPossiblePasses(PM); 342 }); 343 344 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 345 addAddDiscriminatorsPass); 346 347 // In ObjC ARC mode, add the main ARC optimization passes. 348 if (LangOpts.ObjCAutoRefCount) { 349 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 350 addObjCARCExpandPass); 351 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 352 addObjCARCAPElimPass); 353 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 354 addObjCARCOptPass); 355 } 356 357 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 358 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 359 addBoundsCheckingPass); 360 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 361 addBoundsCheckingPass); 362 } 363 364 if (CodeGenOpts.SanitizeCoverageType || 365 CodeGenOpts.SanitizeCoverageIndirectCalls || 366 CodeGenOpts.SanitizeCoverageTraceCmp) { 367 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 368 addSanitizerCoveragePass); 369 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 370 addSanitizerCoveragePass); 371 } 372 373 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 374 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 375 addAddressSanitizerPasses); 376 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 377 addAddressSanitizerPasses); 378 } 379 380 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 381 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 382 addKernelAddressSanitizerPasses); 383 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 384 addKernelAddressSanitizerPasses); 385 } 386 387 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 388 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 389 addMemorySanitizerPass); 390 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 391 addMemorySanitizerPass); 392 } 393 394 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 395 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 396 addThreadSanitizerPass); 397 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 398 addThreadSanitizerPass); 399 } 400 401 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 402 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 403 addDataFlowSanitizerPass); 404 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 405 addDataFlowSanitizerPass); 406 } 407 408 if (LangOpts.CoroutinesTS) 409 addCoroutinePassesToExtensionPoints(PMBuilder); 410 411 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 412 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 413 addEfficiencySanitizerPass); 414 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 415 addEfficiencySanitizerPass); 416 } 417 418 // Set up the per-function pass manager. 419 if (CodeGenOpts.VerifyModule) 420 FPM.add(createVerifierPass()); 421 422 // Set up the per-module pass manager. 423 if (!CodeGenOpts.RewriteMapFiles.empty()) 424 addSymbolRewriterPass(CodeGenOpts, &MPM); 425 426 if (!CodeGenOpts.DisableGCov && 427 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 428 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 429 // LLVM's -default-gcov-version flag is set to something invalid. 430 GCOVOptions Options; 431 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 432 Options.EmitData = CodeGenOpts.EmitGcovArcs; 433 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 434 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 435 Options.NoRedZone = CodeGenOpts.DisableRedZone; 436 Options.FunctionNamesInData = 437 !CodeGenOpts.CoverageNoFunctionNamesInData; 438 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 439 MPM.add(createGCOVProfilerPass(Options)); 440 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 441 MPM.add(createStripSymbolsPass(true)); 442 } 443 444 if (CodeGenOpts.hasProfileClangInstr()) { 445 InstrProfOptions Options; 446 Options.NoRedZone = CodeGenOpts.DisableRedZone; 447 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 448 MPM.add(createInstrProfilingLegacyPass(Options)); 449 } 450 if (CodeGenOpts.hasProfileIRInstr()) { 451 PMBuilder.EnablePGOInstrGen = true; 452 if (!CodeGenOpts.InstrProfileOutput.empty()) 453 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 454 else 455 PMBuilder.PGOInstrGen = "default_%m.profraw"; 456 } 457 if (CodeGenOpts.hasProfileIRUse()) 458 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 459 460 if (!CodeGenOpts.SampleProfileFile.empty()) { 461 MPM.add(createPruneEHPass()); 462 MPM.add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 463 } 464 465 PMBuilder.populateFunctionPassManager(FPM); 466 PMBuilder.populateModulePassManager(MPM); 467 } 468 469 void EmitAssemblyHelper::setCommandLineOpts() { 470 SmallVector<const char *, 16> BackendArgs; 471 BackendArgs.push_back("clang"); // Fake program name. 472 if (!CodeGenOpts.DebugPass.empty()) { 473 BackendArgs.push_back("-debug-pass"); 474 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 475 } 476 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 477 BackendArgs.push_back("-limit-float-precision"); 478 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 479 } 480 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 481 BackendArgs.push_back(BackendOption.c_str()); 482 BackendArgs.push_back(nullptr); 483 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 484 BackendArgs.data()); 485 } 486 487 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 488 // Create the TargetMachine for generating code. 489 std::string Error; 490 std::string Triple = TheModule->getTargetTriple(); 491 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 492 if (!TheTarget) { 493 if (MustCreateTM) 494 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 495 return; 496 } 497 498 unsigned CodeModel = 499 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 500 .Case("small", llvm::CodeModel::Small) 501 .Case("kernel", llvm::CodeModel::Kernel) 502 .Case("medium", llvm::CodeModel::Medium) 503 .Case("large", llvm::CodeModel::Large) 504 .Case("default", llvm::CodeModel::Default) 505 .Default(~0u); 506 assert(CodeModel != ~0u && "invalid code model!"); 507 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 508 509 std::string FeaturesStr = 510 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 511 512 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 513 llvm::Optional<llvm::Reloc::Model> RM; 514 if (CodeGenOpts.RelocationModel == "static") { 515 RM = llvm::Reloc::Static; 516 } else if (CodeGenOpts.RelocationModel == "pic") { 517 RM = llvm::Reloc::PIC_; 518 } else if (CodeGenOpts.RelocationModel == "ropi") { 519 RM = llvm::Reloc::ROPI; 520 } else if (CodeGenOpts.RelocationModel == "rwpi") { 521 RM = llvm::Reloc::RWPI; 522 } else if (CodeGenOpts.RelocationModel == "ropi-rwpi") { 523 RM = llvm::Reloc::ROPI_RWPI; 524 } else { 525 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 526 "Invalid PIC model!"); 527 RM = llvm::Reloc::DynamicNoPIC; 528 } 529 530 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 531 switch (CodeGenOpts.OptimizationLevel) { 532 default: break; 533 case 0: OptLevel = CodeGenOpt::None; break; 534 case 3: OptLevel = CodeGenOpt::Aggressive; break; 535 } 536 537 llvm::TargetOptions Options; 538 539 Options.ThreadModel = 540 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 541 .Case("posix", llvm::ThreadModel::POSIX) 542 .Case("single", llvm::ThreadModel::Single); 543 544 // Set float ABI type. 545 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 546 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 547 "Invalid Floating Point ABI!"); 548 Options.FloatABIType = 549 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 550 .Case("soft", llvm::FloatABI::Soft) 551 .Case("softfp", llvm::FloatABI::Soft) 552 .Case("hard", llvm::FloatABI::Hard) 553 .Default(llvm::FloatABI::Default); 554 555 // Set FP fusion mode. 556 switch (CodeGenOpts.getFPContractMode()) { 557 case CodeGenOptions::FPC_Off: 558 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 559 break; 560 case CodeGenOptions::FPC_On: 561 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 562 break; 563 case CodeGenOptions::FPC_Fast: 564 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 565 break; 566 } 567 568 Options.UseInitArray = CodeGenOpts.UseInitArray; 569 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 570 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 571 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 572 573 // Set EABI version. 574 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 575 .Case("4", llvm::EABI::EABI4) 576 .Case("5", llvm::EABI::EABI5) 577 .Case("gnu", llvm::EABI::GNU) 578 .Default(llvm::EABI::Default); 579 580 if (LangOpts.SjLjExceptions) 581 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 582 583 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 584 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 585 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 586 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 587 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 588 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 589 Options.FunctionSections = CodeGenOpts.FunctionSections; 590 Options.DataSections = CodeGenOpts.DataSections; 591 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 592 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 593 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 594 595 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 596 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 597 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 598 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 599 Options.MCOptions.MCIncrementalLinkerCompatible = 600 CodeGenOpts.IncrementalLinkerCompatible; 601 Options.MCOptions.MCPIECopyRelocations = 602 CodeGenOpts.PIECopyRelocations; 603 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 604 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 605 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 606 Options.MCOptions.ABIName = TargetOpts.ABI; 607 608 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 609 Options, RM, CM, OptLevel)); 610 } 611 612 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 613 BackendAction Action, 614 raw_pwrite_stream &OS) { 615 // Add LibraryInfo. 616 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 617 std::unique_ptr<TargetLibraryInfoImpl> TLII( 618 createTLII(TargetTriple, CodeGenOpts)); 619 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 620 621 // Normal mode, emit a .s or .o file by running the code generator. Note, 622 // this also adds codegenerator level optimization passes. 623 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 624 if (Action == Backend_EmitObj) 625 CGFT = TargetMachine::CGFT_ObjectFile; 626 else if (Action == Backend_EmitMCNull) 627 CGFT = TargetMachine::CGFT_Null; 628 else 629 assert(Action == Backend_EmitAssembly && "Invalid action!"); 630 631 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 632 // "codegen" passes so that it isn't run multiple times when there is 633 // inlining happening. 634 if (CodeGenOpts.OptimizationLevel > 0) 635 CodeGenPasses.add(createObjCARCContractPass()); 636 637 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 638 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 639 Diags.Report(diag::err_fe_unable_to_interface_with_target); 640 return false; 641 } 642 643 return true; 644 } 645 646 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 647 std::unique_ptr<raw_pwrite_stream> OS) { 648 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 649 650 setCommandLineOpts(); 651 652 bool UsesCodeGen = (Action != Backend_EmitNothing && 653 Action != Backend_EmitBC && 654 Action != Backend_EmitLL); 655 CreateTargetMachine(UsesCodeGen); 656 657 if (UsesCodeGen && !TM) 658 return; 659 if (TM) 660 TheModule->setDataLayout(TM->createDataLayout()); 661 662 legacy::PassManager PerModulePasses; 663 PerModulePasses.add( 664 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 665 666 legacy::FunctionPassManager PerFunctionPasses(TheModule); 667 PerFunctionPasses.add( 668 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 669 670 CreatePasses(PerModulePasses, PerFunctionPasses); 671 672 legacy::PassManager CodeGenPasses; 673 CodeGenPasses.add( 674 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 675 676 switch (Action) { 677 case Backend_EmitNothing: 678 break; 679 680 case Backend_EmitBC: 681 PerModulePasses.add(createBitcodeWriterPass( 682 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 683 CodeGenOpts.EmitSummaryIndex)); 684 break; 685 686 case Backend_EmitLL: 687 PerModulePasses.add( 688 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 689 break; 690 691 default: 692 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 693 return; 694 } 695 696 // Before executing passes, print the final values of the LLVM options. 697 cl::PrintOptionValues(); 698 699 // Run passes. For now we do all passes at once, but eventually we 700 // would like to have the option of streaming code generation. 701 702 { 703 PrettyStackTraceString CrashInfo("Per-function optimization"); 704 705 PerFunctionPasses.doInitialization(); 706 for (Function &F : *TheModule) 707 if (!F.isDeclaration()) 708 PerFunctionPasses.run(F); 709 PerFunctionPasses.doFinalization(); 710 } 711 712 { 713 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 714 PerModulePasses.run(*TheModule); 715 } 716 717 { 718 PrettyStackTraceString CrashInfo("Code generation"); 719 CodeGenPasses.run(*TheModule); 720 } 721 } 722 723 static void runThinLTOBackend(const CodeGenOptions &CGOpts, Module *M, 724 std::unique_ptr<raw_pwrite_stream> OS) { 725 // If we are performing a ThinLTO importing compile, load the function index 726 // into memory and pass it into thinBackend, which will run the function 727 // importer and invoke LTO passes. 728 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 729 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 730 if (!IndexOrErr) { 731 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 732 "Error loading index file '" + 733 CGOpts.ThinLTOIndexFile + "': "); 734 return; 735 } 736 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 737 738 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 739 ModuleToDefinedGVSummaries; 740 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 741 742 // FIXME: We could simply import the modules mentioned in the combined index 743 // here. 744 FunctionImporter::ImportMapTy ImportList; 745 ComputeCrossModuleImportForModule(M->getModuleIdentifier(), *CombinedIndex, 746 ImportList); 747 748 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 749 MapVector<llvm::StringRef, llvm::MemoryBufferRef> ModuleMap; 750 751 for (auto &I : ImportList) { 752 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 753 llvm::MemoryBuffer::getFile(I.first()); 754 if (!MBOrErr) { 755 errs() << "Error loading imported file '" << I.first() 756 << "': " << MBOrErr.getError().message() << "\n"; 757 return; 758 } 759 ModuleMap[I.first()] = (*MBOrErr)->getMemBufferRef(); 760 OwnedImports.push_back(std::move(*MBOrErr)); 761 } 762 auto AddStream = [&](size_t Task) { 763 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 764 }; 765 lto::Config Conf; 766 if (Error E = thinBackend( 767 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 768 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 769 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 770 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 771 }); 772 } 773 } 774 775 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 776 const CodeGenOptions &CGOpts, 777 const clang::TargetOptions &TOpts, 778 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 779 Module *M, BackendAction Action, 780 std::unique_ptr<raw_pwrite_stream> OS) { 781 if (!CGOpts.ThinLTOIndexFile.empty()) { 782 runThinLTOBackend(CGOpts, M, std::move(OS)); 783 return; 784 } 785 786 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 787 788 AsmHelper.EmitAssembly(Action, std::move(OS)); 789 790 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 791 // DataLayout. 792 if (AsmHelper.TM) { 793 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 794 if (DLDesc != TDesc.getStringRepresentation()) { 795 unsigned DiagID = Diags.getCustomDiagID( 796 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 797 "expected target description '%1'"); 798 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 799 } 800 } 801 } 802 803 static const char* getSectionNameForBitcode(const Triple &T) { 804 switch (T.getObjectFormat()) { 805 case Triple::MachO: 806 return "__LLVM,__bitcode"; 807 case Triple::COFF: 808 case Triple::ELF: 809 case Triple::UnknownObjectFormat: 810 return ".llvmbc"; 811 } 812 llvm_unreachable("Unimplemented ObjectFormatType"); 813 } 814 815 static const char* getSectionNameForCommandline(const Triple &T) { 816 switch (T.getObjectFormat()) { 817 case Triple::MachO: 818 return "__LLVM,__cmdline"; 819 case Triple::COFF: 820 case Triple::ELF: 821 case Triple::UnknownObjectFormat: 822 return ".llvmcmd"; 823 } 824 llvm_unreachable("Unimplemented ObjectFormatType"); 825 } 826 827 // With -fembed-bitcode, save a copy of the llvm IR as data in the 828 // __LLVM,__bitcode section. 829 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 830 llvm::MemoryBufferRef Buf) { 831 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 832 return; 833 834 // Save llvm.compiler.used and remote it. 835 SmallVector<Constant*, 2> UsedArray; 836 SmallSet<GlobalValue*, 4> UsedGlobals; 837 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 838 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 839 for (auto *GV : UsedGlobals) { 840 if (GV->getName() != "llvm.embedded.module" && 841 GV->getName() != "llvm.cmdline") 842 UsedArray.push_back( 843 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 844 } 845 if (Used) 846 Used->eraseFromParent(); 847 848 // Embed the bitcode for the llvm module. 849 std::string Data; 850 ArrayRef<uint8_t> ModuleData; 851 Triple T(M->getTargetTriple()); 852 // Create a constant that contains the bitcode. 853 // In case of embedding a marker, ignore the input Buf and use the empty 854 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 855 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 856 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 857 (const unsigned char *)Buf.getBufferEnd())) { 858 // If the input is LLVM Assembly, bitcode is produced by serializing 859 // the module. Use-lists order need to be perserved in this case. 860 llvm::raw_string_ostream OS(Data); 861 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 862 ModuleData = 863 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 864 } else 865 // If the input is LLVM bitcode, write the input byte stream directly. 866 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 867 Buf.getBufferSize()); 868 } 869 llvm::Constant *ModuleConstant = 870 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 871 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 872 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 873 ModuleConstant); 874 GV->setSection(getSectionNameForBitcode(T)); 875 UsedArray.push_back( 876 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 877 if (llvm::GlobalVariable *Old = 878 M->getGlobalVariable("llvm.embedded.module", true)) { 879 assert(Old->hasOneUse() && 880 "llvm.embedded.module can only be used once in llvm.compiler.used"); 881 GV->takeName(Old); 882 Old->eraseFromParent(); 883 } else { 884 GV->setName("llvm.embedded.module"); 885 } 886 887 // Skip if only bitcode needs to be embedded. 888 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 889 // Embed command-line options. 890 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 891 CGOpts.CmdArgs.size()); 892 llvm::Constant *CmdConstant = 893 llvm::ConstantDataArray::get(M->getContext(), CmdData); 894 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 895 llvm::GlobalValue::PrivateLinkage, 896 CmdConstant); 897 GV->setSection(getSectionNameForCommandline(T)); 898 UsedArray.push_back( 899 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 900 if (llvm::GlobalVariable *Old = 901 M->getGlobalVariable("llvm.cmdline", true)) { 902 assert(Old->hasOneUse() && 903 "llvm.cmdline can only be used once in llvm.compiler.used"); 904 GV->takeName(Old); 905 Old->eraseFromParent(); 906 } else { 907 GV->setName("llvm.cmdline"); 908 } 909 } 910 911 if (UsedArray.empty()) 912 return; 913 914 // Recreate llvm.compiler.used. 915 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 916 auto *NewUsed = new GlobalVariable( 917 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 918 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 919 NewUsed->setSection("llvm.metadata"); 920 } 921