1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/TimeProfiler.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/Coroutines.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/AlwaysInliner.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 55 #include "llvm/Transforms/InstCombine/InstCombine.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 58 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 59 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 60 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 61 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 62 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 63 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 64 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 65 #include "llvm/Transforms/ObjCARC.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Scalar/GVN.h" 68 #include "llvm/Transforms/Utils.h" 69 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 70 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 71 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 72 #include "llvm/Transforms/Utils/SymbolRewriter.h" 73 #include <memory> 74 using namespace clang; 75 using namespace llvm; 76 77 namespace { 78 79 // Default filename used for profile generation. 80 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 81 82 class EmitAssemblyHelper { 83 DiagnosticsEngine &Diags; 84 const HeaderSearchOptions &HSOpts; 85 const CodeGenOptions &CodeGenOpts; 86 const clang::TargetOptions &TargetOpts; 87 const LangOptions &LangOpts; 88 Module *TheModule; 89 90 Timer CodeGenerationTime; 91 92 std::unique_ptr<raw_pwrite_stream> OS; 93 94 TargetIRAnalysis getTargetIRAnalysis() const { 95 if (TM) 96 return TM->getTargetIRAnalysis(); 97 98 return TargetIRAnalysis(); 99 } 100 101 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 102 103 /// Generates the TargetMachine. 104 /// Leaves TM unchanged if it is unable to create the target machine. 105 /// Some of our clang tests specify triples which are not built 106 /// into clang. This is okay because these tests check the generated 107 /// IR, and they require DataLayout which depends on the triple. 108 /// In this case, we allow this method to fail and not report an error. 109 /// When MustCreateTM is used, we print an error if we are unable to load 110 /// the requested target. 111 void CreateTargetMachine(bool MustCreateTM); 112 113 /// Add passes necessary to emit assembly or LLVM IR. 114 /// 115 /// \return True on success. 116 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 117 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 118 119 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 120 std::error_code EC; 121 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 122 llvm::sys::fs::F_None); 123 if (EC) { 124 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 125 F.reset(); 126 } 127 return F; 128 } 129 130 public: 131 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 132 const HeaderSearchOptions &HeaderSearchOpts, 133 const CodeGenOptions &CGOpts, 134 const clang::TargetOptions &TOpts, 135 const LangOptions &LOpts, Module *M) 136 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 137 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 138 CodeGenerationTime("codegen", "Code Generation Time") {} 139 140 ~EmitAssemblyHelper() { 141 if (CodeGenOpts.DisableFree) 142 BuryPointer(std::move(TM)); 143 } 144 145 std::unique_ptr<TargetMachine> TM; 146 147 void EmitAssembly(BackendAction Action, 148 std::unique_ptr<raw_pwrite_stream> OS); 149 150 void EmitAssemblyWithNewPassManager(BackendAction Action, 151 std::unique_ptr<raw_pwrite_stream> OS); 152 }; 153 154 // We need this wrapper to access LangOpts and CGOpts from extension functions 155 // that we add to the PassManagerBuilder. 156 class PassManagerBuilderWrapper : public PassManagerBuilder { 157 public: 158 PassManagerBuilderWrapper(const Triple &TargetTriple, 159 const CodeGenOptions &CGOpts, 160 const LangOptions &LangOpts) 161 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 162 LangOpts(LangOpts) {} 163 const Triple &getTargetTriple() const { return TargetTriple; } 164 const CodeGenOptions &getCGOpts() const { return CGOpts; } 165 const LangOptions &getLangOpts() const { return LangOpts; } 166 167 private: 168 const Triple &TargetTriple; 169 const CodeGenOptions &CGOpts; 170 const LangOptions &LangOpts; 171 }; 172 } 173 174 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCAPElimPass()); 177 } 178 179 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCExpandPass()); 182 } 183 184 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 185 if (Builder.OptLevel > 0) 186 PM.add(createObjCARCOptPass()); 187 } 188 189 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 PM.add(createAddDiscriminatorsPass()); 192 } 193 194 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 PM.add(createBoundsCheckingLegacyPass()); 197 } 198 199 static SanitizerCoverageOptions 200 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 201 SanitizerCoverageOptions Opts; 202 Opts.CoverageType = 203 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 204 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 205 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 206 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 207 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 208 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 209 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 210 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 211 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 212 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 213 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 214 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 215 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 216 return Opts; 217 } 218 219 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 220 legacy::PassManagerBase &PM) { 221 const PassManagerBuilderWrapper &BuilderWrapper = 222 static_cast<const PassManagerBuilderWrapper &>(Builder); 223 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 224 auto Opts = getSancovOptsFromCGOpts(CGOpts); 225 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 226 PM.add(createSanitizerCoverageLegacyPassPass(Opts)); 227 } 228 229 // Check if ASan should use GC-friendly instrumentation for globals. 230 // First of all, there is no point if -fdata-sections is off (expect for MachO, 231 // where this is not a factor). Also, on ELF this feature requires an assembler 232 // extension that only works with -integrated-as at the moment. 233 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 234 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 235 return false; 236 switch (T.getObjectFormat()) { 237 case Triple::MachO: 238 case Triple::COFF: 239 return true; 240 case Triple::ELF: 241 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 242 case Triple::XCOFF: 243 llvm::report_fatal_error("ASan not implemented for XCOFF."); 244 case Triple::Wasm: 245 case Triple::UnknownObjectFormat: 246 break; 247 } 248 return false; 249 } 250 251 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 const PassManagerBuilderWrapper &BuilderWrapper = 254 static_cast<const PassManagerBuilderWrapper&>(Builder); 255 const Triple &T = BuilderWrapper.getTargetTriple(); 256 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 257 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 258 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 259 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 260 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 261 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 262 UseAfterScope)); 263 PM.add(createModuleAddressSanitizerLegacyPassPass( 264 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 265 } 266 267 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createAddressSanitizerFunctionPass( 270 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 271 PM.add(createModuleAddressSanitizerLegacyPassPass( 272 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 273 /*UseOdrIndicator*/ false)); 274 } 275 276 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper &>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 282 PM.add( 283 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 284 } 285 286 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createHWAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true)); 290 } 291 292 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM, 294 bool CompileKernel) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper&>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 299 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 300 PM.add(createMemorySanitizerLegacyPassPass( 301 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 302 303 // MemorySanitizer inserts complex instrumentation that mostly follows 304 // the logic of the original code, but operates on "shadow" values. 305 // It can benefit from re-running some general purpose optimization passes. 306 if (Builder.OptLevel > 0) { 307 PM.add(createEarlyCSEPass()); 308 PM.add(createReassociatePass()); 309 PM.add(createLICMPass()); 310 PM.add(createGVNPass()); 311 PM.add(createInstructionCombiningPass()); 312 PM.add(createDeadStoreEliminationPass()); 313 } 314 } 315 316 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 317 legacy::PassManagerBase &PM) { 318 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 319 } 320 321 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 324 } 325 326 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 PM.add(createThreadSanitizerLegacyPassPass()); 329 } 330 331 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper&>(Builder); 335 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 336 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 337 } 338 339 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 340 const CodeGenOptions &CodeGenOpts) { 341 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 342 if (!CodeGenOpts.SimplifyLibCalls) 343 TLII->disableAllFunctions(); 344 else { 345 // Disable individual libc/libm calls in TargetLibraryInfo. 346 LibFunc F; 347 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 348 if (TLII->getLibFunc(FuncName, F)) 349 TLII->setUnavailable(F); 350 } 351 352 switch (CodeGenOpts.getVecLib()) { 353 case CodeGenOptions::Accelerate: 354 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 355 break; 356 case CodeGenOptions::MASSV: 357 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 358 break; 359 case CodeGenOptions::SVML: 360 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 361 break; 362 default: 363 break; 364 } 365 return TLII; 366 } 367 368 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 369 legacy::PassManager *MPM) { 370 llvm::SymbolRewriter::RewriteDescriptorList DL; 371 372 llvm::SymbolRewriter::RewriteMapParser MapParser; 373 for (const auto &MapFile : Opts.RewriteMapFiles) 374 MapParser.parse(MapFile, &DL); 375 376 MPM->add(createRewriteSymbolsPass(DL)); 377 } 378 379 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 380 switch (CodeGenOpts.OptimizationLevel) { 381 default: 382 llvm_unreachable("Invalid optimization level!"); 383 case 0: 384 return CodeGenOpt::None; 385 case 1: 386 return CodeGenOpt::Less; 387 case 2: 388 return CodeGenOpt::Default; // O2/Os/Oz 389 case 3: 390 return CodeGenOpt::Aggressive; 391 } 392 } 393 394 static Optional<llvm::CodeModel::Model> 395 getCodeModel(const CodeGenOptions &CodeGenOpts) { 396 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 397 .Case("tiny", llvm::CodeModel::Tiny) 398 .Case("small", llvm::CodeModel::Small) 399 .Case("kernel", llvm::CodeModel::Kernel) 400 .Case("medium", llvm::CodeModel::Medium) 401 .Case("large", llvm::CodeModel::Large) 402 .Case("default", ~1u) 403 .Default(~0u); 404 assert(CodeModel != ~0u && "invalid code model!"); 405 if (CodeModel == ~1u) 406 return None; 407 return static_cast<llvm::CodeModel::Model>(CodeModel); 408 } 409 410 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 411 if (Action == Backend_EmitObj) 412 return TargetMachine::CGFT_ObjectFile; 413 else if (Action == Backend_EmitMCNull) 414 return TargetMachine::CGFT_Null; 415 else { 416 assert(Action == Backend_EmitAssembly && "Invalid action!"); 417 return TargetMachine::CGFT_AssemblyFile; 418 } 419 } 420 421 static void initTargetOptions(llvm::TargetOptions &Options, 422 const CodeGenOptions &CodeGenOpts, 423 const clang::TargetOptions &TargetOpts, 424 const LangOptions &LangOpts, 425 const HeaderSearchOptions &HSOpts) { 426 Options.ThreadModel = 427 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 428 .Case("posix", llvm::ThreadModel::POSIX) 429 .Case("single", llvm::ThreadModel::Single); 430 431 // Set float ABI type. 432 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 433 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 434 "Invalid Floating Point ABI!"); 435 Options.FloatABIType = 436 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 437 .Case("soft", llvm::FloatABI::Soft) 438 .Case("softfp", llvm::FloatABI::Soft) 439 .Case("hard", llvm::FloatABI::Hard) 440 .Default(llvm::FloatABI::Default); 441 442 // Set FP fusion mode. 443 switch (LangOpts.getDefaultFPContractMode()) { 444 case LangOptions::FPC_Off: 445 // Preserve any contraction performed by the front-end. (Strict performs 446 // splitting of the muladd intrinsic in the backend.) 447 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 448 break; 449 case LangOptions::FPC_On: 450 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 451 break; 452 case LangOptions::FPC_Fast: 453 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 454 break; 455 } 456 457 Options.UseInitArray = CodeGenOpts.UseInitArray; 458 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 459 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 460 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 461 462 // Set EABI version. 463 Options.EABIVersion = TargetOpts.EABIVersion; 464 465 if (LangOpts.SjLjExceptions) 466 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 467 if (LangOpts.SEHExceptions) 468 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 469 if (LangOpts.DWARFExceptions) 470 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 471 472 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 473 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 474 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 475 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 476 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 477 Options.FunctionSections = CodeGenOpts.FunctionSections; 478 Options.DataSections = CodeGenOpts.DataSections; 479 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 480 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 481 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 482 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 483 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 484 Options.EmitAddrsig = CodeGenOpts.Addrsig; 485 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 486 487 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 488 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 489 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 490 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 491 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 492 Options.MCOptions.MCIncrementalLinkerCompatible = 493 CodeGenOpts.IncrementalLinkerCompatible; 494 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 495 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 496 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 497 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 498 Options.MCOptions.ABIName = TargetOpts.ABI; 499 for (const auto &Entry : HSOpts.UserEntries) 500 if (!Entry.IsFramework && 501 (Entry.Group == frontend::IncludeDirGroup::Quoted || 502 Entry.Group == frontend::IncludeDirGroup::Angled || 503 Entry.Group == frontend::IncludeDirGroup::System)) 504 Options.MCOptions.IASSearchPaths.push_back( 505 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 506 } 507 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 508 if (CodeGenOpts.DisableGCov) 509 return None; 510 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 511 return None; 512 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 513 // LLVM's -default-gcov-version flag is set to something invalid. 514 GCOVOptions Options; 515 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 516 Options.EmitData = CodeGenOpts.EmitGcovArcs; 517 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 518 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 519 Options.NoRedZone = CodeGenOpts.DisableRedZone; 520 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 521 Options.Filter = CodeGenOpts.ProfileFilterFiles; 522 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 523 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 524 return Options; 525 } 526 527 static Optional<InstrProfOptions> 528 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 529 const LangOptions &LangOpts) { 530 if (!CodeGenOpts.hasProfileClangInstr()) 531 return None; 532 InstrProfOptions Options; 533 Options.NoRedZone = CodeGenOpts.DisableRedZone; 534 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 535 536 // TODO: Surface the option to emit atomic profile counter increments at 537 // the driver level. 538 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 539 return Options; 540 } 541 542 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 543 legacy::FunctionPassManager &FPM) { 544 // Handle disabling of all LLVM passes, where we want to preserve the 545 // internal module before any optimization. 546 if (CodeGenOpts.DisableLLVMPasses) 547 return; 548 549 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 550 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 551 // are inserted before PMBuilder ones - they'd get the default-constructed 552 // TLI with an unknown target otherwise. 553 Triple TargetTriple(TheModule->getTargetTriple()); 554 std::unique_ptr<TargetLibraryInfoImpl> TLII( 555 createTLII(TargetTriple, CodeGenOpts)); 556 557 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 558 559 // At O0 and O1 we only run the always inliner which is more efficient. At 560 // higher optimization levels we run the normal inliner. 561 if (CodeGenOpts.OptimizationLevel <= 1) { 562 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 563 !CodeGenOpts.DisableLifetimeMarkers); 564 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 565 } else { 566 // We do not want to inline hot callsites for SamplePGO module-summary build 567 // because profile annotation will happen again in ThinLTO backend, and we 568 // want the IR of the hot path to match the profile. 569 PMBuilder.Inliner = createFunctionInliningPass( 570 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 571 (!CodeGenOpts.SampleProfileFile.empty() && 572 CodeGenOpts.PrepareForThinLTO)); 573 } 574 575 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 576 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 577 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 578 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 579 580 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 581 // Loop interleaving in the loop vectorizer has historically been set to be 582 // enabled when loop unrolling is enabled. 583 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 584 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 585 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 586 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 587 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 588 589 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 590 591 if (TM) 592 TM->adjustPassManager(PMBuilder); 593 594 if (CodeGenOpts.DebugInfoForProfiling || 595 !CodeGenOpts.SampleProfileFile.empty()) 596 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 597 addAddDiscriminatorsPass); 598 599 // In ObjC ARC mode, add the main ARC optimization passes. 600 if (LangOpts.ObjCAutoRefCount) { 601 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 602 addObjCARCExpandPass); 603 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 604 addObjCARCAPElimPass); 605 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 606 addObjCARCOptPass); 607 } 608 609 if (LangOpts.Coroutines) 610 addCoroutinePassesToExtensionPoints(PMBuilder); 611 612 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 613 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 614 addBoundsCheckingPass); 615 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 616 addBoundsCheckingPass); 617 } 618 619 if (CodeGenOpts.SanitizeCoverageType || 620 CodeGenOpts.SanitizeCoverageIndirectCalls || 621 CodeGenOpts.SanitizeCoverageTraceCmp) { 622 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 623 addSanitizerCoveragePass); 624 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 625 addSanitizerCoveragePass); 626 } 627 628 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 629 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 630 addAddressSanitizerPasses); 631 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 632 addAddressSanitizerPasses); 633 } 634 635 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 636 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 637 addKernelAddressSanitizerPasses); 638 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 639 addKernelAddressSanitizerPasses); 640 } 641 642 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 643 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 644 addHWAddressSanitizerPasses); 645 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 646 addHWAddressSanitizerPasses); 647 } 648 649 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 650 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 651 addKernelHWAddressSanitizerPasses); 652 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 653 addKernelHWAddressSanitizerPasses); 654 } 655 656 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 657 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 658 addMemorySanitizerPass); 659 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 660 addMemorySanitizerPass); 661 } 662 663 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 664 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 665 addKernelMemorySanitizerPass); 666 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 667 addKernelMemorySanitizerPass); 668 } 669 670 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 671 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 672 addThreadSanitizerPass); 673 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 674 addThreadSanitizerPass); 675 } 676 677 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 678 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 679 addDataFlowSanitizerPass); 680 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 681 addDataFlowSanitizerPass); 682 } 683 684 // Set up the per-function pass manager. 685 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 686 if (CodeGenOpts.VerifyModule) 687 FPM.add(createVerifierPass()); 688 689 // Set up the per-module pass manager. 690 if (!CodeGenOpts.RewriteMapFiles.empty()) 691 addSymbolRewriterPass(CodeGenOpts, &MPM); 692 693 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 694 MPM.add(createGCOVProfilerPass(*Options)); 695 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 696 MPM.add(createStripSymbolsPass(true)); 697 } 698 699 if (Optional<InstrProfOptions> Options = 700 getInstrProfOptions(CodeGenOpts, LangOpts)) 701 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 702 703 bool hasIRInstr = false; 704 if (CodeGenOpts.hasProfileIRInstr()) { 705 PMBuilder.EnablePGOInstrGen = true; 706 hasIRInstr = true; 707 } 708 if (CodeGenOpts.hasProfileCSIRInstr()) { 709 assert(!CodeGenOpts.hasProfileCSIRUse() && 710 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 711 "same time"); 712 assert(!hasIRInstr && 713 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 714 "same time"); 715 PMBuilder.EnablePGOCSInstrGen = true; 716 hasIRInstr = true; 717 } 718 if (hasIRInstr) { 719 if (!CodeGenOpts.InstrProfileOutput.empty()) 720 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 721 else 722 PMBuilder.PGOInstrGen = DefaultProfileGenName; 723 } 724 if (CodeGenOpts.hasProfileIRUse()) { 725 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 726 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 727 } 728 729 if (!CodeGenOpts.SampleProfileFile.empty()) 730 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 731 732 PMBuilder.populateFunctionPassManager(FPM); 733 PMBuilder.populateModulePassManager(MPM); 734 } 735 736 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 737 SmallVector<const char *, 16> BackendArgs; 738 BackendArgs.push_back("clang"); // Fake program name. 739 if (!CodeGenOpts.DebugPass.empty()) { 740 BackendArgs.push_back("-debug-pass"); 741 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 742 } 743 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 744 BackendArgs.push_back("-limit-float-precision"); 745 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 746 } 747 BackendArgs.push_back(nullptr); 748 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 749 BackendArgs.data()); 750 } 751 752 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 753 // Create the TargetMachine for generating code. 754 std::string Error; 755 std::string Triple = TheModule->getTargetTriple(); 756 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 757 if (!TheTarget) { 758 if (MustCreateTM) 759 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 760 return; 761 } 762 763 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 764 std::string FeaturesStr = 765 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 766 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 767 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 768 769 llvm::TargetOptions Options; 770 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 771 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 772 Options, RM, CM, OptLevel)); 773 } 774 775 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 776 BackendAction Action, 777 raw_pwrite_stream &OS, 778 raw_pwrite_stream *DwoOS) { 779 // Add LibraryInfo. 780 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 781 std::unique_ptr<TargetLibraryInfoImpl> TLII( 782 createTLII(TargetTriple, CodeGenOpts)); 783 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 784 785 // Normal mode, emit a .s or .o file by running the code generator. Note, 786 // this also adds codegenerator level optimization passes. 787 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 788 789 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 790 // "codegen" passes so that it isn't run multiple times when there is 791 // inlining happening. 792 if (CodeGenOpts.OptimizationLevel > 0) 793 CodeGenPasses.add(createObjCARCContractPass()); 794 795 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 796 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 797 Diags.Report(diag::err_fe_unable_to_interface_with_target); 798 return false; 799 } 800 801 return true; 802 } 803 804 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 805 std::unique_ptr<raw_pwrite_stream> OS) { 806 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 807 808 setCommandLineOpts(CodeGenOpts); 809 810 bool UsesCodeGen = (Action != Backend_EmitNothing && 811 Action != Backend_EmitBC && 812 Action != Backend_EmitLL); 813 CreateTargetMachine(UsesCodeGen); 814 815 if (UsesCodeGen && !TM) 816 return; 817 if (TM) 818 TheModule->setDataLayout(TM->createDataLayout()); 819 820 legacy::PassManager PerModulePasses; 821 PerModulePasses.add( 822 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 823 824 legacy::FunctionPassManager PerFunctionPasses(TheModule); 825 PerFunctionPasses.add( 826 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 827 828 CreatePasses(PerModulePasses, PerFunctionPasses); 829 830 legacy::PassManager CodeGenPasses; 831 CodeGenPasses.add( 832 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 833 834 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 835 836 switch (Action) { 837 case Backend_EmitNothing: 838 break; 839 840 case Backend_EmitBC: 841 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 842 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 843 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 844 if (!ThinLinkOS) 845 return; 846 } 847 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 848 CodeGenOpts.EnableSplitLTOUnit); 849 PerModulePasses.add(createWriteThinLTOBitcodePass( 850 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 851 } else { 852 // Emit a module summary by default for Regular LTO except for ld64 853 // targets 854 bool EmitLTOSummary = 855 (CodeGenOpts.PrepareForLTO && 856 !CodeGenOpts.DisableLLVMPasses && 857 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 858 llvm::Triple::Apple); 859 if (EmitLTOSummary) { 860 if (!TheModule->getModuleFlag("ThinLTO")) 861 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 862 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 863 uint32_t(1)); 864 } 865 866 PerModulePasses.add(createBitcodeWriterPass( 867 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 868 } 869 break; 870 871 case Backend_EmitLL: 872 PerModulePasses.add( 873 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 874 break; 875 876 default: 877 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 878 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 879 if (!DwoOS) 880 return; 881 } 882 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 883 DwoOS ? &DwoOS->os() : nullptr)) 884 return; 885 } 886 887 // Before executing passes, print the final values of the LLVM options. 888 cl::PrintOptionValues(); 889 890 // Run passes. For now we do all passes at once, but eventually we 891 // would like to have the option of streaming code generation. 892 893 { 894 PrettyStackTraceString CrashInfo("Per-function optimization"); 895 896 PerFunctionPasses.doInitialization(); 897 for (Function &F : *TheModule) 898 if (!F.isDeclaration()) 899 PerFunctionPasses.run(F); 900 PerFunctionPasses.doFinalization(); 901 } 902 903 { 904 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 905 PerModulePasses.run(*TheModule); 906 } 907 908 { 909 PrettyStackTraceString CrashInfo("Code generation"); 910 CodeGenPasses.run(*TheModule); 911 } 912 913 if (ThinLinkOS) 914 ThinLinkOS->keep(); 915 if (DwoOS) 916 DwoOS->keep(); 917 } 918 919 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 920 switch (Opts.OptimizationLevel) { 921 default: 922 llvm_unreachable("Invalid optimization level!"); 923 924 case 1: 925 return PassBuilder::O1; 926 927 case 2: 928 switch (Opts.OptimizeSize) { 929 default: 930 llvm_unreachable("Invalid optimization level for size!"); 931 932 case 0: 933 return PassBuilder::O2; 934 935 case 1: 936 return PassBuilder::Os; 937 938 case 2: 939 return PassBuilder::Oz; 940 } 941 942 case 3: 943 return PassBuilder::O3; 944 } 945 } 946 947 static void addSanitizersAtO0(ModulePassManager &MPM, 948 const Triple &TargetTriple, 949 const LangOptions &LangOpts, 950 const CodeGenOptions &CodeGenOpts) { 951 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 952 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 953 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 954 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 955 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 956 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 957 MPM.addPass( 958 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 959 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 960 }; 961 962 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 963 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 964 } 965 966 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 967 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 968 } 969 970 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 971 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 972 } 973 974 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 975 MPM.addPass(createModuleToFunctionPassAdaptor( 976 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 977 } 978 979 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 980 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 981 } 982 } 983 984 /// A clean version of `EmitAssembly` that uses the new pass manager. 985 /// 986 /// Not all features are currently supported in this system, but where 987 /// necessary it falls back to the legacy pass manager to at least provide 988 /// basic functionality. 989 /// 990 /// This API is planned to have its functionality finished and then to replace 991 /// `EmitAssembly` at some point in the future when the default switches. 992 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 993 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 994 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 995 setCommandLineOpts(CodeGenOpts); 996 997 bool RequiresCodeGen = (Action != Backend_EmitNothing && 998 Action != Backend_EmitBC && 999 Action != Backend_EmitLL); 1000 CreateTargetMachine(RequiresCodeGen); 1001 1002 if (RequiresCodeGen && !TM) 1003 return; 1004 if (TM) 1005 TheModule->setDataLayout(TM->createDataLayout()); 1006 1007 Optional<PGOOptions> PGOOpt; 1008 1009 if (CodeGenOpts.hasProfileIRInstr()) 1010 // -fprofile-generate. 1011 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1012 ? DefaultProfileGenName 1013 : CodeGenOpts.InstrProfileOutput, 1014 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1015 CodeGenOpts.DebugInfoForProfiling); 1016 else if (CodeGenOpts.hasProfileIRUse()) { 1017 // -fprofile-use. 1018 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1019 : PGOOptions::NoCSAction; 1020 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1021 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1022 CSAction, CodeGenOpts.DebugInfoForProfiling); 1023 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1024 // -fprofile-sample-use 1025 PGOOpt = 1026 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1027 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1028 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1029 else if (CodeGenOpts.DebugInfoForProfiling) 1030 // -fdebug-info-for-profiling 1031 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1032 PGOOptions::NoCSAction, true); 1033 1034 // Check to see if we want to generate a CS profile. 1035 if (CodeGenOpts.hasProfileCSIRInstr()) { 1036 assert(!CodeGenOpts.hasProfileCSIRUse() && 1037 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1038 "the same time"); 1039 if (PGOOpt.hasValue()) { 1040 assert(PGOOpt->Action != PGOOptions::IRInstr && 1041 PGOOpt->Action != PGOOptions::SampleUse && 1042 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1043 " pass"); 1044 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1045 ? DefaultProfileGenName 1046 : CodeGenOpts.InstrProfileOutput; 1047 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1048 } else 1049 PGOOpt = PGOOptions("", 1050 CodeGenOpts.InstrProfileOutput.empty() 1051 ? DefaultProfileGenName 1052 : CodeGenOpts.InstrProfileOutput, 1053 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1054 CodeGenOpts.DebugInfoForProfiling); 1055 } 1056 1057 PipelineTuningOptions PTO; 1058 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1059 // For historical reasons, loop interleaving is set to mirror setting for loop 1060 // unrolling. 1061 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1062 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1063 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1064 1065 PassBuilder PB(TM.get(), PTO, PGOOpt); 1066 1067 // Attempt to load pass plugins and register their callbacks with PB. 1068 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1069 auto PassPlugin = PassPlugin::Load(PluginFN); 1070 if (PassPlugin) { 1071 PassPlugin->registerPassBuilderCallbacks(PB); 1072 } else { 1073 Diags.Report(diag::err_fe_unable_to_load_plugin) 1074 << PluginFN << toString(PassPlugin.takeError()); 1075 } 1076 } 1077 1078 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1079 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1080 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1081 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1082 1083 // Register the AA manager first so that our version is the one used. 1084 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1085 1086 // Register the target library analysis directly and give it a customized 1087 // preset TLI. 1088 Triple TargetTriple(TheModule->getTargetTriple()); 1089 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1090 createTLII(TargetTriple, CodeGenOpts)); 1091 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1092 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1093 1094 // Register all the basic analyses with the managers. 1095 PB.registerModuleAnalyses(MAM); 1096 PB.registerCGSCCAnalyses(CGAM); 1097 PB.registerFunctionAnalyses(FAM); 1098 PB.registerLoopAnalyses(LAM); 1099 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1100 1101 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1102 1103 if (!CodeGenOpts.DisableLLVMPasses) { 1104 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1105 bool IsLTO = CodeGenOpts.PrepareForLTO; 1106 1107 if (CodeGenOpts.OptimizationLevel == 0) { 1108 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1109 MPM.addPass(GCOVProfilerPass(*Options)); 1110 if (Optional<InstrProfOptions> Options = 1111 getInstrProfOptions(CodeGenOpts, LangOpts)) 1112 MPM.addPass(InstrProfiling(*Options, false)); 1113 1114 // Build a minimal pipeline based on the semantics required by Clang, 1115 // which is just that always inlining occurs. Further, disable generating 1116 // lifetime intrinsics to avoid enabling further optimizations during 1117 // code generation. 1118 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1119 1120 // At -O0 we directly run necessary sanitizer passes. 1121 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1122 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1123 1124 // Lastly, add semantically necessary passes for LTO. 1125 if (IsLTO || IsThinLTO) { 1126 MPM.addPass(CanonicalizeAliasesPass()); 1127 MPM.addPass(NameAnonGlobalPass()); 1128 } 1129 } else { 1130 // Map our optimization levels into one of the distinct levels used to 1131 // configure the pipeline. 1132 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1133 1134 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1135 MPM.addPass(createModuleToFunctionPassAdaptor( 1136 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1137 }); 1138 1139 if (CodeGenOpts.SanitizeCoverageType || 1140 CodeGenOpts.SanitizeCoverageIndirectCalls || 1141 CodeGenOpts.SanitizeCoverageTraceCmp) { 1142 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1143 PB.registerPipelineStartEPCallback( 1144 [SancovOpts](ModulePassManager &MPM) { 1145 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1146 }); 1147 PB.registerOptimizerLastEPCallback( 1148 [SancovOpts](FunctionPassManager &FPM, 1149 PassBuilder::OptimizationLevel Level) { 1150 FPM.addPass(SanitizerCoveragePass(SancovOpts)); 1151 }); 1152 } 1153 1154 // Register callbacks to schedule sanitizer passes at the appropriate part of 1155 // the pipeline. 1156 // FIXME: either handle asan/the remaining sanitizers or error out 1157 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1158 PB.registerScalarOptimizerLateEPCallback( 1159 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1160 FPM.addPass(BoundsCheckingPass()); 1161 }); 1162 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1163 PB.registerOptimizerLastEPCallback( 1164 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1165 FPM.addPass(MemorySanitizerPass({})); 1166 }); 1167 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1168 PB.registerOptimizerLastEPCallback( 1169 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1170 FPM.addPass(ThreadSanitizerPass()); 1171 }); 1172 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1173 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1174 MPM.addPass( 1175 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1176 }); 1177 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1178 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1179 PB.registerOptimizerLastEPCallback( 1180 [Recover, UseAfterScope](FunctionPassManager &FPM, 1181 PassBuilder::OptimizationLevel Level) { 1182 FPM.addPass(AddressSanitizerPass( 1183 /*CompileKernel=*/false, Recover, UseAfterScope)); 1184 }); 1185 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1186 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1187 PB.registerPipelineStartEPCallback( 1188 [Recover, ModuleUseAfterScope, 1189 UseOdrIndicator](ModulePassManager &MPM) { 1190 MPM.addPass(ModuleAddressSanitizerPass( 1191 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1192 UseOdrIndicator)); 1193 }); 1194 } 1195 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1196 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1197 MPM.addPass(GCOVProfilerPass(*Options)); 1198 }); 1199 if (Optional<InstrProfOptions> Options = 1200 getInstrProfOptions(CodeGenOpts, LangOpts)) 1201 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1202 MPM.addPass(InstrProfiling(*Options, false)); 1203 }); 1204 1205 if (IsThinLTO) { 1206 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1207 Level, CodeGenOpts.DebugPassManager); 1208 MPM.addPass(CanonicalizeAliasesPass()); 1209 MPM.addPass(NameAnonGlobalPass()); 1210 } else if (IsLTO) { 1211 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1212 CodeGenOpts.DebugPassManager); 1213 MPM.addPass(CanonicalizeAliasesPass()); 1214 MPM.addPass(NameAnonGlobalPass()); 1215 } else { 1216 MPM = PB.buildPerModuleDefaultPipeline(Level, 1217 CodeGenOpts.DebugPassManager); 1218 } 1219 } 1220 1221 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1222 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1223 MPM.addPass(HWAddressSanitizerPass( 1224 /*CompileKernel=*/false, Recover)); 1225 } 1226 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1227 MPM.addPass(HWAddressSanitizerPass( 1228 /*CompileKernel=*/true, /*Recover=*/true)); 1229 } 1230 1231 if (CodeGenOpts.OptimizationLevel == 0) { 1232 if (CodeGenOpts.SanitizeCoverageType || 1233 CodeGenOpts.SanitizeCoverageIndirectCalls || 1234 CodeGenOpts.SanitizeCoverageTraceCmp) { 1235 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1236 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1237 MPM.addPass(createModuleToFunctionPassAdaptor( 1238 SanitizerCoveragePass(SancovOpts))); 1239 } 1240 1241 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1242 } 1243 } 1244 1245 // FIXME: We still use the legacy pass manager to do code generation. We 1246 // create that pass manager here and use it as needed below. 1247 legacy::PassManager CodeGenPasses; 1248 bool NeedCodeGen = false; 1249 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1250 1251 // Append any output we need to the pass manager. 1252 switch (Action) { 1253 case Backend_EmitNothing: 1254 break; 1255 1256 case Backend_EmitBC: 1257 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1258 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1259 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1260 if (!ThinLinkOS) 1261 return; 1262 } 1263 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1264 CodeGenOpts.EnableSplitLTOUnit); 1265 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1266 : nullptr)); 1267 } else { 1268 // Emit a module summary by default for Regular LTO except for ld64 1269 // targets 1270 bool EmitLTOSummary = 1271 (CodeGenOpts.PrepareForLTO && 1272 !CodeGenOpts.DisableLLVMPasses && 1273 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1274 llvm::Triple::Apple); 1275 if (EmitLTOSummary) { 1276 if (!TheModule->getModuleFlag("ThinLTO")) 1277 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1278 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1279 CodeGenOpts.EnableSplitLTOUnit); 1280 } 1281 MPM.addPass( 1282 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1283 } 1284 break; 1285 1286 case Backend_EmitLL: 1287 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1288 break; 1289 1290 case Backend_EmitAssembly: 1291 case Backend_EmitMCNull: 1292 case Backend_EmitObj: 1293 NeedCodeGen = true; 1294 CodeGenPasses.add( 1295 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1296 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1297 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1298 if (!DwoOS) 1299 return; 1300 } 1301 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1302 DwoOS ? &DwoOS->os() : nullptr)) 1303 // FIXME: Should we handle this error differently? 1304 return; 1305 break; 1306 } 1307 1308 // Before executing passes, print the final values of the LLVM options. 1309 cl::PrintOptionValues(); 1310 1311 // Now that we have all of the passes ready, run them. 1312 { 1313 PrettyStackTraceString CrashInfo("Optimizer"); 1314 MPM.run(*TheModule, MAM); 1315 } 1316 1317 // Now if needed, run the legacy PM for codegen. 1318 if (NeedCodeGen) { 1319 PrettyStackTraceString CrashInfo("Code generation"); 1320 CodeGenPasses.run(*TheModule); 1321 } 1322 1323 if (ThinLinkOS) 1324 ThinLinkOS->keep(); 1325 if (DwoOS) 1326 DwoOS->keep(); 1327 } 1328 1329 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1330 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1331 if (!BMsOrErr) 1332 return BMsOrErr.takeError(); 1333 1334 // The bitcode file may contain multiple modules, we want the one that is 1335 // marked as being the ThinLTO module. 1336 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1337 return *Bm; 1338 1339 return make_error<StringError>("Could not find module summary", 1340 inconvertibleErrorCode()); 1341 } 1342 1343 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1344 for (BitcodeModule &BM : BMs) { 1345 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1346 if (LTOInfo && LTOInfo->IsThinLTO) 1347 return &BM; 1348 } 1349 return nullptr; 1350 } 1351 1352 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1353 const HeaderSearchOptions &HeaderOpts, 1354 const CodeGenOptions &CGOpts, 1355 const clang::TargetOptions &TOpts, 1356 const LangOptions &LOpts, 1357 std::unique_ptr<raw_pwrite_stream> OS, 1358 std::string SampleProfile, 1359 std::string ProfileRemapping, 1360 BackendAction Action) { 1361 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1362 ModuleToDefinedGVSummaries; 1363 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1364 1365 setCommandLineOpts(CGOpts); 1366 1367 // We can simply import the values mentioned in the combined index, since 1368 // we should only invoke this using the individual indexes written out 1369 // via a WriteIndexesThinBackend. 1370 FunctionImporter::ImportMapTy ImportList; 1371 for (auto &GlobalList : *CombinedIndex) { 1372 // Ignore entries for undefined references. 1373 if (GlobalList.second.SummaryList.empty()) 1374 continue; 1375 1376 auto GUID = GlobalList.first; 1377 for (auto &Summary : GlobalList.second.SummaryList) { 1378 // Skip the summaries for the importing module. These are included to 1379 // e.g. record required linkage changes. 1380 if (Summary->modulePath() == M->getModuleIdentifier()) 1381 continue; 1382 // Add an entry to provoke importing by thinBackend. 1383 ImportList[Summary->modulePath()].insert(GUID); 1384 } 1385 } 1386 1387 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1388 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1389 1390 for (auto &I : ImportList) { 1391 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1392 llvm::MemoryBuffer::getFile(I.first()); 1393 if (!MBOrErr) { 1394 errs() << "Error loading imported file '" << I.first() 1395 << "': " << MBOrErr.getError().message() << "\n"; 1396 return; 1397 } 1398 1399 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1400 if (!BMOrErr) { 1401 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1402 errs() << "Error loading imported file '" << I.first() 1403 << "': " << EIB.message() << '\n'; 1404 }); 1405 return; 1406 } 1407 ModuleMap.insert({I.first(), *BMOrErr}); 1408 1409 OwnedImports.push_back(std::move(*MBOrErr)); 1410 } 1411 auto AddStream = [&](size_t Task) { 1412 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1413 }; 1414 lto::Config Conf; 1415 if (CGOpts.SaveTempsFilePrefix != "") { 1416 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1417 /* UseInputModulePath */ false)) { 1418 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1419 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1420 << '\n'; 1421 }); 1422 } 1423 } 1424 Conf.CPU = TOpts.CPU; 1425 Conf.CodeModel = getCodeModel(CGOpts); 1426 Conf.MAttrs = TOpts.Features; 1427 Conf.RelocModel = CGOpts.RelocationModel; 1428 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1429 Conf.OptLevel = CGOpts.OptimizationLevel; 1430 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1431 Conf.SampleProfile = std::move(SampleProfile); 1432 1433 // Context sensitive profile. 1434 if (CGOpts.hasProfileCSIRInstr()) { 1435 Conf.RunCSIRInstr = true; 1436 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1437 } else if (CGOpts.hasProfileCSIRUse()) { 1438 Conf.RunCSIRInstr = false; 1439 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1440 } 1441 1442 Conf.ProfileRemapping = std::move(ProfileRemapping); 1443 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1444 Conf.DebugPassManager = CGOpts.DebugPassManager; 1445 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1446 Conf.RemarksFilename = CGOpts.OptRecordFile; 1447 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1448 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1449 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1450 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1451 switch (Action) { 1452 case Backend_EmitNothing: 1453 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1454 return false; 1455 }; 1456 break; 1457 case Backend_EmitLL: 1458 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1459 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1460 return false; 1461 }; 1462 break; 1463 case Backend_EmitBC: 1464 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1465 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1466 return false; 1467 }; 1468 break; 1469 default: 1470 Conf.CGFileType = getCodeGenFileType(Action); 1471 break; 1472 } 1473 if (Error E = thinBackend( 1474 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1475 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1476 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1477 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1478 }); 1479 } 1480 } 1481 1482 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1483 const HeaderSearchOptions &HeaderOpts, 1484 const CodeGenOptions &CGOpts, 1485 const clang::TargetOptions &TOpts, 1486 const LangOptions &LOpts, 1487 const llvm::DataLayout &TDesc, Module *M, 1488 BackendAction Action, 1489 std::unique_ptr<raw_pwrite_stream> OS) { 1490 1491 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1492 1493 std::unique_ptr<llvm::Module> EmptyModule; 1494 if (!CGOpts.ThinLTOIndexFile.empty()) { 1495 // If we are performing a ThinLTO importing compile, load the function index 1496 // into memory and pass it into runThinLTOBackend, which will run the 1497 // function importer and invoke LTO passes. 1498 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1499 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1500 /*IgnoreEmptyThinLTOIndexFile*/true); 1501 if (!IndexOrErr) { 1502 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1503 "Error loading index file '" + 1504 CGOpts.ThinLTOIndexFile + "': "); 1505 return; 1506 } 1507 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1508 // A null CombinedIndex means we should skip ThinLTO compilation 1509 // (LLVM will optionally ignore empty index files, returning null instead 1510 // of an error). 1511 if (CombinedIndex) { 1512 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1513 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1514 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1515 CGOpts.ProfileRemappingFile, Action); 1516 return; 1517 } 1518 // Distributed indexing detected that nothing from the module is needed 1519 // for the final linking. So we can skip the compilation. We sill need to 1520 // output an empty object file to make sure that a linker does not fail 1521 // trying to read it. Also for some features, like CFI, we must skip 1522 // the compilation as CombinedIndex does not contain all required 1523 // information. 1524 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1525 EmptyModule->setTargetTriple(M->getTargetTriple()); 1526 M = EmptyModule.get(); 1527 } 1528 } 1529 1530 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1531 1532 if (CGOpts.ExperimentalNewPassManager) 1533 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1534 else 1535 AsmHelper.EmitAssembly(Action, std::move(OS)); 1536 1537 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1538 // DataLayout. 1539 if (AsmHelper.TM) { 1540 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1541 if (DLDesc != TDesc.getStringRepresentation()) { 1542 unsigned DiagID = Diags.getCustomDiagID( 1543 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1544 "expected target description '%1'"); 1545 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1546 } 1547 } 1548 } 1549 1550 static const char* getSectionNameForBitcode(const Triple &T) { 1551 switch (T.getObjectFormat()) { 1552 case Triple::MachO: 1553 return "__LLVM,__bitcode"; 1554 case Triple::COFF: 1555 case Triple::ELF: 1556 case Triple::Wasm: 1557 case Triple::UnknownObjectFormat: 1558 return ".llvmbc"; 1559 case Triple::XCOFF: 1560 llvm_unreachable("XCOFF is not yet implemented"); 1561 break; 1562 } 1563 llvm_unreachable("Unimplemented ObjectFormatType"); 1564 } 1565 1566 static const char* getSectionNameForCommandline(const Triple &T) { 1567 switch (T.getObjectFormat()) { 1568 case Triple::MachO: 1569 return "__LLVM,__cmdline"; 1570 case Triple::COFF: 1571 case Triple::ELF: 1572 case Triple::Wasm: 1573 case Triple::UnknownObjectFormat: 1574 return ".llvmcmd"; 1575 case Triple::XCOFF: 1576 llvm_unreachable("XCOFF is not yet implemented"); 1577 break; 1578 } 1579 llvm_unreachable("Unimplemented ObjectFormatType"); 1580 } 1581 1582 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1583 // __LLVM,__bitcode section. 1584 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1585 llvm::MemoryBufferRef Buf) { 1586 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1587 return; 1588 1589 // Save llvm.compiler.used and remote it. 1590 SmallVector<Constant*, 2> UsedArray; 1591 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1592 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1593 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1594 for (auto *GV : UsedGlobals) { 1595 if (GV->getName() != "llvm.embedded.module" && 1596 GV->getName() != "llvm.cmdline") 1597 UsedArray.push_back( 1598 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1599 } 1600 if (Used) 1601 Used->eraseFromParent(); 1602 1603 // Embed the bitcode for the llvm module. 1604 std::string Data; 1605 ArrayRef<uint8_t> ModuleData; 1606 Triple T(M->getTargetTriple()); 1607 // Create a constant that contains the bitcode. 1608 // In case of embedding a marker, ignore the input Buf and use the empty 1609 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1610 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1611 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1612 (const unsigned char *)Buf.getBufferEnd())) { 1613 // If the input is LLVM Assembly, bitcode is produced by serializing 1614 // the module. Use-lists order need to be perserved in this case. 1615 llvm::raw_string_ostream OS(Data); 1616 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1617 ModuleData = 1618 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1619 } else 1620 // If the input is LLVM bitcode, write the input byte stream directly. 1621 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1622 Buf.getBufferSize()); 1623 } 1624 llvm::Constant *ModuleConstant = 1625 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1626 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1627 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1628 ModuleConstant); 1629 GV->setSection(getSectionNameForBitcode(T)); 1630 UsedArray.push_back( 1631 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1632 if (llvm::GlobalVariable *Old = 1633 M->getGlobalVariable("llvm.embedded.module", true)) { 1634 assert(Old->hasOneUse() && 1635 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1636 GV->takeName(Old); 1637 Old->eraseFromParent(); 1638 } else { 1639 GV->setName("llvm.embedded.module"); 1640 } 1641 1642 // Skip if only bitcode needs to be embedded. 1643 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1644 // Embed command-line options. 1645 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1646 CGOpts.CmdArgs.size()); 1647 llvm::Constant *CmdConstant = 1648 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1649 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1650 llvm::GlobalValue::PrivateLinkage, 1651 CmdConstant); 1652 GV->setSection(getSectionNameForCommandline(T)); 1653 UsedArray.push_back( 1654 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1655 if (llvm::GlobalVariable *Old = 1656 M->getGlobalVariable("llvm.cmdline", true)) { 1657 assert(Old->hasOneUse() && 1658 "llvm.cmdline can only be used once in llvm.compiler.used"); 1659 GV->takeName(Old); 1660 Old->eraseFromParent(); 1661 } else { 1662 GV->setName("llvm.cmdline"); 1663 } 1664 } 1665 1666 if (UsedArray.empty()) 1667 return; 1668 1669 // Recreate llvm.compiler.used. 1670 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1671 auto *NewUsed = new GlobalVariable( 1672 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1673 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1674 NewUsed->setSection("llvm.metadata"); 1675 } 1676