1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 78 #include "llvm/Transforms/Utils.h" 79 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 80 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 81 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 82 #include "llvm/Transforms/Utils/SymbolRewriter.h" 83 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 84 #include <memory> 85 using namespace clang; 86 using namespace llvm; 87 88 #define HANDLE_EXTENSION(Ext) \ 89 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 90 #include "llvm/Support/Extension.def" 91 92 namespace { 93 94 // Default filename used for profile generation. 95 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 96 97 class EmitAssemblyHelper { 98 DiagnosticsEngine &Diags; 99 const HeaderSearchOptions &HSOpts; 100 const CodeGenOptions &CodeGenOpts; 101 const clang::TargetOptions &TargetOpts; 102 const LangOptions &LangOpts; 103 Module *TheModule; 104 105 Timer CodeGenerationTime; 106 107 std::unique_ptr<raw_pwrite_stream> OS; 108 109 TargetIRAnalysis getTargetIRAnalysis() const { 110 if (TM) 111 return TM->getTargetIRAnalysis(); 112 113 return TargetIRAnalysis(); 114 } 115 116 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 117 118 /// Generates the TargetMachine. 119 /// Leaves TM unchanged if it is unable to create the target machine. 120 /// Some of our clang tests specify triples which are not built 121 /// into clang. This is okay because these tests check the generated 122 /// IR, and they require DataLayout which depends on the triple. 123 /// In this case, we allow this method to fail and not report an error. 124 /// When MustCreateTM is used, we print an error if we are unable to load 125 /// the requested target. 126 void CreateTargetMachine(bool MustCreateTM); 127 128 /// Add passes necessary to emit assembly or LLVM IR. 129 /// 130 /// \return True on success. 131 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 132 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 133 134 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 135 std::error_code EC; 136 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 137 llvm::sys::fs::OF_None); 138 if (EC) { 139 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 140 F.reset(); 141 } 142 return F; 143 } 144 145 public: 146 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 147 const HeaderSearchOptions &HeaderSearchOpts, 148 const CodeGenOptions &CGOpts, 149 const clang::TargetOptions &TOpts, 150 const LangOptions &LOpts, Module *M) 151 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 152 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 153 CodeGenerationTime("codegen", "Code Generation Time") {} 154 155 ~EmitAssemblyHelper() { 156 if (CodeGenOpts.DisableFree) 157 BuryPointer(std::move(TM)); 158 } 159 160 std::unique_ptr<TargetMachine> TM; 161 162 void EmitAssembly(BackendAction Action, 163 std::unique_ptr<raw_pwrite_stream> OS); 164 165 void EmitAssemblyWithNewPassManager(BackendAction Action, 166 std::unique_ptr<raw_pwrite_stream> OS); 167 }; 168 169 // We need this wrapper to access LangOpts and CGOpts from extension functions 170 // that we add to the PassManagerBuilder. 171 class PassManagerBuilderWrapper : public PassManagerBuilder { 172 public: 173 PassManagerBuilderWrapper(const Triple &TargetTriple, 174 const CodeGenOptions &CGOpts, 175 const LangOptions &LangOpts) 176 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 177 LangOpts(LangOpts) {} 178 const Triple &getTargetTriple() const { return TargetTriple; } 179 const CodeGenOptions &getCGOpts() const { return CGOpts; } 180 const LangOptions &getLangOpts() const { return LangOpts; } 181 182 private: 183 const Triple &TargetTriple; 184 const CodeGenOptions &CGOpts; 185 const LangOptions &LangOpts; 186 }; 187 } 188 189 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 190 if (Builder.OptLevel > 0) 191 PM.add(createObjCARCAPElimPass()); 192 } 193 194 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCExpandPass()); 197 } 198 199 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCOptPass()); 202 } 203 204 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 205 legacy::PassManagerBase &PM) { 206 PM.add(createAddDiscriminatorsPass()); 207 } 208 209 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createBoundsCheckingLegacyPass()); 212 } 213 214 static SanitizerCoverageOptions 215 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 216 SanitizerCoverageOptions Opts; 217 Opts.CoverageType = 218 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 219 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 220 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 221 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 222 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 223 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 224 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 225 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 226 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 227 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 228 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 229 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 230 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 231 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 232 return Opts; 233 } 234 235 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper &>(Builder); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 auto Opts = getSancovOptsFromCGOpts(CGOpts); 241 PM.add(createModuleSanitizerCoverageLegacyPassPass( 242 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 243 CGOpts.SanitizeCoverageBlocklistFiles)); 244 } 245 246 // Check if ASan should use GC-friendly instrumentation for globals. 247 // First of all, there is no point if -fdata-sections is off (expect for MachO, 248 // where this is not a factor). Also, on ELF this feature requires an assembler 249 // extension that only works with -integrated-as at the moment. 250 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 251 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 252 return false; 253 switch (T.getObjectFormat()) { 254 case Triple::MachO: 255 case Triple::COFF: 256 return true; 257 case Triple::ELF: 258 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 259 case Triple::XCOFF: 260 llvm::report_fatal_error("ASan not implemented for XCOFF."); 261 case Triple::Wasm: 262 case Triple::UnknownObjectFormat: 263 break; 264 } 265 return false; 266 } 267 268 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 const PassManagerBuilderWrapper &BuilderWrapper = 271 static_cast<const PassManagerBuilderWrapper&>(Builder); 272 const Triple &T = BuilderWrapper.getTargetTriple(); 273 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 274 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 275 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 276 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 277 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 278 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 279 UseAfterScope)); 280 PM.add(createModuleAddressSanitizerLegacyPassPass( 281 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 282 } 283 284 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 285 legacy::PassManagerBase &PM) { 286 PM.add(createAddressSanitizerFunctionPass( 287 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 288 PM.add(createModuleAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 290 /*UseOdrIndicator*/ false)); 291 } 292 293 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 294 legacy::PassManagerBase &PM) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper &>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 299 PM.add( 300 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 301 } 302 303 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 PM.add(createHWAddressSanitizerLegacyPassPass( 306 /*CompileKernel*/ true, /*Recover*/ true)); 307 } 308 309 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM, 311 bool CompileKernel) { 312 const PassManagerBuilderWrapper &BuilderWrapper = 313 static_cast<const PassManagerBuilderWrapper&>(Builder); 314 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 315 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 316 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 317 PM.add(createMemorySanitizerLegacyPassPass( 318 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 319 320 // MemorySanitizer inserts complex instrumentation that mostly follows 321 // the logic of the original code, but operates on "shadow" values. 322 // It can benefit from re-running some general purpose optimization passes. 323 if (Builder.OptLevel > 0) { 324 PM.add(createEarlyCSEPass()); 325 PM.add(createReassociatePass()); 326 PM.add(createLICMPass()); 327 PM.add(createGVNPass()); 328 PM.add(createInstructionCombiningPass()); 329 PM.add(createDeadStoreEliminationPass()); 330 } 331 } 332 333 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 334 legacy::PassManagerBase &PM) { 335 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 336 } 337 338 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 339 legacy::PassManagerBase &PM) { 340 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 341 } 342 343 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 PM.add(createThreadSanitizerLegacyPassPass()); 346 } 347 348 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 349 legacy::PassManagerBase &PM) { 350 const PassManagerBuilderWrapper &BuilderWrapper = 351 static_cast<const PassManagerBuilderWrapper&>(Builder); 352 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 353 PM.add( 354 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 355 } 356 357 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 358 const CodeGenOptions &CodeGenOpts) { 359 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 360 361 switch (CodeGenOpts.getVecLib()) { 362 case CodeGenOptions::Accelerate: 363 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 364 break; 365 case CodeGenOptions::MASSV: 366 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 367 break; 368 case CodeGenOptions::SVML: 369 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 370 break; 371 default: 372 break; 373 } 374 return TLII; 375 } 376 377 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 378 legacy::PassManager *MPM) { 379 llvm::SymbolRewriter::RewriteDescriptorList DL; 380 381 llvm::SymbolRewriter::RewriteMapParser MapParser; 382 for (const auto &MapFile : Opts.RewriteMapFiles) 383 MapParser.parse(MapFile, &DL); 384 385 MPM->add(createRewriteSymbolsPass(DL)); 386 } 387 388 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 389 switch (CodeGenOpts.OptimizationLevel) { 390 default: 391 llvm_unreachable("Invalid optimization level!"); 392 case 0: 393 return CodeGenOpt::None; 394 case 1: 395 return CodeGenOpt::Less; 396 case 2: 397 return CodeGenOpt::Default; // O2/Os/Oz 398 case 3: 399 return CodeGenOpt::Aggressive; 400 } 401 } 402 403 static Optional<llvm::CodeModel::Model> 404 getCodeModel(const CodeGenOptions &CodeGenOpts) { 405 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 406 .Case("tiny", llvm::CodeModel::Tiny) 407 .Case("small", llvm::CodeModel::Small) 408 .Case("kernel", llvm::CodeModel::Kernel) 409 .Case("medium", llvm::CodeModel::Medium) 410 .Case("large", llvm::CodeModel::Large) 411 .Case("default", ~1u) 412 .Default(~0u); 413 assert(CodeModel != ~0u && "invalid code model!"); 414 if (CodeModel == ~1u) 415 return None; 416 return static_cast<llvm::CodeModel::Model>(CodeModel); 417 } 418 419 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 420 if (Action == Backend_EmitObj) 421 return CGFT_ObjectFile; 422 else if (Action == Backend_EmitMCNull) 423 return CGFT_Null; 424 else { 425 assert(Action == Backend_EmitAssembly && "Invalid action!"); 426 return CGFT_AssemblyFile; 427 } 428 } 429 430 static void initTargetOptions(DiagnosticsEngine &Diags, 431 llvm::TargetOptions &Options, 432 const CodeGenOptions &CodeGenOpts, 433 const clang::TargetOptions &TargetOpts, 434 const LangOptions &LangOpts, 435 const HeaderSearchOptions &HSOpts) { 436 Options.ThreadModel = 437 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 438 .Case("posix", llvm::ThreadModel::POSIX) 439 .Case("single", llvm::ThreadModel::Single); 440 441 // Set float ABI type. 442 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 443 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 444 "Invalid Floating Point ABI!"); 445 Options.FloatABIType = 446 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 447 .Case("soft", llvm::FloatABI::Soft) 448 .Case("softfp", llvm::FloatABI::Soft) 449 .Case("hard", llvm::FloatABI::Hard) 450 .Default(llvm::FloatABI::Default); 451 452 // Set FP fusion mode. 453 switch (LangOpts.getDefaultFPContractMode()) { 454 case LangOptions::FPM_Off: 455 // Preserve any contraction performed by the front-end. (Strict performs 456 // splitting of the muladd intrinsic in the backend.) 457 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 458 break; 459 case LangOptions::FPM_On: 460 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 461 break; 462 case LangOptions::FPM_Fast: 463 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 464 break; 465 } 466 467 Options.UseInitArray = CodeGenOpts.UseInitArray; 468 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 469 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 470 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 471 472 // Set EABI version. 473 Options.EABIVersion = TargetOpts.EABIVersion; 474 475 if (LangOpts.SjLjExceptions) 476 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 477 if (LangOpts.SEHExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 479 if (LangOpts.DWARFExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 481 if (LangOpts.WasmExceptions) 482 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 483 484 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 485 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 486 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 487 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 488 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 489 490 Options.BBSections = 491 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 492 .Case("all", llvm::BasicBlockSection::All) 493 .Case("labels", llvm::BasicBlockSection::Labels) 494 .StartsWith("list=", llvm::BasicBlockSection::List) 495 .Case("none", llvm::BasicBlockSection::None) 496 .Default(llvm::BasicBlockSection::None); 497 498 if (Options.BBSections == llvm::BasicBlockSection::List) { 499 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 500 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 501 if (!MBOrErr) 502 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 503 << MBOrErr.getError().message(); 504 else 505 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 506 } 507 508 Options.FunctionSections = CodeGenOpts.FunctionSections; 509 Options.DataSections = CodeGenOpts.DataSections; 510 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 511 Options.UniqueBasicBlockSectionNames = 512 CodeGenOpts.UniqueBasicBlockSectionNames; 513 Options.TLSSize = CodeGenOpts.TLSSize; 514 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 515 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 516 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 517 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 518 Options.EmitAddrsig = CodeGenOpts.Addrsig; 519 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 520 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 521 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 522 523 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 524 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 525 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 526 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 527 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 528 Options.MCOptions.MCIncrementalLinkerCompatible = 529 CodeGenOpts.IncrementalLinkerCompatible; 530 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 531 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 532 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 533 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 534 Options.MCOptions.ABIName = TargetOpts.ABI; 535 for (const auto &Entry : HSOpts.UserEntries) 536 if (!Entry.IsFramework && 537 (Entry.Group == frontend::IncludeDirGroup::Quoted || 538 Entry.Group == frontend::IncludeDirGroup::Angled || 539 Entry.Group == frontend::IncludeDirGroup::System)) 540 Options.MCOptions.IASSearchPaths.push_back( 541 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 542 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 543 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 544 } 545 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 546 if (CodeGenOpts.DisableGCov) 547 return None; 548 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 549 return None; 550 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 551 // LLVM's -default-gcov-version flag is set to something invalid. 552 GCOVOptions Options; 553 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 554 Options.EmitData = CodeGenOpts.EmitGcovArcs; 555 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 556 Options.NoRedZone = CodeGenOpts.DisableRedZone; 557 Options.Filter = CodeGenOpts.ProfileFilterFiles; 558 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 559 return Options; 560 } 561 562 static Optional<InstrProfOptions> 563 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 564 const LangOptions &LangOpts) { 565 if (!CodeGenOpts.hasProfileClangInstr()) 566 return None; 567 InstrProfOptions Options; 568 Options.NoRedZone = CodeGenOpts.DisableRedZone; 569 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 570 571 // TODO: Surface the option to emit atomic profile counter increments at 572 // the driver level. 573 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 574 return Options; 575 } 576 577 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 578 legacy::FunctionPassManager &FPM) { 579 // Handle disabling of all LLVM passes, where we want to preserve the 580 // internal module before any optimization. 581 if (CodeGenOpts.DisableLLVMPasses) 582 return; 583 584 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 585 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 586 // are inserted before PMBuilder ones - they'd get the default-constructed 587 // TLI with an unknown target otherwise. 588 Triple TargetTriple(TheModule->getTargetTriple()); 589 std::unique_ptr<TargetLibraryInfoImpl> TLII( 590 createTLII(TargetTriple, CodeGenOpts)); 591 592 // If we reached here with a non-empty index file name, then the index file 593 // was empty and we are not performing ThinLTO backend compilation (used in 594 // testing in a distributed build environment). Drop any the type test 595 // assume sequences inserted for whole program vtables so that codegen doesn't 596 // complain. 597 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 598 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 599 /*ImportSummary=*/nullptr, 600 /*DropTypeTests=*/true)); 601 602 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 603 604 // At O0 and O1 we only run the always inliner which is more efficient. At 605 // higher optimization levels we run the normal inliner. 606 if (CodeGenOpts.OptimizationLevel <= 1) { 607 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 608 !CodeGenOpts.DisableLifetimeMarkers) || 609 LangOpts.Coroutines); 610 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 611 } else { 612 // We do not want to inline hot callsites for SamplePGO module-summary build 613 // because profile annotation will happen again in ThinLTO backend, and we 614 // want the IR of the hot path to match the profile. 615 PMBuilder.Inliner = createFunctionInliningPass( 616 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 617 (!CodeGenOpts.SampleProfileFile.empty() && 618 CodeGenOpts.PrepareForThinLTO)); 619 } 620 621 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 622 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 623 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 624 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 625 // Only enable CGProfilePass when using integrated assembler, since 626 // non-integrated assemblers don't recognize .cgprofile section. 627 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 628 629 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 630 // Loop interleaving in the loop vectorizer has historically been set to be 631 // enabled when loop unrolling is enabled. 632 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 633 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 634 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 635 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 636 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 637 638 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 639 640 if (TM) 641 TM->adjustPassManager(PMBuilder); 642 643 if (CodeGenOpts.DebugInfoForProfiling || 644 !CodeGenOpts.SampleProfileFile.empty()) 645 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 646 addAddDiscriminatorsPass); 647 648 // In ObjC ARC mode, add the main ARC optimization passes. 649 if (LangOpts.ObjCAutoRefCount) { 650 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 651 addObjCARCExpandPass); 652 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 653 addObjCARCAPElimPass); 654 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 655 addObjCARCOptPass); 656 } 657 658 if (LangOpts.Coroutines) 659 addCoroutinePassesToExtensionPoints(PMBuilder); 660 661 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 662 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 663 addBoundsCheckingPass); 664 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 665 addBoundsCheckingPass); 666 } 667 668 if (CodeGenOpts.SanitizeCoverageType || 669 CodeGenOpts.SanitizeCoverageIndirectCalls || 670 CodeGenOpts.SanitizeCoverageTraceCmp) { 671 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 672 addSanitizerCoveragePass); 673 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 674 addSanitizerCoveragePass); 675 } 676 677 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 678 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 679 addAddressSanitizerPasses); 680 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 681 addAddressSanitizerPasses); 682 } 683 684 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 685 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 686 addKernelAddressSanitizerPasses); 687 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 688 addKernelAddressSanitizerPasses); 689 } 690 691 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 692 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 693 addHWAddressSanitizerPasses); 694 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 695 addHWAddressSanitizerPasses); 696 } 697 698 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 699 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 700 addKernelHWAddressSanitizerPasses); 701 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 702 addKernelHWAddressSanitizerPasses); 703 } 704 705 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 706 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 707 addMemorySanitizerPass); 708 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 709 addMemorySanitizerPass); 710 } 711 712 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 713 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 714 addKernelMemorySanitizerPass); 715 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 716 addKernelMemorySanitizerPass); 717 } 718 719 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 720 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 721 addThreadSanitizerPass); 722 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 723 addThreadSanitizerPass); 724 } 725 726 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 727 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 728 addDataFlowSanitizerPass); 729 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 730 addDataFlowSanitizerPass); 731 } 732 733 // Set up the per-function pass manager. 734 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 735 if (CodeGenOpts.VerifyModule) 736 FPM.add(createVerifierPass()); 737 738 // Set up the per-module pass manager. 739 if (!CodeGenOpts.RewriteMapFiles.empty()) 740 addSymbolRewriterPass(CodeGenOpts, &MPM); 741 742 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 743 // with unique names. 744 if (CodeGenOpts.UniqueInternalLinkageNames) { 745 MPM.add(createUniqueInternalLinkageNamesPass()); 746 } 747 748 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 749 MPM.add(createGCOVProfilerPass(*Options)); 750 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 751 MPM.add(createStripSymbolsPass(true)); 752 } 753 754 if (Optional<InstrProfOptions> Options = 755 getInstrProfOptions(CodeGenOpts, LangOpts)) 756 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 757 758 bool hasIRInstr = false; 759 if (CodeGenOpts.hasProfileIRInstr()) { 760 PMBuilder.EnablePGOInstrGen = true; 761 hasIRInstr = true; 762 } 763 if (CodeGenOpts.hasProfileCSIRInstr()) { 764 assert(!CodeGenOpts.hasProfileCSIRUse() && 765 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 766 "same time"); 767 assert(!hasIRInstr && 768 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 769 "same time"); 770 PMBuilder.EnablePGOCSInstrGen = true; 771 hasIRInstr = true; 772 } 773 if (hasIRInstr) { 774 if (!CodeGenOpts.InstrProfileOutput.empty()) 775 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 776 else 777 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 778 } 779 if (CodeGenOpts.hasProfileIRUse()) { 780 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 781 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 782 } 783 784 if (!CodeGenOpts.SampleProfileFile.empty()) 785 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 786 787 PMBuilder.populateFunctionPassManager(FPM); 788 PMBuilder.populateModulePassManager(MPM); 789 } 790 791 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 792 SmallVector<const char *, 16> BackendArgs; 793 BackendArgs.push_back("clang"); // Fake program name. 794 if (!CodeGenOpts.DebugPass.empty()) { 795 BackendArgs.push_back("-debug-pass"); 796 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 797 } 798 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 799 BackendArgs.push_back("-limit-float-precision"); 800 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 801 } 802 BackendArgs.push_back(nullptr); 803 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 804 BackendArgs.data()); 805 } 806 807 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 808 // Create the TargetMachine for generating code. 809 std::string Error; 810 std::string Triple = TheModule->getTargetTriple(); 811 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 812 if (!TheTarget) { 813 if (MustCreateTM) 814 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 815 return; 816 } 817 818 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 819 std::string FeaturesStr = 820 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 821 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 822 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 823 824 llvm::TargetOptions Options; 825 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 826 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 827 Options, RM, CM, OptLevel)); 828 } 829 830 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 831 BackendAction Action, 832 raw_pwrite_stream &OS, 833 raw_pwrite_stream *DwoOS) { 834 // Add LibraryInfo. 835 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 836 std::unique_ptr<TargetLibraryInfoImpl> TLII( 837 createTLII(TargetTriple, CodeGenOpts)); 838 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 839 840 // Normal mode, emit a .s or .o file by running the code generator. Note, 841 // this also adds codegenerator level optimization passes. 842 CodeGenFileType CGFT = getCodeGenFileType(Action); 843 844 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 845 // "codegen" passes so that it isn't run multiple times when there is 846 // inlining happening. 847 if (CodeGenOpts.OptimizationLevel > 0) 848 CodeGenPasses.add(createObjCARCContractPass()); 849 850 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 851 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 852 Diags.Report(diag::err_fe_unable_to_interface_with_target); 853 return false; 854 } 855 856 return true; 857 } 858 859 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 860 std::unique_ptr<raw_pwrite_stream> OS) { 861 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 862 863 setCommandLineOpts(CodeGenOpts); 864 865 bool UsesCodeGen = (Action != Backend_EmitNothing && 866 Action != Backend_EmitBC && 867 Action != Backend_EmitLL); 868 CreateTargetMachine(UsesCodeGen); 869 870 if (UsesCodeGen && !TM) 871 return; 872 if (TM) 873 TheModule->setDataLayout(TM->createDataLayout()); 874 875 legacy::PassManager PerModulePasses; 876 PerModulePasses.add( 877 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 878 879 legacy::FunctionPassManager PerFunctionPasses(TheModule); 880 PerFunctionPasses.add( 881 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 882 883 CreatePasses(PerModulePasses, PerFunctionPasses); 884 885 legacy::PassManager CodeGenPasses; 886 CodeGenPasses.add( 887 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 888 889 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 890 891 switch (Action) { 892 case Backend_EmitNothing: 893 break; 894 895 case Backend_EmitBC: 896 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 897 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 898 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 899 if (!ThinLinkOS) 900 return; 901 } 902 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 903 CodeGenOpts.EnableSplitLTOUnit); 904 PerModulePasses.add(createWriteThinLTOBitcodePass( 905 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 906 } else { 907 // Emit a module summary by default for Regular LTO except for ld64 908 // targets 909 bool EmitLTOSummary = 910 (CodeGenOpts.PrepareForLTO && 911 !CodeGenOpts.DisableLLVMPasses && 912 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 913 llvm::Triple::Apple); 914 if (EmitLTOSummary) { 915 if (!TheModule->getModuleFlag("ThinLTO")) 916 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 917 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 918 uint32_t(1)); 919 } 920 921 PerModulePasses.add(createBitcodeWriterPass( 922 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 923 } 924 break; 925 926 case Backend_EmitLL: 927 PerModulePasses.add( 928 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 929 break; 930 931 default: 932 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 933 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 934 if (!DwoOS) 935 return; 936 } 937 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 938 DwoOS ? &DwoOS->os() : nullptr)) 939 return; 940 } 941 942 // Before executing passes, print the final values of the LLVM options. 943 cl::PrintOptionValues(); 944 945 // Run passes. For now we do all passes at once, but eventually we 946 // would like to have the option of streaming code generation. 947 948 { 949 PrettyStackTraceString CrashInfo("Per-function optimization"); 950 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 951 952 PerFunctionPasses.doInitialization(); 953 for (Function &F : *TheModule) 954 if (!F.isDeclaration()) 955 PerFunctionPasses.run(F); 956 PerFunctionPasses.doFinalization(); 957 } 958 959 { 960 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 961 llvm::TimeTraceScope TimeScope("PerModulePasses"); 962 PerModulePasses.run(*TheModule); 963 } 964 965 { 966 PrettyStackTraceString CrashInfo("Code generation"); 967 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 968 CodeGenPasses.run(*TheModule); 969 } 970 971 if (ThinLinkOS) 972 ThinLinkOS->keep(); 973 if (DwoOS) 974 DwoOS->keep(); 975 } 976 977 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 978 switch (Opts.OptimizationLevel) { 979 default: 980 llvm_unreachable("Invalid optimization level!"); 981 982 case 1: 983 return PassBuilder::OptimizationLevel::O1; 984 985 case 2: 986 switch (Opts.OptimizeSize) { 987 default: 988 llvm_unreachable("Invalid optimization level for size!"); 989 990 case 0: 991 return PassBuilder::OptimizationLevel::O2; 992 993 case 1: 994 return PassBuilder::OptimizationLevel::Os; 995 996 case 2: 997 return PassBuilder::OptimizationLevel::Oz; 998 } 999 1000 case 3: 1001 return PassBuilder::OptimizationLevel::O3; 1002 } 1003 } 1004 1005 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1006 const LangOptions &LangOpts, 1007 const CodeGenOptions &CodeGenOpts) { 1008 if (!LangOpts.Coroutines) 1009 return; 1010 1011 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1012 1013 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1014 CGPM.addPass(CoroSplitPass()); 1015 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1016 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1017 1018 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1019 } 1020 1021 static void addSanitizersAtO0(ModulePassManager &MPM, 1022 const Triple &TargetTriple, 1023 const LangOptions &LangOpts, 1024 const CodeGenOptions &CodeGenOpts) { 1025 if (CodeGenOpts.SanitizeCoverageType || 1026 CodeGenOpts.SanitizeCoverageIndirectCalls || 1027 CodeGenOpts.SanitizeCoverageTraceCmp) { 1028 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1029 MPM.addPass(ModuleSanitizerCoveragePass( 1030 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1031 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1032 } 1033 1034 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1035 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1036 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1037 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1038 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1039 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1040 MPM.addPass( 1041 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1042 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1043 }; 1044 1045 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1046 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1047 } 1048 1049 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1050 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1051 } 1052 1053 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1054 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1055 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1056 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1057 MPM.addPass(createModuleToFunctionPassAdaptor( 1058 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1059 } 1060 1061 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1062 MPM.addPass(createModuleToFunctionPassAdaptor( 1063 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1064 } 1065 1066 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1067 MPM.addPass(ThreadSanitizerPass()); 1068 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1069 } 1070 } 1071 1072 /// A clean version of `EmitAssembly` that uses the new pass manager. 1073 /// 1074 /// Not all features are currently supported in this system, but where 1075 /// necessary it falls back to the legacy pass manager to at least provide 1076 /// basic functionality. 1077 /// 1078 /// This API is planned to have its functionality finished and then to replace 1079 /// `EmitAssembly` at some point in the future when the default switches. 1080 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1081 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1082 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1083 setCommandLineOpts(CodeGenOpts); 1084 1085 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1086 Action != Backend_EmitBC && 1087 Action != Backend_EmitLL); 1088 CreateTargetMachine(RequiresCodeGen); 1089 1090 if (RequiresCodeGen && !TM) 1091 return; 1092 if (TM) 1093 TheModule->setDataLayout(TM->createDataLayout()); 1094 1095 Optional<PGOOptions> PGOOpt; 1096 1097 if (CodeGenOpts.hasProfileIRInstr()) 1098 // -fprofile-generate. 1099 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1100 ? std::string(DefaultProfileGenName) 1101 : CodeGenOpts.InstrProfileOutput, 1102 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1103 CodeGenOpts.DebugInfoForProfiling); 1104 else if (CodeGenOpts.hasProfileIRUse()) { 1105 // -fprofile-use. 1106 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1107 : PGOOptions::NoCSAction; 1108 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1109 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1110 CSAction, CodeGenOpts.DebugInfoForProfiling); 1111 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1112 // -fprofile-sample-use 1113 PGOOpt = 1114 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1115 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1116 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1117 else if (CodeGenOpts.DebugInfoForProfiling) 1118 // -fdebug-info-for-profiling 1119 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1120 PGOOptions::NoCSAction, true); 1121 1122 // Check to see if we want to generate a CS profile. 1123 if (CodeGenOpts.hasProfileCSIRInstr()) { 1124 assert(!CodeGenOpts.hasProfileCSIRUse() && 1125 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1126 "the same time"); 1127 if (PGOOpt.hasValue()) { 1128 assert(PGOOpt->Action != PGOOptions::IRInstr && 1129 PGOOpt->Action != PGOOptions::SampleUse && 1130 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1131 " pass"); 1132 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1133 ? std::string(DefaultProfileGenName) 1134 : CodeGenOpts.InstrProfileOutput; 1135 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1136 } else 1137 PGOOpt = PGOOptions("", 1138 CodeGenOpts.InstrProfileOutput.empty() 1139 ? std::string(DefaultProfileGenName) 1140 : CodeGenOpts.InstrProfileOutput, 1141 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1142 CodeGenOpts.DebugInfoForProfiling); 1143 } 1144 1145 PipelineTuningOptions PTO; 1146 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1147 // For historical reasons, loop interleaving is set to mirror setting for loop 1148 // unrolling. 1149 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1150 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1151 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1152 // Only enable CGProfilePass when using integrated assembler, since 1153 // non-integrated assemblers don't recognize .cgprofile section. 1154 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1155 PTO.Coroutines = LangOpts.Coroutines; 1156 1157 PassInstrumentationCallbacks PIC; 1158 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1159 SI.registerCallbacks(PIC); 1160 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1161 1162 // Attempt to load pass plugins and register their callbacks with PB. 1163 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1164 auto PassPlugin = PassPlugin::Load(PluginFN); 1165 if (PassPlugin) { 1166 PassPlugin->registerPassBuilderCallbacks(PB); 1167 } else { 1168 Diags.Report(diag::err_fe_unable_to_load_plugin) 1169 << PluginFN << toString(PassPlugin.takeError()); 1170 } 1171 } 1172 #define HANDLE_EXTENSION(Ext) \ 1173 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1174 #include "llvm/Support/Extension.def" 1175 1176 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1177 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1178 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1179 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1180 1181 // Register the AA manager first so that our version is the one used. 1182 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1183 1184 // Register the target library analysis directly and give it a customized 1185 // preset TLI. 1186 Triple TargetTriple(TheModule->getTargetTriple()); 1187 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1188 createTLII(TargetTriple, CodeGenOpts)); 1189 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1190 1191 // Register all the basic analyses with the managers. 1192 PB.registerModuleAnalyses(MAM); 1193 PB.registerCGSCCAnalyses(CGAM); 1194 PB.registerFunctionAnalyses(FAM); 1195 PB.registerLoopAnalyses(LAM); 1196 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1197 1198 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1199 1200 if (!CodeGenOpts.DisableLLVMPasses) { 1201 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1202 bool IsLTO = CodeGenOpts.PrepareForLTO; 1203 1204 if (CodeGenOpts.OptimizationLevel == 0) { 1205 // If we reached here with a non-empty index file name, then the index 1206 // file was empty and we are not performing ThinLTO backend compilation 1207 // (used in testing in a distributed build environment). Drop any the type 1208 // test assume sequences inserted for whole program vtables so that 1209 // codegen doesn't complain. 1210 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1211 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1212 /*ImportSummary=*/nullptr, 1213 /*DropTypeTests=*/true)); 1214 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1215 MPM.addPass(GCOVProfilerPass(*Options)); 1216 if (Optional<InstrProfOptions> Options = 1217 getInstrProfOptions(CodeGenOpts, LangOpts)) 1218 MPM.addPass(InstrProfiling(*Options, false)); 1219 1220 // Build a minimal pipeline based on the semantics required by Clang, 1221 // which is just that always inlining occurs. Further, disable generating 1222 // lifetime intrinsics to avoid enabling further optimizations during 1223 // code generation. 1224 // However, we need to insert lifetime intrinsics to avoid invalid access 1225 // caused by multithreaded coroutines. 1226 MPM.addPass( 1227 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1228 1229 // At -O0, we can still do PGO. Add all the requested passes for 1230 // instrumentation PGO, if requested. 1231 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1232 PGOOpt->Action == PGOOptions::IRUse)) 1233 PB.addPGOInstrPassesForO0( 1234 MPM, CodeGenOpts.DebugPassManager, 1235 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1236 /* IsCS */ false, PGOOpt->ProfileFile, 1237 PGOOpt->ProfileRemappingFile); 1238 1239 // At -O0 we directly run necessary sanitizer passes. 1240 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1241 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1242 1243 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1244 // symbols with unique names. 1245 if (CodeGenOpts.UniqueInternalLinkageNames) { 1246 MPM.addPass(UniqueInternalLinkageNamesPass()); 1247 } 1248 1249 // Lastly, add semantically necessary passes for LTO. 1250 if (IsLTO || IsThinLTO) { 1251 MPM.addPass(CanonicalizeAliasesPass()); 1252 MPM.addPass(NameAnonGlobalPass()); 1253 } 1254 } else { 1255 // Map our optimization levels into one of the distinct levels used to 1256 // configure the pipeline. 1257 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1258 1259 // If we reached here with a non-empty index file name, then the index 1260 // file was empty and we are not performing ThinLTO backend compilation 1261 // (used in testing in a distributed build environment). Drop any the type 1262 // test assume sequences inserted for whole program vtables so that 1263 // codegen doesn't complain. 1264 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1265 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1266 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1267 /*ImportSummary=*/nullptr, 1268 /*DropTypeTests=*/true)); 1269 }); 1270 1271 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1272 MPM.addPass(createModuleToFunctionPassAdaptor( 1273 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1274 }); 1275 1276 // Register callbacks to schedule sanitizer passes at the appropriate part of 1277 // the pipeline. 1278 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1279 PB.registerScalarOptimizerLateEPCallback( 1280 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1281 FPM.addPass(BoundsCheckingPass()); 1282 }); 1283 1284 if (CodeGenOpts.SanitizeCoverageType || 1285 CodeGenOpts.SanitizeCoverageIndirectCalls || 1286 CodeGenOpts.SanitizeCoverageTraceCmp) { 1287 PB.registerOptimizerLastEPCallback( 1288 [this](ModulePassManager &MPM, 1289 PassBuilder::OptimizationLevel Level) { 1290 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1291 MPM.addPass(ModuleSanitizerCoveragePass( 1292 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1293 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1294 }); 1295 } 1296 1297 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1298 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1299 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1300 PB.registerOptimizerLastEPCallback( 1301 [TrackOrigins, Recover](ModulePassManager &MPM, 1302 PassBuilder::OptimizationLevel Level) { 1303 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1304 MPM.addPass(createModuleToFunctionPassAdaptor( 1305 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1306 }); 1307 } 1308 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1309 PB.registerOptimizerLastEPCallback( 1310 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1311 MPM.addPass(ThreadSanitizerPass()); 1312 MPM.addPass( 1313 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1314 }); 1315 } 1316 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1317 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1318 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1319 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1320 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1321 PB.registerOptimizerLastEPCallback( 1322 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1323 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1324 MPM.addPass( 1325 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1326 MPM.addPass(ModuleAddressSanitizerPass( 1327 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1328 UseOdrIndicator)); 1329 MPM.addPass( 1330 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1331 /*CompileKernel=*/false, Recover, UseAfterScope))); 1332 }); 1333 } 1334 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1335 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1336 MPM.addPass(GCOVProfilerPass(*Options)); 1337 }); 1338 if (Optional<InstrProfOptions> Options = 1339 getInstrProfOptions(CodeGenOpts, LangOpts)) 1340 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1341 MPM.addPass(InstrProfiling(*Options, false)); 1342 }); 1343 1344 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1345 // symbols with unique names. 1346 if (CodeGenOpts.UniqueInternalLinkageNames) { 1347 MPM.addPass(UniqueInternalLinkageNamesPass()); 1348 } 1349 1350 if (IsThinLTO) { 1351 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1352 Level, CodeGenOpts.DebugPassManager); 1353 MPM.addPass(CanonicalizeAliasesPass()); 1354 MPM.addPass(NameAnonGlobalPass()); 1355 } else if (IsLTO) { 1356 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1357 CodeGenOpts.DebugPassManager); 1358 MPM.addPass(CanonicalizeAliasesPass()); 1359 MPM.addPass(NameAnonGlobalPass()); 1360 } else { 1361 MPM = PB.buildPerModuleDefaultPipeline(Level, 1362 CodeGenOpts.DebugPassManager); 1363 } 1364 } 1365 1366 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1367 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1368 MPM.addPass(HWAddressSanitizerPass( 1369 /*CompileKernel=*/false, Recover)); 1370 } 1371 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1372 MPM.addPass(HWAddressSanitizerPass( 1373 /*CompileKernel=*/true, /*Recover=*/true)); 1374 } 1375 1376 if (CodeGenOpts.OptimizationLevel == 0) { 1377 // FIXME: the backends do not handle matrix intrinsics currently. Make 1378 // sure they are also lowered in O0. A lightweight version of the pass 1379 // should run in the backend pipeline on demand. 1380 if (LangOpts.MatrixTypes) 1381 MPM.addPass( 1382 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1383 1384 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1385 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1386 } 1387 } 1388 1389 // FIXME: We still use the legacy pass manager to do code generation. We 1390 // create that pass manager here and use it as needed below. 1391 legacy::PassManager CodeGenPasses; 1392 bool NeedCodeGen = false; 1393 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1394 1395 // Append any output we need to the pass manager. 1396 switch (Action) { 1397 case Backend_EmitNothing: 1398 break; 1399 1400 case Backend_EmitBC: 1401 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1402 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1403 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1404 if (!ThinLinkOS) 1405 return; 1406 } 1407 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1408 CodeGenOpts.EnableSplitLTOUnit); 1409 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1410 : nullptr)); 1411 } else { 1412 // Emit a module summary by default for Regular LTO except for ld64 1413 // targets 1414 bool EmitLTOSummary = 1415 (CodeGenOpts.PrepareForLTO && 1416 !CodeGenOpts.DisableLLVMPasses && 1417 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1418 llvm::Triple::Apple); 1419 if (EmitLTOSummary) { 1420 if (!TheModule->getModuleFlag("ThinLTO")) 1421 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1422 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1423 uint32_t(1)); 1424 } 1425 MPM.addPass( 1426 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1427 } 1428 break; 1429 1430 case Backend_EmitLL: 1431 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1432 break; 1433 1434 case Backend_EmitAssembly: 1435 case Backend_EmitMCNull: 1436 case Backend_EmitObj: 1437 NeedCodeGen = true; 1438 CodeGenPasses.add( 1439 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1440 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1441 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1442 if (!DwoOS) 1443 return; 1444 } 1445 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1446 DwoOS ? &DwoOS->os() : nullptr)) 1447 // FIXME: Should we handle this error differently? 1448 return; 1449 break; 1450 } 1451 1452 // Before executing passes, print the final values of the LLVM options. 1453 cl::PrintOptionValues(); 1454 1455 // Now that we have all of the passes ready, run them. 1456 { 1457 PrettyStackTraceString CrashInfo("Optimizer"); 1458 MPM.run(*TheModule, MAM); 1459 } 1460 1461 // Now if needed, run the legacy PM for codegen. 1462 if (NeedCodeGen) { 1463 PrettyStackTraceString CrashInfo("Code generation"); 1464 CodeGenPasses.run(*TheModule); 1465 } 1466 1467 if (ThinLinkOS) 1468 ThinLinkOS->keep(); 1469 if (DwoOS) 1470 DwoOS->keep(); 1471 } 1472 1473 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1474 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1475 if (!BMsOrErr) 1476 return BMsOrErr.takeError(); 1477 1478 // The bitcode file may contain multiple modules, we want the one that is 1479 // marked as being the ThinLTO module. 1480 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1481 return *Bm; 1482 1483 return make_error<StringError>("Could not find module summary", 1484 inconvertibleErrorCode()); 1485 } 1486 1487 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1488 for (BitcodeModule &BM : BMs) { 1489 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1490 if (LTOInfo && LTOInfo->IsThinLTO) 1491 return &BM; 1492 } 1493 return nullptr; 1494 } 1495 1496 static void runThinLTOBackend( 1497 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1498 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1499 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1500 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1501 std::string ProfileRemapping, BackendAction Action) { 1502 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1503 ModuleToDefinedGVSummaries; 1504 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1505 1506 setCommandLineOpts(CGOpts); 1507 1508 // We can simply import the values mentioned in the combined index, since 1509 // we should only invoke this using the individual indexes written out 1510 // via a WriteIndexesThinBackend. 1511 FunctionImporter::ImportMapTy ImportList; 1512 for (auto &GlobalList : *CombinedIndex) { 1513 // Ignore entries for undefined references. 1514 if (GlobalList.second.SummaryList.empty()) 1515 continue; 1516 1517 auto GUID = GlobalList.first; 1518 for (auto &Summary : GlobalList.second.SummaryList) { 1519 // Skip the summaries for the importing module. These are included to 1520 // e.g. record required linkage changes. 1521 if (Summary->modulePath() == M->getModuleIdentifier()) 1522 continue; 1523 // Add an entry to provoke importing by thinBackend. 1524 ImportList[Summary->modulePath()].insert(GUID); 1525 } 1526 } 1527 1528 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1529 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1530 1531 for (auto &I : ImportList) { 1532 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1533 llvm::MemoryBuffer::getFile(I.first()); 1534 if (!MBOrErr) { 1535 errs() << "Error loading imported file '" << I.first() 1536 << "': " << MBOrErr.getError().message() << "\n"; 1537 return; 1538 } 1539 1540 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1541 if (!BMOrErr) { 1542 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1543 errs() << "Error loading imported file '" << I.first() 1544 << "': " << EIB.message() << '\n'; 1545 }); 1546 return; 1547 } 1548 ModuleMap.insert({I.first(), *BMOrErr}); 1549 1550 OwnedImports.push_back(std::move(*MBOrErr)); 1551 } 1552 auto AddStream = [&](size_t Task) { 1553 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1554 }; 1555 lto::Config Conf; 1556 if (CGOpts.SaveTempsFilePrefix != "") { 1557 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1558 /* UseInputModulePath */ false)) { 1559 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1560 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1561 << '\n'; 1562 }); 1563 } 1564 } 1565 Conf.CPU = TOpts.CPU; 1566 Conf.CodeModel = getCodeModel(CGOpts); 1567 Conf.MAttrs = TOpts.Features; 1568 Conf.RelocModel = CGOpts.RelocationModel; 1569 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1570 Conf.OptLevel = CGOpts.OptimizationLevel; 1571 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1572 Conf.SampleProfile = std::move(SampleProfile); 1573 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1574 // For historical reasons, loop interleaving is set to mirror setting for loop 1575 // unrolling. 1576 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1577 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1578 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1579 // Only enable CGProfilePass when using integrated assembler, since 1580 // non-integrated assemblers don't recognize .cgprofile section. 1581 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1582 1583 // Context sensitive profile. 1584 if (CGOpts.hasProfileCSIRInstr()) { 1585 Conf.RunCSIRInstr = true; 1586 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1587 } else if (CGOpts.hasProfileCSIRUse()) { 1588 Conf.RunCSIRInstr = false; 1589 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1590 } 1591 1592 Conf.ProfileRemapping = std::move(ProfileRemapping); 1593 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1594 Conf.DebugPassManager = CGOpts.DebugPassManager; 1595 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1596 Conf.RemarksFilename = CGOpts.OptRecordFile; 1597 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1598 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1599 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1600 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1601 switch (Action) { 1602 case Backend_EmitNothing: 1603 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1604 return false; 1605 }; 1606 break; 1607 case Backend_EmitLL: 1608 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1609 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1610 return false; 1611 }; 1612 break; 1613 case Backend_EmitBC: 1614 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1615 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1616 return false; 1617 }; 1618 break; 1619 default: 1620 Conf.CGFileType = getCodeGenFileType(Action); 1621 break; 1622 } 1623 if (Error E = thinBackend( 1624 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1625 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1626 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1627 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1628 }); 1629 } 1630 } 1631 1632 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1633 const HeaderSearchOptions &HeaderOpts, 1634 const CodeGenOptions &CGOpts, 1635 const clang::TargetOptions &TOpts, 1636 const LangOptions &LOpts, 1637 const llvm::DataLayout &TDesc, Module *M, 1638 BackendAction Action, 1639 std::unique_ptr<raw_pwrite_stream> OS) { 1640 1641 llvm::TimeTraceScope TimeScope("Backend"); 1642 1643 std::unique_ptr<llvm::Module> EmptyModule; 1644 if (!CGOpts.ThinLTOIndexFile.empty()) { 1645 // If we are performing a ThinLTO importing compile, load the function index 1646 // into memory and pass it into runThinLTOBackend, which will run the 1647 // function importer and invoke LTO passes. 1648 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1649 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1650 /*IgnoreEmptyThinLTOIndexFile*/true); 1651 if (!IndexOrErr) { 1652 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1653 "Error loading index file '" + 1654 CGOpts.ThinLTOIndexFile + "': "); 1655 return; 1656 } 1657 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1658 // A null CombinedIndex means we should skip ThinLTO compilation 1659 // (LLVM will optionally ignore empty index files, returning null instead 1660 // of an error). 1661 if (CombinedIndex) { 1662 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1663 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1664 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1665 CGOpts.ProfileRemappingFile, Action); 1666 return; 1667 } 1668 // Distributed indexing detected that nothing from the module is needed 1669 // for the final linking. So we can skip the compilation. We sill need to 1670 // output an empty object file to make sure that a linker does not fail 1671 // trying to read it. Also for some features, like CFI, we must skip 1672 // the compilation as CombinedIndex does not contain all required 1673 // information. 1674 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1675 EmptyModule->setTargetTriple(M->getTargetTriple()); 1676 M = EmptyModule.get(); 1677 } 1678 } 1679 1680 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1681 1682 if (CGOpts.ExperimentalNewPassManager) 1683 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1684 else 1685 AsmHelper.EmitAssembly(Action, std::move(OS)); 1686 1687 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1688 // DataLayout. 1689 if (AsmHelper.TM) { 1690 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1691 if (DLDesc != TDesc.getStringRepresentation()) { 1692 unsigned DiagID = Diags.getCustomDiagID( 1693 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1694 "expected target description '%1'"); 1695 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1696 } 1697 } 1698 } 1699 1700 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1701 // __LLVM,__bitcode section. 1702 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1703 llvm::MemoryBufferRef Buf) { 1704 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1705 return; 1706 llvm::EmbedBitcodeInModule( 1707 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1708 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1709 &CGOpts.CmdArgs); 1710 } 1711