1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/InstCombine/InstCombine.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 57 #include "llvm/Transforms/ObjCARC.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Scalar/GVN.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 62 #include "llvm/Transforms/Utils/SymbolRewriter.h" 63 #include <memory> 64 using namespace clang; 65 using namespace llvm; 66 67 namespace { 68 69 // Default filename used for profile generation. 70 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 71 72 class EmitAssemblyHelper { 73 DiagnosticsEngine &Diags; 74 const HeaderSearchOptions &HSOpts; 75 const CodeGenOptions &CodeGenOpts; 76 const clang::TargetOptions &TargetOpts; 77 const LangOptions &LangOpts; 78 Module *TheModule; 79 80 Timer CodeGenerationTime; 81 82 std::unique_ptr<raw_pwrite_stream> OS; 83 84 TargetIRAnalysis getTargetIRAnalysis() const { 85 if (TM) 86 return TM->getTargetIRAnalysis(); 87 88 return TargetIRAnalysis(); 89 } 90 91 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 92 93 /// Generates the TargetMachine. 94 /// Leaves TM unchanged if it is unable to create the target machine. 95 /// Some of our clang tests specify triples which are not built 96 /// into clang. This is okay because these tests check the generated 97 /// IR, and they require DataLayout which depends on the triple. 98 /// In this case, we allow this method to fail and not report an error. 99 /// When MustCreateTM is used, we print an error if we are unable to load 100 /// the requested target. 101 void CreateTargetMachine(bool MustCreateTM); 102 103 /// Add passes necessary to emit assembly or LLVM IR. 104 /// 105 /// \return True on success. 106 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 107 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 108 109 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 110 std::error_code EC; 111 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 112 llvm::sys::fs::F_None); 113 if (EC) { 114 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 115 F.reset(); 116 } 117 return F; 118 } 119 120 public: 121 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 122 const HeaderSearchOptions &HeaderSearchOpts, 123 const CodeGenOptions &CGOpts, 124 const clang::TargetOptions &TOpts, 125 const LangOptions &LOpts, Module *M) 126 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 127 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 128 CodeGenerationTime("codegen", "Code Generation Time") {} 129 130 ~EmitAssemblyHelper() { 131 if (CodeGenOpts.DisableFree) 132 BuryPointer(std::move(TM)); 133 } 134 135 std::unique_ptr<TargetMachine> TM; 136 137 void EmitAssembly(BackendAction Action, 138 std::unique_ptr<raw_pwrite_stream> OS); 139 140 void EmitAssemblyWithNewPassManager(BackendAction Action, 141 std::unique_ptr<raw_pwrite_stream> OS); 142 }; 143 144 // We need this wrapper to access LangOpts and CGOpts from extension functions 145 // that we add to the PassManagerBuilder. 146 class PassManagerBuilderWrapper : public PassManagerBuilder { 147 public: 148 PassManagerBuilderWrapper(const Triple &TargetTriple, 149 const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 152 LangOpts(LangOpts) {} 153 const Triple &getTargetTriple() const { return TargetTriple; } 154 const CodeGenOptions &getCGOpts() const { return CGOpts; } 155 const LangOptions &getLangOpts() const { return LangOpts; } 156 157 private: 158 const Triple &TargetTriple; 159 const CodeGenOptions &CGOpts; 160 const LangOptions &LangOpts; 161 }; 162 } 163 164 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 165 if (Builder.OptLevel > 0) 166 PM.add(createObjCARCAPElimPass()); 167 } 168 169 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCExpandPass()); 172 } 173 174 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCOptPass()); 177 } 178 179 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 180 legacy::PassManagerBase &PM) { 181 PM.add(createAddDiscriminatorsPass()); 182 } 183 184 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createBoundsCheckingLegacyPass()); 187 } 188 189 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 const PassManagerBuilderWrapper &BuilderWrapper = 192 static_cast<const PassManagerBuilderWrapper&>(Builder); 193 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 194 SanitizerCoverageOptions Opts; 195 Opts.CoverageType = 196 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 197 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 198 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 199 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 200 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 201 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 202 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 203 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 204 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 205 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 206 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 207 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 208 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 209 PM.add(createSanitizerCoverageModulePass(Opts)); 210 } 211 212 // Check if ASan should use GC-friendly instrumentation for globals. 213 // First of all, there is no point if -fdata-sections is off (expect for MachO, 214 // where this is not a factor). Also, on ELF this feature requires an assembler 215 // extension that only works with -integrated-as at the moment. 216 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 217 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 218 return false; 219 switch (T.getObjectFormat()) { 220 case Triple::MachO: 221 case Triple::COFF: 222 return true; 223 case Triple::ELF: 224 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 225 default: 226 return false; 227 } 228 } 229 230 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 231 legacy::PassManagerBase &PM) { 232 const PassManagerBuilderWrapper &BuilderWrapper = 233 static_cast<const PassManagerBuilderWrapper&>(Builder); 234 const Triple &T = BuilderWrapper.getTargetTriple(); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 237 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 238 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 239 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 240 UseAfterScope)); 241 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 242 UseGlobalsGC)); 243 } 244 245 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 PM.add(createAddressSanitizerFunctionPass( 248 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 249 PM.add(createAddressSanitizerModulePass( 250 /*CompileKernel*/ true, /*Recover*/ true)); 251 } 252 253 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper &>(Builder); 257 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 258 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 259 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 260 } 261 262 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 PM.add(createHWAddressSanitizerPass( 265 /*CompileKernel*/ true, /*Recover*/ true)); 266 } 267 268 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM, 270 bool CompileKernel) { 271 const PassManagerBuilderWrapper &BuilderWrapper = 272 static_cast<const PassManagerBuilderWrapper&>(Builder); 273 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 274 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 275 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 276 PM.add(createMemorySanitizerPass(TrackOrigins, Recover, CompileKernel)); 277 278 // MemorySanitizer inserts complex instrumentation that mostly follows 279 // the logic of the original code, but operates on "shadow" values. 280 // It can benefit from re-running some general purpose optimization passes. 281 if (Builder.OptLevel > 0) { 282 PM.add(createEarlyCSEPass()); 283 PM.add(createReassociatePass()); 284 PM.add(createLICMPass()); 285 PM.add(createGVNPass()); 286 PM.add(createInstructionCombiningPass()); 287 PM.add(createDeadStoreEliminationPass()); 288 } 289 } 290 291 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 292 legacy::PassManagerBase &PM) { 293 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 294 } 295 296 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 297 legacy::PassManagerBase &PM) { 298 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 299 } 300 301 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 PM.add(createThreadSanitizerPass()); 304 } 305 306 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 307 legacy::PassManagerBase &PM) { 308 const PassManagerBuilderWrapper &BuilderWrapper = 309 static_cast<const PassManagerBuilderWrapper&>(Builder); 310 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 311 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 312 } 313 314 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 const PassManagerBuilderWrapper &BuilderWrapper = 317 static_cast<const PassManagerBuilderWrapper&>(Builder); 318 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 319 EfficiencySanitizerOptions Opts; 320 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 321 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 322 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 323 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 324 PM.add(createEfficiencySanitizerPass(Opts)); 325 } 326 327 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 328 const CodeGenOptions &CodeGenOpts) { 329 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 330 if (!CodeGenOpts.SimplifyLibCalls) 331 TLII->disableAllFunctions(); 332 else { 333 // Disable individual libc/libm calls in TargetLibraryInfo. 334 LibFunc F; 335 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 336 if (TLII->getLibFunc(FuncName, F)) 337 TLII->setUnavailable(F); 338 } 339 340 switch (CodeGenOpts.getVecLib()) { 341 case CodeGenOptions::Accelerate: 342 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 343 break; 344 case CodeGenOptions::SVML: 345 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 346 break; 347 default: 348 break; 349 } 350 return TLII; 351 } 352 353 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 354 legacy::PassManager *MPM) { 355 llvm::SymbolRewriter::RewriteDescriptorList DL; 356 357 llvm::SymbolRewriter::RewriteMapParser MapParser; 358 for (const auto &MapFile : Opts.RewriteMapFiles) 359 MapParser.parse(MapFile, &DL); 360 361 MPM->add(createRewriteSymbolsPass(DL)); 362 } 363 364 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 365 switch (CodeGenOpts.OptimizationLevel) { 366 default: 367 llvm_unreachable("Invalid optimization level!"); 368 case 0: 369 return CodeGenOpt::None; 370 case 1: 371 return CodeGenOpt::Less; 372 case 2: 373 return CodeGenOpt::Default; // O2/Os/Oz 374 case 3: 375 return CodeGenOpt::Aggressive; 376 } 377 } 378 379 static Optional<llvm::CodeModel::Model> 380 getCodeModel(const CodeGenOptions &CodeGenOpts) { 381 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 382 .Case("tiny", llvm::CodeModel::Tiny) 383 .Case("small", llvm::CodeModel::Small) 384 .Case("kernel", llvm::CodeModel::Kernel) 385 .Case("medium", llvm::CodeModel::Medium) 386 .Case("large", llvm::CodeModel::Large) 387 .Case("default", ~1u) 388 .Default(~0u); 389 assert(CodeModel != ~0u && "invalid code model!"); 390 if (CodeModel == ~1u) 391 return None; 392 return static_cast<llvm::CodeModel::Model>(CodeModel); 393 } 394 395 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 396 if (Action == Backend_EmitObj) 397 return TargetMachine::CGFT_ObjectFile; 398 else if (Action == Backend_EmitMCNull) 399 return TargetMachine::CGFT_Null; 400 else { 401 assert(Action == Backend_EmitAssembly && "Invalid action!"); 402 return TargetMachine::CGFT_AssemblyFile; 403 } 404 } 405 406 static void initTargetOptions(llvm::TargetOptions &Options, 407 const CodeGenOptions &CodeGenOpts, 408 const clang::TargetOptions &TargetOpts, 409 const LangOptions &LangOpts, 410 const HeaderSearchOptions &HSOpts) { 411 Options.ThreadModel = 412 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 413 .Case("posix", llvm::ThreadModel::POSIX) 414 .Case("single", llvm::ThreadModel::Single); 415 416 // Set float ABI type. 417 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 418 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 419 "Invalid Floating Point ABI!"); 420 Options.FloatABIType = 421 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 422 .Case("soft", llvm::FloatABI::Soft) 423 .Case("softfp", llvm::FloatABI::Soft) 424 .Case("hard", llvm::FloatABI::Hard) 425 .Default(llvm::FloatABI::Default); 426 427 // Set FP fusion mode. 428 switch (LangOpts.getDefaultFPContractMode()) { 429 case LangOptions::FPC_Off: 430 // Preserve any contraction performed by the front-end. (Strict performs 431 // splitting of the muladd instrinsic in the backend.) 432 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 433 break; 434 case LangOptions::FPC_On: 435 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 436 break; 437 case LangOptions::FPC_Fast: 438 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 439 break; 440 } 441 442 Options.UseInitArray = CodeGenOpts.UseInitArray; 443 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 444 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 445 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 446 447 // Set EABI version. 448 Options.EABIVersion = TargetOpts.EABIVersion; 449 450 if (LangOpts.SjLjExceptions) 451 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 452 if (LangOpts.SEHExceptions) 453 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 454 if (LangOpts.DWARFExceptions) 455 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 456 457 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 458 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 459 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 460 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 461 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 462 Options.FunctionSections = CodeGenOpts.FunctionSections; 463 Options.DataSections = CodeGenOpts.DataSections; 464 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 465 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 466 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 467 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 468 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 469 Options.EmitAddrsig = CodeGenOpts.Addrsig; 470 471 if (CodeGenOpts.EnableSplitDwarf) 472 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 473 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 474 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 475 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 476 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 477 Options.MCOptions.MCIncrementalLinkerCompatible = 478 CodeGenOpts.IncrementalLinkerCompatible; 479 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 480 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 481 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 482 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 483 Options.MCOptions.ABIName = TargetOpts.ABI; 484 for (const auto &Entry : HSOpts.UserEntries) 485 if (!Entry.IsFramework && 486 (Entry.Group == frontend::IncludeDirGroup::Quoted || 487 Entry.Group == frontend::IncludeDirGroup::Angled || 488 Entry.Group == frontend::IncludeDirGroup::System)) 489 Options.MCOptions.IASSearchPaths.push_back( 490 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 491 } 492 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 493 if (CodeGenOpts.DisableGCov) 494 return None; 495 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 496 return None; 497 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 498 // LLVM's -default-gcov-version flag is set to something invalid. 499 GCOVOptions Options; 500 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 501 Options.EmitData = CodeGenOpts.EmitGcovArcs; 502 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 503 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 504 Options.NoRedZone = CodeGenOpts.DisableRedZone; 505 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 506 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 507 return Options; 508 } 509 510 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 511 legacy::FunctionPassManager &FPM) { 512 // Handle disabling of all LLVM passes, where we want to preserve the 513 // internal module before any optimization. 514 if (CodeGenOpts.DisableLLVMPasses) 515 return; 516 517 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 518 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 519 // are inserted before PMBuilder ones - they'd get the default-constructed 520 // TLI with an unknown target otherwise. 521 Triple TargetTriple(TheModule->getTargetTriple()); 522 std::unique_ptr<TargetLibraryInfoImpl> TLII( 523 createTLII(TargetTriple, CodeGenOpts)); 524 525 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 526 527 // At O0 and O1 we only run the always inliner which is more efficient. At 528 // higher optimization levels we run the normal inliner. 529 if (CodeGenOpts.OptimizationLevel <= 1) { 530 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 531 !CodeGenOpts.DisableLifetimeMarkers); 532 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 533 } else { 534 // We do not want to inline hot callsites for SamplePGO module-summary build 535 // because profile annotation will happen again in ThinLTO backend, and we 536 // want the IR of the hot path to match the profile. 537 PMBuilder.Inliner = createFunctionInliningPass( 538 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 539 (!CodeGenOpts.SampleProfileFile.empty() && 540 CodeGenOpts.PrepareForThinLTO)); 541 } 542 543 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 544 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 545 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 546 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 547 548 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 549 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 550 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 551 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 552 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 553 554 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 555 556 if (TM) 557 TM->adjustPassManager(PMBuilder); 558 559 if (CodeGenOpts.DebugInfoForProfiling || 560 !CodeGenOpts.SampleProfileFile.empty()) 561 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 562 addAddDiscriminatorsPass); 563 564 // In ObjC ARC mode, add the main ARC optimization passes. 565 if (LangOpts.ObjCAutoRefCount) { 566 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 567 addObjCARCExpandPass); 568 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 569 addObjCARCAPElimPass); 570 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 571 addObjCARCOptPass); 572 } 573 574 if (LangOpts.CoroutinesTS) 575 addCoroutinePassesToExtensionPoints(PMBuilder); 576 577 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 578 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 579 addBoundsCheckingPass); 580 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 581 addBoundsCheckingPass); 582 } 583 584 if (CodeGenOpts.SanitizeCoverageType || 585 CodeGenOpts.SanitizeCoverageIndirectCalls || 586 CodeGenOpts.SanitizeCoverageTraceCmp) { 587 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 588 addSanitizerCoveragePass); 589 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 590 addSanitizerCoveragePass); 591 } 592 593 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 594 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 595 addAddressSanitizerPasses); 596 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 597 addAddressSanitizerPasses); 598 } 599 600 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 601 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 602 addKernelAddressSanitizerPasses); 603 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 604 addKernelAddressSanitizerPasses); 605 } 606 607 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 608 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 609 addHWAddressSanitizerPasses); 610 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 611 addHWAddressSanitizerPasses); 612 } 613 614 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 615 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 616 addKernelHWAddressSanitizerPasses); 617 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 618 addKernelHWAddressSanitizerPasses); 619 } 620 621 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 622 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 623 addMemorySanitizerPass); 624 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 625 addMemorySanitizerPass); 626 } 627 628 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 629 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 630 addKernelMemorySanitizerPass); 631 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 632 addKernelMemorySanitizerPass); 633 } 634 635 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 636 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 637 addThreadSanitizerPass); 638 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 639 addThreadSanitizerPass); 640 } 641 642 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 643 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 644 addDataFlowSanitizerPass); 645 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 646 addDataFlowSanitizerPass); 647 } 648 649 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 650 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 651 addEfficiencySanitizerPass); 652 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 653 addEfficiencySanitizerPass); 654 } 655 656 // Set up the per-function pass manager. 657 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 658 if (CodeGenOpts.VerifyModule) 659 FPM.add(createVerifierPass()); 660 661 // Set up the per-module pass manager. 662 if (!CodeGenOpts.RewriteMapFiles.empty()) 663 addSymbolRewriterPass(CodeGenOpts, &MPM); 664 665 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 666 MPM.add(createGCOVProfilerPass(*Options)); 667 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 668 MPM.add(createStripSymbolsPass(true)); 669 } 670 671 if (CodeGenOpts.hasProfileClangInstr()) { 672 InstrProfOptions Options; 673 Options.NoRedZone = CodeGenOpts.DisableRedZone; 674 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 675 676 // TODO: Surface the option to emit atomic profile counter increments at 677 // the driver level. 678 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 679 680 MPM.add(createInstrProfilingLegacyPass(Options)); 681 } 682 if (CodeGenOpts.hasProfileIRInstr()) { 683 PMBuilder.EnablePGOInstrGen = true; 684 if (!CodeGenOpts.InstrProfileOutput.empty()) 685 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 686 else 687 PMBuilder.PGOInstrGen = DefaultProfileGenName; 688 } 689 if (CodeGenOpts.hasProfileIRUse()) 690 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 691 692 if (!CodeGenOpts.SampleProfileFile.empty()) 693 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 694 695 PMBuilder.populateFunctionPassManager(FPM); 696 PMBuilder.populateModulePassManager(MPM); 697 } 698 699 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 700 SmallVector<const char *, 16> BackendArgs; 701 BackendArgs.push_back("clang"); // Fake program name. 702 if (!CodeGenOpts.DebugPass.empty()) { 703 BackendArgs.push_back("-debug-pass"); 704 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 705 } 706 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 707 BackendArgs.push_back("-limit-float-precision"); 708 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 709 } 710 BackendArgs.push_back(nullptr); 711 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 712 BackendArgs.data()); 713 } 714 715 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 716 // Create the TargetMachine for generating code. 717 std::string Error; 718 std::string Triple = TheModule->getTargetTriple(); 719 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 720 if (!TheTarget) { 721 if (MustCreateTM) 722 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 723 return; 724 } 725 726 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 727 std::string FeaturesStr = 728 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 729 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 730 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 731 732 llvm::TargetOptions Options; 733 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 734 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 735 Options, RM, CM, OptLevel)); 736 } 737 738 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 739 BackendAction Action, 740 raw_pwrite_stream &OS, 741 raw_pwrite_stream *DwoOS) { 742 // Add LibraryInfo. 743 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 744 std::unique_ptr<TargetLibraryInfoImpl> TLII( 745 createTLII(TargetTriple, CodeGenOpts)); 746 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 747 748 // Normal mode, emit a .s or .o file by running the code generator. Note, 749 // this also adds codegenerator level optimization passes. 750 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 751 752 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 753 // "codegen" passes so that it isn't run multiple times when there is 754 // inlining happening. 755 if (CodeGenOpts.OptimizationLevel > 0) 756 CodeGenPasses.add(createObjCARCContractPass()); 757 758 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 759 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 760 Diags.Report(diag::err_fe_unable_to_interface_with_target); 761 return false; 762 } 763 764 return true; 765 } 766 767 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 768 std::unique_ptr<raw_pwrite_stream> OS) { 769 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 770 771 setCommandLineOpts(CodeGenOpts); 772 773 bool UsesCodeGen = (Action != Backend_EmitNothing && 774 Action != Backend_EmitBC && 775 Action != Backend_EmitLL); 776 CreateTargetMachine(UsesCodeGen); 777 778 if (UsesCodeGen && !TM) 779 return; 780 if (TM) 781 TheModule->setDataLayout(TM->createDataLayout()); 782 783 legacy::PassManager PerModulePasses; 784 PerModulePasses.add( 785 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 786 787 legacy::FunctionPassManager PerFunctionPasses(TheModule); 788 PerFunctionPasses.add( 789 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 790 791 CreatePasses(PerModulePasses, PerFunctionPasses); 792 793 legacy::PassManager CodeGenPasses; 794 CodeGenPasses.add( 795 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 796 797 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 798 799 switch (Action) { 800 case Backend_EmitNothing: 801 break; 802 803 case Backend_EmitBC: 804 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 805 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 806 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 807 if (!ThinLinkOS) 808 return; 809 } 810 PerModulePasses.add(createWriteThinLTOBitcodePass( 811 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 812 } else { 813 // Emit a module summary by default for Regular LTO except for ld64 814 // targets 815 bool EmitLTOSummary = 816 (CodeGenOpts.PrepareForLTO && 817 !CodeGenOpts.DisableLLVMPasses && 818 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 819 llvm::Triple::Apple); 820 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 821 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 822 823 PerModulePasses.add( 824 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 825 EmitLTOSummary)); 826 } 827 break; 828 829 case Backend_EmitLL: 830 PerModulePasses.add( 831 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 832 break; 833 834 default: 835 if (!CodeGenOpts.SplitDwarfFile.empty()) { 836 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 837 if (!DwoOS) 838 return; 839 } 840 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 841 DwoOS ? &DwoOS->os() : nullptr)) 842 return; 843 } 844 845 // Before executing passes, print the final values of the LLVM options. 846 cl::PrintOptionValues(); 847 848 // Run passes. For now we do all passes at once, but eventually we 849 // would like to have the option of streaming code generation. 850 851 { 852 PrettyStackTraceString CrashInfo("Per-function optimization"); 853 854 PerFunctionPasses.doInitialization(); 855 for (Function &F : *TheModule) 856 if (!F.isDeclaration()) 857 PerFunctionPasses.run(F); 858 PerFunctionPasses.doFinalization(); 859 } 860 861 { 862 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 863 PerModulePasses.run(*TheModule); 864 } 865 866 { 867 PrettyStackTraceString CrashInfo("Code generation"); 868 CodeGenPasses.run(*TheModule); 869 } 870 871 if (ThinLinkOS) 872 ThinLinkOS->keep(); 873 if (DwoOS) 874 DwoOS->keep(); 875 } 876 877 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 878 switch (Opts.OptimizationLevel) { 879 default: 880 llvm_unreachable("Invalid optimization level!"); 881 882 case 1: 883 return PassBuilder::O1; 884 885 case 2: 886 switch (Opts.OptimizeSize) { 887 default: 888 llvm_unreachable("Invalid optimization level for size!"); 889 890 case 0: 891 return PassBuilder::O2; 892 893 case 1: 894 return PassBuilder::Os; 895 896 case 2: 897 return PassBuilder::Oz; 898 } 899 900 case 3: 901 return PassBuilder::O3; 902 } 903 } 904 905 /// A clean version of `EmitAssembly` that uses the new pass manager. 906 /// 907 /// Not all features are currently supported in this system, but where 908 /// necessary it falls back to the legacy pass manager to at least provide 909 /// basic functionality. 910 /// 911 /// This API is planned to have its functionality finished and then to replace 912 /// `EmitAssembly` at some point in the future when the default switches. 913 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 914 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 915 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 916 setCommandLineOpts(CodeGenOpts); 917 918 // The new pass manager always makes a target machine available to passes 919 // during construction. 920 CreateTargetMachine(/*MustCreateTM*/ true); 921 if (!TM) 922 // This will already be diagnosed, just bail. 923 return; 924 TheModule->setDataLayout(TM->createDataLayout()); 925 926 Optional<PGOOptions> PGOOpt; 927 928 if (CodeGenOpts.hasProfileIRInstr()) 929 // -fprofile-generate. 930 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 931 ? DefaultProfileGenName 932 : CodeGenOpts.InstrProfileOutput, 933 "", "", true, CodeGenOpts.DebugInfoForProfiling); 934 else if (CodeGenOpts.hasProfileIRUse()) 935 // -fprofile-use. 936 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 937 CodeGenOpts.DebugInfoForProfiling); 938 else if (!CodeGenOpts.SampleProfileFile.empty()) 939 // -fprofile-sample-use 940 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 941 CodeGenOpts.DebugInfoForProfiling); 942 else if (CodeGenOpts.DebugInfoForProfiling) 943 // -fdebug-info-for-profiling 944 PGOOpt = PGOOptions("", "", "", false, true); 945 946 PassBuilder PB(TM.get(), PGOOpt); 947 948 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 949 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 950 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 951 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 952 953 // Register the AA manager first so that our version is the one used. 954 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 955 956 // Register the target library analysis directly and give it a customized 957 // preset TLI. 958 Triple TargetTriple(TheModule->getTargetTriple()); 959 std::unique_ptr<TargetLibraryInfoImpl> TLII( 960 createTLII(TargetTriple, CodeGenOpts)); 961 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 962 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 963 964 // Register all the basic analyses with the managers. 965 PB.registerModuleAnalyses(MAM); 966 PB.registerCGSCCAnalyses(CGAM); 967 PB.registerFunctionAnalyses(FAM); 968 PB.registerLoopAnalyses(LAM); 969 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 970 971 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 972 973 if (!CodeGenOpts.DisableLLVMPasses) { 974 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 975 bool IsLTO = CodeGenOpts.PrepareForLTO; 976 977 if (CodeGenOpts.OptimizationLevel == 0) { 978 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 979 MPM.addPass(GCOVProfilerPass(*Options)); 980 981 // Build a minimal pipeline based on the semantics required by Clang, 982 // which is just that always inlining occurs. 983 MPM.addPass(AlwaysInlinerPass()); 984 985 // At -O0 we directly run necessary sanitizer passes. 986 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 987 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 988 989 // Lastly, add a semantically necessary pass for LTO. 990 if (IsLTO || IsThinLTO) 991 MPM.addPass(NameAnonGlobalPass()); 992 } else { 993 // Map our optimization levels into one of the distinct levels used to 994 // configure the pipeline. 995 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 996 997 // Register callbacks to schedule sanitizer passes at the appropriate part of 998 // the pipeline. 999 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1000 PB.registerScalarOptimizerLateEPCallback( 1001 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1002 FPM.addPass(BoundsCheckingPass()); 1003 }); 1004 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1005 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1006 MPM.addPass(GCOVProfilerPass(*Options)); 1007 }); 1008 1009 if (IsThinLTO) { 1010 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1011 Level, CodeGenOpts.DebugPassManager); 1012 MPM.addPass(NameAnonGlobalPass()); 1013 } else if (IsLTO) { 1014 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1015 CodeGenOpts.DebugPassManager); 1016 MPM.addPass(NameAnonGlobalPass()); 1017 } else { 1018 MPM = PB.buildPerModuleDefaultPipeline(Level, 1019 CodeGenOpts.DebugPassManager); 1020 } 1021 } 1022 } 1023 1024 // FIXME: We still use the legacy pass manager to do code generation. We 1025 // create that pass manager here and use it as needed below. 1026 legacy::PassManager CodeGenPasses; 1027 bool NeedCodeGen = false; 1028 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1029 1030 // Append any output we need to the pass manager. 1031 switch (Action) { 1032 case Backend_EmitNothing: 1033 break; 1034 1035 case Backend_EmitBC: 1036 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1037 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1038 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1039 if (!ThinLinkOS) 1040 return; 1041 } 1042 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1043 : nullptr)); 1044 } else { 1045 // Emit a module summary by default for Regular LTO except for ld64 1046 // targets 1047 bool EmitLTOSummary = 1048 (CodeGenOpts.PrepareForLTO && 1049 !CodeGenOpts.DisableLLVMPasses && 1050 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1051 llvm::Triple::Apple); 1052 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 1053 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1054 1055 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1056 EmitLTOSummary)); 1057 } 1058 break; 1059 1060 case Backend_EmitLL: 1061 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1062 break; 1063 1064 case Backend_EmitAssembly: 1065 case Backend_EmitMCNull: 1066 case Backend_EmitObj: 1067 NeedCodeGen = true; 1068 CodeGenPasses.add( 1069 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1070 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1071 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1072 if (!DwoOS) 1073 return; 1074 } 1075 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1076 DwoOS ? &DwoOS->os() : nullptr)) 1077 // FIXME: Should we handle this error differently? 1078 return; 1079 break; 1080 } 1081 1082 // Before executing passes, print the final values of the LLVM options. 1083 cl::PrintOptionValues(); 1084 1085 // Now that we have all of the passes ready, run them. 1086 { 1087 PrettyStackTraceString CrashInfo("Optimizer"); 1088 MPM.run(*TheModule, MAM); 1089 } 1090 1091 // Now if needed, run the legacy PM for codegen. 1092 if (NeedCodeGen) { 1093 PrettyStackTraceString CrashInfo("Code generation"); 1094 CodeGenPasses.run(*TheModule); 1095 } 1096 1097 if (ThinLinkOS) 1098 ThinLinkOS->keep(); 1099 if (DwoOS) 1100 DwoOS->keep(); 1101 } 1102 1103 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1104 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1105 if (!BMsOrErr) 1106 return BMsOrErr.takeError(); 1107 1108 // The bitcode file may contain multiple modules, we want the one that is 1109 // marked as being the ThinLTO module. 1110 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1111 return *Bm; 1112 1113 return make_error<StringError>("Could not find module summary", 1114 inconvertibleErrorCode()); 1115 } 1116 1117 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1118 for (BitcodeModule &BM : BMs) { 1119 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1120 if (LTOInfo && LTOInfo->IsThinLTO) 1121 return &BM; 1122 } 1123 return nullptr; 1124 } 1125 1126 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1127 const HeaderSearchOptions &HeaderOpts, 1128 const CodeGenOptions &CGOpts, 1129 const clang::TargetOptions &TOpts, 1130 const LangOptions &LOpts, 1131 std::unique_ptr<raw_pwrite_stream> OS, 1132 std::string SampleProfile, 1133 BackendAction Action) { 1134 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1135 ModuleToDefinedGVSummaries; 1136 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1137 1138 setCommandLineOpts(CGOpts); 1139 1140 // We can simply import the values mentioned in the combined index, since 1141 // we should only invoke this using the individual indexes written out 1142 // via a WriteIndexesThinBackend. 1143 FunctionImporter::ImportMapTy ImportList; 1144 for (auto &GlobalList : *CombinedIndex) { 1145 // Ignore entries for undefined references. 1146 if (GlobalList.second.SummaryList.empty()) 1147 continue; 1148 1149 auto GUID = GlobalList.first; 1150 assert(GlobalList.second.SummaryList.size() == 1 && 1151 "Expected individual combined index to have one summary per GUID"); 1152 auto &Summary = GlobalList.second.SummaryList[0]; 1153 // Skip the summaries for the importing module. These are included to 1154 // e.g. record required linkage changes. 1155 if (Summary->modulePath() == M->getModuleIdentifier()) 1156 continue; 1157 // Add an entry to provoke importing by thinBackend. 1158 ImportList[Summary->modulePath()].insert(GUID); 1159 } 1160 1161 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1162 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1163 1164 for (auto &I : ImportList) { 1165 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1166 llvm::MemoryBuffer::getFile(I.first()); 1167 if (!MBOrErr) { 1168 errs() << "Error loading imported file '" << I.first() 1169 << "': " << MBOrErr.getError().message() << "\n"; 1170 return; 1171 } 1172 1173 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1174 if (!BMOrErr) { 1175 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1176 errs() << "Error loading imported file '" << I.first() 1177 << "': " << EIB.message() << '\n'; 1178 }); 1179 return; 1180 } 1181 ModuleMap.insert({I.first(), *BMOrErr}); 1182 1183 OwnedImports.push_back(std::move(*MBOrErr)); 1184 } 1185 auto AddStream = [&](size_t Task) { 1186 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1187 }; 1188 lto::Config Conf; 1189 if (CGOpts.SaveTempsFilePrefix != "") { 1190 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1191 /* UseInputModulePath */ false)) { 1192 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1193 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1194 << '\n'; 1195 }); 1196 } 1197 } 1198 Conf.CPU = TOpts.CPU; 1199 Conf.CodeModel = getCodeModel(CGOpts); 1200 Conf.MAttrs = TOpts.Features; 1201 Conf.RelocModel = CGOpts.RelocationModel; 1202 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1203 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1204 Conf.SampleProfile = std::move(SampleProfile); 1205 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1206 Conf.DebugPassManager = CGOpts.DebugPassManager; 1207 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1208 Conf.RemarksFilename = CGOpts.OptRecordFile; 1209 Conf.DwoPath = CGOpts.SplitDwarfFile; 1210 switch (Action) { 1211 case Backend_EmitNothing: 1212 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1213 return false; 1214 }; 1215 break; 1216 case Backend_EmitLL: 1217 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1218 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1219 return false; 1220 }; 1221 break; 1222 case Backend_EmitBC: 1223 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1224 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1225 return false; 1226 }; 1227 break; 1228 default: 1229 Conf.CGFileType = getCodeGenFileType(Action); 1230 break; 1231 } 1232 if (Error E = thinBackend( 1233 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1234 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1235 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1236 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1237 }); 1238 } 1239 } 1240 1241 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1242 const HeaderSearchOptions &HeaderOpts, 1243 const CodeGenOptions &CGOpts, 1244 const clang::TargetOptions &TOpts, 1245 const LangOptions &LOpts, 1246 const llvm::DataLayout &TDesc, Module *M, 1247 BackendAction Action, 1248 std::unique_ptr<raw_pwrite_stream> OS) { 1249 std::unique_ptr<llvm::Module> EmptyModule; 1250 if (!CGOpts.ThinLTOIndexFile.empty()) { 1251 // If we are performing a ThinLTO importing compile, load the function index 1252 // into memory and pass it into runThinLTOBackend, which will run the 1253 // function importer and invoke LTO passes. 1254 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1255 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1256 /*IgnoreEmptyThinLTOIndexFile*/true); 1257 if (!IndexOrErr) { 1258 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1259 "Error loading index file '" + 1260 CGOpts.ThinLTOIndexFile + "': "); 1261 return; 1262 } 1263 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1264 // A null CombinedIndex means we should skip ThinLTO compilation 1265 // (LLVM will optionally ignore empty index files, returning null instead 1266 // of an error). 1267 if (CombinedIndex) { 1268 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1269 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1270 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1271 Action); 1272 return; 1273 } 1274 // Distributed indexing detected that nothing from the module is needed 1275 // for the final linking. So we can skip the compilation. We sill need to 1276 // output an empty object file to make sure that a linker does not fail 1277 // trying to read it. Also for some features, like CFI, we must skip 1278 // the compilation as CombinedIndex does not contain all required 1279 // information. 1280 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1281 EmptyModule->setTargetTriple(M->getTargetTriple()); 1282 M = EmptyModule.get(); 1283 } 1284 } 1285 1286 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1287 1288 if (CGOpts.ExperimentalNewPassManager) 1289 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1290 else 1291 AsmHelper.EmitAssembly(Action, std::move(OS)); 1292 1293 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1294 // DataLayout. 1295 if (AsmHelper.TM) { 1296 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1297 if (DLDesc != TDesc.getStringRepresentation()) { 1298 unsigned DiagID = Diags.getCustomDiagID( 1299 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1300 "expected target description '%1'"); 1301 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1302 } 1303 } 1304 } 1305 1306 static const char* getSectionNameForBitcode(const Triple &T) { 1307 switch (T.getObjectFormat()) { 1308 case Triple::MachO: 1309 return "__LLVM,__bitcode"; 1310 case Triple::COFF: 1311 case Triple::ELF: 1312 case Triple::Wasm: 1313 case Triple::UnknownObjectFormat: 1314 return ".llvmbc"; 1315 } 1316 llvm_unreachable("Unimplemented ObjectFormatType"); 1317 } 1318 1319 static const char* getSectionNameForCommandline(const Triple &T) { 1320 switch (T.getObjectFormat()) { 1321 case Triple::MachO: 1322 return "__LLVM,__cmdline"; 1323 case Triple::COFF: 1324 case Triple::ELF: 1325 case Triple::Wasm: 1326 case Triple::UnknownObjectFormat: 1327 return ".llvmcmd"; 1328 } 1329 llvm_unreachable("Unimplemented ObjectFormatType"); 1330 } 1331 1332 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1333 // __LLVM,__bitcode section. 1334 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1335 llvm::MemoryBufferRef Buf) { 1336 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1337 return; 1338 1339 // Save llvm.compiler.used and remote it. 1340 SmallVector<Constant*, 2> UsedArray; 1341 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1342 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1343 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1344 for (auto *GV : UsedGlobals) { 1345 if (GV->getName() != "llvm.embedded.module" && 1346 GV->getName() != "llvm.cmdline") 1347 UsedArray.push_back( 1348 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1349 } 1350 if (Used) 1351 Used->eraseFromParent(); 1352 1353 // Embed the bitcode for the llvm module. 1354 std::string Data; 1355 ArrayRef<uint8_t> ModuleData; 1356 Triple T(M->getTargetTriple()); 1357 // Create a constant that contains the bitcode. 1358 // In case of embedding a marker, ignore the input Buf and use the empty 1359 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1360 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1361 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1362 (const unsigned char *)Buf.getBufferEnd())) { 1363 // If the input is LLVM Assembly, bitcode is produced by serializing 1364 // the module. Use-lists order need to be perserved in this case. 1365 llvm::raw_string_ostream OS(Data); 1366 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1367 ModuleData = 1368 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1369 } else 1370 // If the input is LLVM bitcode, write the input byte stream directly. 1371 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1372 Buf.getBufferSize()); 1373 } 1374 llvm::Constant *ModuleConstant = 1375 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1376 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1377 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1378 ModuleConstant); 1379 GV->setSection(getSectionNameForBitcode(T)); 1380 UsedArray.push_back( 1381 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1382 if (llvm::GlobalVariable *Old = 1383 M->getGlobalVariable("llvm.embedded.module", true)) { 1384 assert(Old->hasOneUse() && 1385 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1386 GV->takeName(Old); 1387 Old->eraseFromParent(); 1388 } else { 1389 GV->setName("llvm.embedded.module"); 1390 } 1391 1392 // Skip if only bitcode needs to be embedded. 1393 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1394 // Embed command-line options. 1395 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1396 CGOpts.CmdArgs.size()); 1397 llvm::Constant *CmdConstant = 1398 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1399 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1400 llvm::GlobalValue::PrivateLinkage, 1401 CmdConstant); 1402 GV->setSection(getSectionNameForCommandline(T)); 1403 UsedArray.push_back( 1404 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1405 if (llvm::GlobalVariable *Old = 1406 M->getGlobalVariable("llvm.cmdline", true)) { 1407 assert(Old->hasOneUse() && 1408 "llvm.cmdline can only be used once in llvm.compiler.used"); 1409 GV->takeName(Old); 1410 Old->eraseFromParent(); 1411 } else { 1412 GV->setName("llvm.cmdline"); 1413 } 1414 } 1415 1416 if (UsedArray.empty()) 1417 return; 1418 1419 // Recreate llvm.compiler.used. 1420 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1421 auto *NewUsed = new GlobalVariable( 1422 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1423 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1424 NewUsed->setSection("llvm.metadata"); 1425 } 1426