1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Bitcode/BitcodeWriterPass.h" 22 #include "llvm/CodeGen/RegAllocRegistry.h" 23 #include "llvm/CodeGen/SchedulerRegistry.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/IRPrintingPasses.h" 26 #include "llvm/IR/LegacyPassManager.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/MC/SubtargetFeature.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/PrettyStackTrace.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/Timer.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 40 #include "llvm/Transforms/Instrumentation.h" 41 #include "llvm/Transforms/ObjCARC.h" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/Transforms/Utils/SymbolRewriter.h" 44 #include <memory> 45 using namespace clang; 46 using namespace llvm; 47 48 namespace { 49 50 class EmitAssemblyHelper { 51 DiagnosticsEngine &Diags; 52 const CodeGenOptions &CodeGenOpts; 53 const clang::TargetOptions &TargetOpts; 54 const LangOptions &LangOpts; 55 Module *TheModule; 56 57 Timer CodeGenerationTime; 58 59 mutable legacy::PassManager *CodeGenPasses; 60 mutable legacy::PassManager *PerModulePasses; 61 mutable legacy::FunctionPassManager *PerFunctionPasses; 62 63 private: 64 TargetIRAnalysis getTargetIRAnalysis() const { 65 if (TM) 66 return TM->getTargetIRAnalysis(); 67 68 return TargetIRAnalysis(); 69 } 70 71 legacy::PassManager *getCodeGenPasses() const { 72 if (!CodeGenPasses) { 73 CodeGenPasses = new legacy::PassManager(); 74 CodeGenPasses->add( 75 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 76 } 77 return CodeGenPasses; 78 } 79 80 legacy::PassManager *getPerModulePasses() const { 81 if (!PerModulePasses) { 82 PerModulePasses = new legacy::PassManager(); 83 PerModulePasses->add( 84 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 85 } 86 return PerModulePasses; 87 } 88 89 legacy::FunctionPassManager *getPerFunctionPasses() const { 90 if (!PerFunctionPasses) { 91 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 92 PerFunctionPasses->add( 93 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 94 } 95 return PerFunctionPasses; 96 } 97 98 void CreatePasses(); 99 100 /// Generates the TargetMachine. 101 /// Returns Null if it is unable to create the target machine. 102 /// Some of our clang tests specify triples which are not built 103 /// into clang. This is okay because these tests check the generated 104 /// IR, and they require DataLayout which depends on the triple. 105 /// In this case, we allow this method to fail and not report an error. 106 /// When MustCreateTM is used, we print an error if we are unable to load 107 /// the requested target. 108 TargetMachine *CreateTargetMachine(bool MustCreateTM); 109 110 /// Add passes necessary to emit assembly or LLVM IR. 111 /// 112 /// \return True on success. 113 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 114 115 public: 116 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 117 const CodeGenOptions &CGOpts, 118 const clang::TargetOptions &TOpts, 119 const LangOptions &LOpts, 120 Module *M) 121 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 122 TheModule(M), CodeGenerationTime("Code Generation Time"), 123 CodeGenPasses(nullptr), PerModulePasses(nullptr), 124 PerFunctionPasses(nullptr) {} 125 126 ~EmitAssemblyHelper() { 127 delete CodeGenPasses; 128 delete PerModulePasses; 129 delete PerFunctionPasses; 130 if (CodeGenOpts.DisableFree) 131 BuryPointer(std::move(TM)); 132 } 133 134 std::unique_ptr<TargetMachine> TM; 135 136 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 137 }; 138 139 // We need this wrapper to access LangOpts and CGOpts from extension functions 140 // that we add to the PassManagerBuilder. 141 class PassManagerBuilderWrapper : public PassManagerBuilder { 142 public: 143 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 144 const LangOptions &LangOpts) 145 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 146 const CodeGenOptions &getCGOpts() const { return CGOpts; } 147 const LangOptions &getLangOpts() const { return LangOpts; } 148 private: 149 const CodeGenOptions &CGOpts; 150 const LangOptions &LangOpts; 151 }; 152 153 } 154 155 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCAPElimPass()); 158 } 159 160 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 161 if (Builder.OptLevel > 0) 162 PM.add(createObjCARCExpandPass()); 163 } 164 165 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 166 if (Builder.OptLevel > 0) 167 PM.add(createObjCARCOptPass()); 168 } 169 170 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 PM.add(createAddDiscriminatorsPass()); 173 } 174 175 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 176 legacy::PassManagerBase &PM) { 177 PM.add(createBoundsCheckingPass()); 178 } 179 180 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 181 legacy::PassManagerBase &PM) { 182 const PassManagerBuilderWrapper &BuilderWrapper = 183 static_cast<const PassManagerBuilderWrapper&>(Builder); 184 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 185 SanitizerCoverageOptions Opts; 186 Opts.CoverageType = 187 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 188 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 189 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 190 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 191 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 192 PM.add(createSanitizerCoverageModulePass(Opts)); 193 } 194 195 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 const PassManagerBuilderWrapper &BuilderWrapper = 198 static_cast<const PassManagerBuilderWrapper&>(Builder); 199 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 200 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 201 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/false, Recover)); 202 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 203 } 204 205 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 206 legacy::PassManagerBase &PM) { 207 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/true, 208 /*Recover*/true)); 209 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 210 /*Recover*/true)); 211 } 212 213 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 const PassManagerBuilderWrapper &BuilderWrapper = 216 static_cast<const PassManagerBuilderWrapper&>(Builder); 217 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 218 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 219 220 // MemorySanitizer inserts complex instrumentation that mostly follows 221 // the logic of the original code, but operates on "shadow" values. 222 // It can benefit from re-running some general purpose optimization passes. 223 if (Builder.OptLevel > 0) { 224 PM.add(createEarlyCSEPass()); 225 PM.add(createReassociatePass()); 226 PM.add(createLICMPass()); 227 PM.add(createGVNPass()); 228 PM.add(createInstructionCombiningPass()); 229 PM.add(createDeadStoreEliminationPass()); 230 } 231 } 232 233 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createThreadSanitizerPass()); 236 } 237 238 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 239 legacy::PassManagerBase &PM) { 240 const PassManagerBuilderWrapper &BuilderWrapper = 241 static_cast<const PassManagerBuilderWrapper&>(Builder); 242 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 243 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 244 } 245 246 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 247 const CodeGenOptions &CodeGenOpts) { 248 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 249 if (!CodeGenOpts.SimplifyLibCalls) 250 TLII->disableAllFunctions(); 251 252 switch (CodeGenOpts.getVecLib()) { 253 case CodeGenOptions::Accelerate: 254 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 255 break; 256 default: 257 break; 258 } 259 return TLII; 260 } 261 262 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 263 legacy::PassManager *MPM) { 264 llvm::SymbolRewriter::RewriteDescriptorList DL; 265 266 llvm::SymbolRewriter::RewriteMapParser MapParser; 267 for (const auto &MapFile : Opts.RewriteMapFiles) 268 MapParser.parse(MapFile, &DL); 269 270 MPM->add(createRewriteSymbolsPass(DL)); 271 } 272 273 void EmitAssemblyHelper::CreatePasses() { 274 if (CodeGenOpts.DisableLLVMPasses) 275 return; 276 277 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 278 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 279 280 // Handle disabling of LLVM optimization, where we want to preserve the 281 // internal module before any optimization. 282 if (CodeGenOpts.DisableLLVMOpts) { 283 OptLevel = 0; 284 Inlining = CodeGenOpts.NoInlining; 285 } 286 287 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 288 PMBuilder.OptLevel = OptLevel; 289 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 290 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 291 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 292 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 293 294 PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; 295 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 296 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 297 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 298 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 299 300 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 301 addAddDiscriminatorsPass); 302 303 // In ObjC ARC mode, add the main ARC optimization passes. 304 if (LangOpts.ObjCAutoRefCount) { 305 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 306 addObjCARCExpandPass); 307 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 308 addObjCARCAPElimPass); 309 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 310 addObjCARCOptPass); 311 } 312 313 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 314 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 315 addBoundsCheckingPass); 316 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 317 addBoundsCheckingPass); 318 } 319 320 if (CodeGenOpts.SanitizeCoverageType || 321 CodeGenOpts.SanitizeCoverageIndirectCalls || 322 CodeGenOpts.SanitizeCoverageTraceCmp) { 323 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 324 addSanitizerCoveragePass); 325 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 326 addSanitizerCoveragePass); 327 } 328 329 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 330 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 331 addAddressSanitizerPasses); 332 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 333 addAddressSanitizerPasses); 334 } 335 336 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 337 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 338 addKernelAddressSanitizerPasses); 339 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 340 addKernelAddressSanitizerPasses); 341 } 342 343 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 344 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 345 addMemorySanitizerPass); 346 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 347 addMemorySanitizerPass); 348 } 349 350 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 351 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 352 addThreadSanitizerPass); 353 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 354 addThreadSanitizerPass); 355 } 356 357 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 358 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 359 addDataFlowSanitizerPass); 360 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 361 addDataFlowSanitizerPass); 362 } 363 364 // Figure out TargetLibraryInfo. 365 Triple TargetTriple(TheModule->getTargetTriple()); 366 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 367 368 switch (Inlining) { 369 case CodeGenOptions::NoInlining: break; 370 case CodeGenOptions::NormalInlining: { 371 PMBuilder.Inliner = 372 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 373 break; 374 } 375 case CodeGenOptions::OnlyAlwaysInlining: 376 // Respect always_inline. 377 if (OptLevel == 0) 378 // Do not insert lifetime intrinsics at -O0. 379 PMBuilder.Inliner = createAlwaysInlinerPass(false); 380 else 381 PMBuilder.Inliner = createAlwaysInlinerPass(); 382 break; 383 } 384 385 // Set up the per-function pass manager. 386 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 387 if (CodeGenOpts.VerifyModule) 388 FPM->add(createVerifierPass()); 389 PMBuilder.populateFunctionPassManager(*FPM); 390 391 // Set up the per-module pass manager. 392 legacy::PassManager *MPM = getPerModulePasses(); 393 if (!CodeGenOpts.RewriteMapFiles.empty()) 394 addSymbolRewriterPass(CodeGenOpts, MPM); 395 396 if (!CodeGenOpts.DisableGCov && 397 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 398 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 399 // LLVM's -default-gcov-version flag is set to something invalid. 400 GCOVOptions Options; 401 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 402 Options.EmitData = CodeGenOpts.EmitGcovArcs; 403 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 404 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 405 Options.NoRedZone = CodeGenOpts.DisableRedZone; 406 Options.FunctionNamesInData = 407 !CodeGenOpts.CoverageNoFunctionNamesInData; 408 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 409 MPM->add(createGCOVProfilerPass(Options)); 410 if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo) 411 MPM->add(createStripSymbolsPass(true)); 412 } 413 414 if (CodeGenOpts.ProfileInstrGenerate) { 415 InstrProfOptions Options; 416 Options.NoRedZone = CodeGenOpts.DisableRedZone; 417 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 418 MPM->add(createInstrProfilingPass(Options)); 419 } 420 421 if (!CodeGenOpts.SampleProfileFile.empty()) 422 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 423 424 PMBuilder.populateModulePassManager(*MPM); 425 } 426 427 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 428 // Create the TargetMachine for generating code. 429 std::string Error; 430 std::string Triple = TheModule->getTargetTriple(); 431 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 432 if (!TheTarget) { 433 if (MustCreateTM) 434 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 435 return nullptr; 436 } 437 438 unsigned CodeModel = 439 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 440 .Case("small", llvm::CodeModel::Small) 441 .Case("kernel", llvm::CodeModel::Kernel) 442 .Case("medium", llvm::CodeModel::Medium) 443 .Case("large", llvm::CodeModel::Large) 444 .Case("default", llvm::CodeModel::Default) 445 .Default(~0u); 446 assert(CodeModel != ~0u && "invalid code model!"); 447 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 448 449 SmallVector<const char *, 16> BackendArgs; 450 BackendArgs.push_back("clang"); // Fake program name. 451 if (!CodeGenOpts.DebugPass.empty()) { 452 BackendArgs.push_back("-debug-pass"); 453 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 454 } 455 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 456 BackendArgs.push_back("-limit-float-precision"); 457 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 458 } 459 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 460 BackendArgs.push_back(BackendOption.c_str()); 461 BackendArgs.push_back(nullptr); 462 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 463 BackendArgs.data()); 464 465 std::string FeaturesStr = 466 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 467 468 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 469 llvm::Reloc::Model RM = llvm::Reloc::Default; 470 if (CodeGenOpts.RelocationModel == "static") { 471 RM = llvm::Reloc::Static; 472 } else if (CodeGenOpts.RelocationModel == "pic") { 473 RM = llvm::Reloc::PIC_; 474 } else { 475 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 476 "Invalid PIC model!"); 477 RM = llvm::Reloc::DynamicNoPIC; 478 } 479 480 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 481 switch (CodeGenOpts.OptimizationLevel) { 482 default: break; 483 case 0: OptLevel = CodeGenOpt::None; break; 484 case 3: OptLevel = CodeGenOpt::Aggressive; break; 485 } 486 487 llvm::TargetOptions Options; 488 489 if (!TargetOpts.Reciprocals.empty()) 490 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 491 492 Options.ThreadModel = 493 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 494 .Case("posix", llvm::ThreadModel::POSIX) 495 .Case("single", llvm::ThreadModel::Single); 496 497 // Set float ABI type. 498 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 499 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 500 "Invalid Floating Point ABI!"); 501 Options.FloatABIType = 502 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 503 .Case("soft", llvm::FloatABI::Soft) 504 .Case("softfp", llvm::FloatABI::Soft) 505 .Case("hard", llvm::FloatABI::Hard) 506 .Default(llvm::FloatABI::Default); 507 508 // Set FP fusion mode. 509 switch (CodeGenOpts.getFPContractMode()) { 510 case CodeGenOptions::FPC_Off: 511 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 512 break; 513 case CodeGenOptions::FPC_On: 514 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 515 break; 516 case CodeGenOptions::FPC_Fast: 517 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 518 break; 519 } 520 521 Options.UseInitArray = CodeGenOpts.UseInitArray; 522 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 523 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 524 525 // Set EABI version. 526 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(CodeGenOpts.EABIVersion) 527 .Case("4", llvm::EABI::EABI4) 528 .Case("5", llvm::EABI::EABI5) 529 .Case("gnu", llvm::EABI::GNU) 530 .Default(llvm::EABI::Default); 531 532 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 533 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 534 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 535 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 536 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 537 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 538 Options.PositionIndependentExecutable = LangOpts.PIELevel != 0; 539 Options.FunctionSections = CodeGenOpts.FunctionSections; 540 Options.DataSections = CodeGenOpts.DataSections; 541 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 542 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 543 544 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 545 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 546 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 547 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 548 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 549 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 550 Options.MCOptions.ABIName = TargetOpts.ABI; 551 552 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 553 FeaturesStr, Options, 554 RM, CM, OptLevel); 555 556 return TM; 557 } 558 559 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 560 raw_pwrite_stream &OS) { 561 562 // Create the code generator passes. 563 legacy::PassManager *PM = getCodeGenPasses(); 564 565 // Add LibraryInfo. 566 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 567 std::unique_ptr<TargetLibraryInfoImpl> TLII( 568 createTLII(TargetTriple, CodeGenOpts)); 569 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 570 571 // Normal mode, emit a .s or .o file by running the code generator. Note, 572 // this also adds codegenerator level optimization passes. 573 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 574 if (Action == Backend_EmitObj) 575 CGFT = TargetMachine::CGFT_ObjectFile; 576 else if (Action == Backend_EmitMCNull) 577 CGFT = TargetMachine::CGFT_Null; 578 else 579 assert(Action == Backend_EmitAssembly && "Invalid action!"); 580 581 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 582 // "codegen" passes so that it isn't run multiple times when there is 583 // inlining happening. 584 if (CodeGenOpts.OptimizationLevel > 0) 585 PM->add(createObjCARCContractPass()); 586 587 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 588 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 589 Diags.Report(diag::err_fe_unable_to_interface_with_target); 590 return false; 591 } 592 593 return true; 594 } 595 596 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 597 raw_pwrite_stream *OS) { 598 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 599 600 bool UsesCodeGen = (Action != Backend_EmitNothing && 601 Action != Backend_EmitBC && 602 Action != Backend_EmitLL); 603 if (!TM) 604 TM.reset(CreateTargetMachine(UsesCodeGen)); 605 606 if (UsesCodeGen && !TM) 607 return; 608 if (TM) 609 TheModule->setDataLayout(TM->createDataLayout()); 610 CreatePasses(); 611 612 switch (Action) { 613 case Backend_EmitNothing: 614 break; 615 616 case Backend_EmitBC: 617 getPerModulePasses()->add(createBitcodeWriterPass( 618 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitFunctionSummary)); 619 break; 620 621 case Backend_EmitLL: 622 getPerModulePasses()->add( 623 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 624 break; 625 626 default: 627 if (!AddEmitPasses(Action, *OS)) 628 return; 629 } 630 631 // Before executing passes, print the final values of the LLVM options. 632 cl::PrintOptionValues(); 633 634 // Run passes. For now we do all passes at once, but eventually we 635 // would like to have the option of streaming code generation. 636 637 if (PerFunctionPasses) { 638 PrettyStackTraceString CrashInfo("Per-function optimization"); 639 640 PerFunctionPasses->doInitialization(); 641 for (Function &F : *TheModule) 642 if (!F.isDeclaration()) 643 PerFunctionPasses->run(F); 644 PerFunctionPasses->doFinalization(); 645 } 646 647 if (PerModulePasses) { 648 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 649 PerModulePasses->run(*TheModule); 650 } 651 652 if (CodeGenPasses) { 653 PrettyStackTraceString CrashInfo("Code generation"); 654 CodeGenPasses->run(*TheModule); 655 } 656 } 657 658 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 659 const CodeGenOptions &CGOpts, 660 const clang::TargetOptions &TOpts, 661 const LangOptions &LOpts, StringRef TDesc, 662 Module *M, BackendAction Action, 663 raw_pwrite_stream *OS) { 664 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 665 666 AsmHelper.EmitAssembly(Action, OS); 667 668 // If an optional clang TargetInfo description string was passed in, use it to 669 // verify the LLVM TargetMachine's DataLayout. 670 if (AsmHelper.TM && !TDesc.empty()) { 671 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 672 if (DLDesc != TDesc) { 673 unsigned DiagID = Diags.getCustomDiagID( 674 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 675 "expected target description '%1'"); 676 Diags.Report(DiagID) << DLDesc << TDesc; 677 } 678 } 679 } 680