1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 Triple TargetTriple; 122 123 TargetIRAnalysis getTargetIRAnalysis() const { 124 if (TM) 125 return TM->getTargetIRAnalysis(); 126 127 return TargetIRAnalysis(); 128 } 129 130 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 131 132 /// Generates the TargetMachine. 133 /// Leaves TM unchanged if it is unable to create the target machine. 134 /// Some of our clang tests specify triples which are not built 135 /// into clang. This is okay because these tests check the generated 136 /// IR, and they require DataLayout which depends on the triple. 137 /// In this case, we allow this method to fail and not report an error. 138 /// When MustCreateTM is used, we print an error if we are unable to load 139 /// the requested target. 140 void CreateTargetMachine(bool MustCreateTM); 141 142 /// Add passes necessary to emit assembly or LLVM IR. 143 /// 144 /// \return True on success. 145 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 146 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 147 148 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 149 std::error_code EC; 150 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 151 llvm::sys::fs::OF_None); 152 if (EC) { 153 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 154 F.reset(); 155 } 156 return F; 157 } 158 159 void 160 RunOptimizationPipeline(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> &OS, 162 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 163 void RunCodegenPipeline(BackendAction Action, 164 std::unique_ptr<raw_pwrite_stream> &OS, 165 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 166 167 /// Check whether we should emit a module summary for regular LTO. 168 /// The module summary should be emitted by default for regular LTO 169 /// except for ld64 targets. 170 /// 171 /// \return True if the module summary should be emitted. 172 bool shouldEmitRegularLTOSummary() const { 173 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 174 TargetTriple.getVendor() != llvm::Triple::Apple; 175 } 176 177 public: 178 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 179 const HeaderSearchOptions &HeaderSearchOpts, 180 const CodeGenOptions &CGOpts, 181 const clang::TargetOptions &TOpts, 182 const LangOptions &LOpts, Module *M) 183 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 184 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 185 CodeGenerationTime("codegen", "Code Generation Time"), 186 TargetTriple(TheModule->getTargetTriple()) {} 187 188 ~EmitAssemblyHelper() { 189 if (CodeGenOpts.DisableFree) 190 BuryPointer(std::move(TM)); 191 } 192 193 std::unique_ptr<TargetMachine> TM; 194 195 // Emit output using the legacy pass manager for the optimization pipeline. 196 // This will be removed soon when using the legacy pass manager for the 197 // optimization pipeline is no longer supported. 198 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 199 std::unique_ptr<raw_pwrite_stream> OS); 200 201 // Emit output using the new pass manager for the optimization pipeline. This 202 // is the default. 203 void EmitAssembly(BackendAction Action, 204 std::unique_ptr<raw_pwrite_stream> OS); 205 }; 206 207 // We need this wrapper to access LangOpts and CGOpts from extension functions 208 // that we add to the PassManagerBuilder. 209 class PassManagerBuilderWrapper : public PassManagerBuilder { 210 public: 211 PassManagerBuilderWrapper(const Triple &TargetTriple, 212 const CodeGenOptions &CGOpts, 213 const LangOptions &LangOpts) 214 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 215 const Triple &getTargetTriple() const { return TargetTriple; } 216 const CodeGenOptions &getCGOpts() const { return CGOpts; } 217 const LangOptions &getLangOpts() const { return LangOpts; } 218 219 private: 220 const Triple &TargetTriple; 221 const CodeGenOptions &CGOpts; 222 const LangOptions &LangOpts; 223 }; 224 } 225 226 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 227 if (Builder.OptLevel > 0) 228 PM.add(createObjCARCAPElimPass()); 229 } 230 231 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 232 if (Builder.OptLevel > 0) 233 PM.add(createObjCARCExpandPass()); 234 } 235 236 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 237 if (Builder.OptLevel > 0) 238 PM.add(createObjCARCOptPass()); 239 } 240 241 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 242 legacy::PassManagerBase &PM) { 243 PM.add(createAddDiscriminatorsPass()); 244 } 245 246 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 247 legacy::PassManagerBase &PM) { 248 PM.add(createBoundsCheckingLegacyPass()); 249 } 250 251 static SanitizerCoverageOptions 252 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 253 SanitizerCoverageOptions Opts; 254 Opts.CoverageType = 255 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 256 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 257 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 258 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 259 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 260 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 261 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 262 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 263 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 264 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 265 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 266 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 267 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 268 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 269 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 270 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 271 return Opts; 272 } 273 274 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 const PassManagerBuilderWrapper &BuilderWrapper = 277 static_cast<const PassManagerBuilderWrapper &>(Builder); 278 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 279 auto Opts = getSancovOptsFromCGOpts(CGOpts); 280 PM.add(createModuleSanitizerCoverageLegacyPassPass( 281 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 282 CGOpts.SanitizeCoverageIgnorelistFiles)); 283 } 284 285 // Check if ASan should use GC-friendly instrumentation for globals. 286 // First of all, there is no point if -fdata-sections is off (expect for MachO, 287 // where this is not a factor). Also, on ELF this feature requires an assembler 288 // extension that only works with -integrated-as at the moment. 289 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 290 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 291 return false; 292 switch (T.getObjectFormat()) { 293 case Triple::MachO: 294 case Triple::COFF: 295 return true; 296 case Triple::ELF: 297 return !CGOpts.DisableIntegratedAS; 298 case Triple::GOFF: 299 llvm::report_fatal_error("ASan not implemented for GOFF"); 300 case Triple::XCOFF: 301 llvm::report_fatal_error("ASan not implemented for XCOFF."); 302 case Triple::Wasm: 303 case Triple::DXContainer: 304 case Triple::UnknownObjectFormat: 305 break; 306 } 307 return false; 308 } 309 310 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 311 legacy::PassManagerBase &PM) { 312 PM.add(createMemProfilerFunctionPass()); 313 PM.add(createModuleMemProfilerLegacyPassPass()); 314 } 315 316 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 317 legacy::PassManagerBase &PM) { 318 const PassManagerBuilderWrapper &BuilderWrapper = 319 static_cast<const PassManagerBuilderWrapper&>(Builder); 320 const Triple &T = BuilderWrapper.getTargetTriple(); 321 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 322 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 323 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 324 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 325 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 326 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 327 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 328 CGOpts.getSanitizeAddressUseAfterReturn(); 329 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 330 UseAfterScope, UseAfterReturn)); 331 PM.add(createModuleAddressSanitizerLegacyPassPass( 332 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 333 DestructorKind)); 334 } 335 336 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 337 legacy::PassManagerBase &PM) { 338 PM.add(createAddressSanitizerFunctionPass( 339 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 340 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 341 PM.add(createModuleAddressSanitizerLegacyPassPass( 342 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 343 /*UseOdrIndicator*/ false)); 344 } 345 346 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 347 legacy::PassManagerBase &PM) { 348 const PassManagerBuilderWrapper &BuilderWrapper = 349 static_cast<const PassManagerBuilderWrapper &>(Builder); 350 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 351 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 352 PM.add(createHWAddressSanitizerLegacyPassPass( 353 /*CompileKernel*/ false, Recover, 354 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 355 } 356 357 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 const PassManagerBuilderWrapper &BuilderWrapper = 360 static_cast<const PassManagerBuilderWrapper &>(Builder); 361 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 362 PM.add(createHWAddressSanitizerLegacyPassPass( 363 /*CompileKernel*/ true, /*Recover*/ true, 364 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 365 } 366 367 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 368 legacy::PassManagerBase &PM, 369 bool CompileKernel) { 370 const PassManagerBuilderWrapper &BuilderWrapper = 371 static_cast<const PassManagerBuilderWrapper&>(Builder); 372 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 373 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 374 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 375 PM.add(createMemorySanitizerLegacyPassPass( 376 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 377 CGOpts.SanitizeMemoryParamRetval != 0})); 378 379 // MemorySanitizer inserts complex instrumentation that mostly follows 380 // the logic of the original code, but operates on "shadow" values. 381 // It can benefit from re-running some general purpose optimization passes. 382 if (Builder.OptLevel > 0) { 383 PM.add(createEarlyCSEPass()); 384 PM.add(createReassociatePass()); 385 PM.add(createLICMPass()); 386 PM.add(createGVNPass()); 387 PM.add(createInstructionCombiningPass()); 388 PM.add(createDeadStoreEliminationPass()); 389 } 390 } 391 392 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 393 legacy::PassManagerBase &PM) { 394 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 395 } 396 397 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 398 legacy::PassManagerBase &PM) { 399 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 400 } 401 402 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 403 legacy::PassManagerBase &PM) { 404 PM.add(createThreadSanitizerLegacyPassPass()); 405 } 406 407 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 408 legacy::PassManagerBase &PM) { 409 const PassManagerBuilderWrapper &BuilderWrapper = 410 static_cast<const PassManagerBuilderWrapper&>(Builder); 411 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 412 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 413 } 414 415 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 416 legacy::PassManagerBase &PM) { 417 PM.add(createEntryExitInstrumenterPass()); 418 } 419 420 static void 421 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 422 legacy::PassManagerBase &PM) { 423 PM.add(createPostInlineEntryExitInstrumenterPass()); 424 } 425 426 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 427 const CodeGenOptions &CodeGenOpts) { 428 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 429 430 switch (CodeGenOpts.getVecLib()) { 431 case CodeGenOptions::Accelerate: 432 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 433 break; 434 case CodeGenOptions::LIBMVEC: 435 switch(TargetTriple.getArch()) { 436 default: 437 break; 438 case llvm::Triple::x86_64: 439 TLII->addVectorizableFunctionsFromVecLib 440 (TargetLibraryInfoImpl::LIBMVEC_X86); 441 break; 442 } 443 break; 444 case CodeGenOptions::MASSV: 445 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 446 break; 447 case CodeGenOptions::SVML: 448 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 449 break; 450 case CodeGenOptions::Darwin_libsystem_m: 451 TLII->addVectorizableFunctionsFromVecLib( 452 TargetLibraryInfoImpl::DarwinLibSystemM); 453 break; 454 default: 455 break; 456 } 457 return TLII; 458 } 459 460 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 461 legacy::PassManager *MPM) { 462 llvm::SymbolRewriter::RewriteDescriptorList DL; 463 464 llvm::SymbolRewriter::RewriteMapParser MapParser; 465 for (const auto &MapFile : Opts.RewriteMapFiles) 466 MapParser.parse(MapFile, &DL); 467 468 MPM->add(createRewriteSymbolsPass(DL)); 469 } 470 471 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 472 switch (CodeGenOpts.OptimizationLevel) { 473 default: 474 llvm_unreachable("Invalid optimization level!"); 475 case 0: 476 return CodeGenOpt::None; 477 case 1: 478 return CodeGenOpt::Less; 479 case 2: 480 return CodeGenOpt::Default; // O2/Os/Oz 481 case 3: 482 return CodeGenOpt::Aggressive; 483 } 484 } 485 486 static Optional<llvm::CodeModel::Model> 487 getCodeModel(const CodeGenOptions &CodeGenOpts) { 488 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 489 .Case("tiny", llvm::CodeModel::Tiny) 490 .Case("small", llvm::CodeModel::Small) 491 .Case("kernel", llvm::CodeModel::Kernel) 492 .Case("medium", llvm::CodeModel::Medium) 493 .Case("large", llvm::CodeModel::Large) 494 .Case("default", ~1u) 495 .Default(~0u); 496 assert(CodeModel != ~0u && "invalid code model!"); 497 if (CodeModel == ~1u) 498 return None; 499 return static_cast<llvm::CodeModel::Model>(CodeModel); 500 } 501 502 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 503 if (Action == Backend_EmitObj) 504 return CGFT_ObjectFile; 505 else if (Action == Backend_EmitMCNull) 506 return CGFT_Null; 507 else { 508 assert(Action == Backend_EmitAssembly && "Invalid action!"); 509 return CGFT_AssemblyFile; 510 } 511 } 512 513 static bool actionRequiresCodeGen(BackendAction Action) { 514 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 515 Action != Backend_EmitLL; 516 } 517 518 static bool initTargetOptions(DiagnosticsEngine &Diags, 519 llvm::TargetOptions &Options, 520 const CodeGenOptions &CodeGenOpts, 521 const clang::TargetOptions &TargetOpts, 522 const LangOptions &LangOpts, 523 const HeaderSearchOptions &HSOpts) { 524 switch (LangOpts.getThreadModel()) { 525 case LangOptions::ThreadModelKind::POSIX: 526 Options.ThreadModel = llvm::ThreadModel::POSIX; 527 break; 528 case LangOptions::ThreadModelKind::Single: 529 Options.ThreadModel = llvm::ThreadModel::Single; 530 break; 531 } 532 533 // Set float ABI type. 534 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 535 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 536 "Invalid Floating Point ABI!"); 537 Options.FloatABIType = 538 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 539 .Case("soft", llvm::FloatABI::Soft) 540 .Case("softfp", llvm::FloatABI::Soft) 541 .Case("hard", llvm::FloatABI::Hard) 542 .Default(llvm::FloatABI::Default); 543 544 // Set FP fusion mode. 545 switch (LangOpts.getDefaultFPContractMode()) { 546 case LangOptions::FPM_Off: 547 // Preserve any contraction performed by the front-end. (Strict performs 548 // splitting of the muladd intrinsic in the backend.) 549 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 550 break; 551 case LangOptions::FPM_On: 552 case LangOptions::FPM_FastHonorPragmas: 553 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 554 break; 555 case LangOptions::FPM_Fast: 556 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 557 break; 558 } 559 560 Options.BinutilsVersion = 561 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 562 Options.UseInitArray = CodeGenOpts.UseInitArray; 563 Options.LowerGlobalDtorsViaCxaAtExit = 564 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 565 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 566 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 567 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 568 569 // Set EABI version. 570 Options.EABIVersion = TargetOpts.EABIVersion; 571 572 if (LangOpts.hasSjLjExceptions()) 573 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 574 if (LangOpts.hasSEHExceptions()) 575 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 576 if (LangOpts.hasDWARFExceptions()) 577 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 578 if (LangOpts.hasWasmExceptions()) 579 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 580 581 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 582 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 583 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 584 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 585 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 586 587 Options.BBSections = 588 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 589 .Case("all", llvm::BasicBlockSection::All) 590 .Case("labels", llvm::BasicBlockSection::Labels) 591 .StartsWith("list=", llvm::BasicBlockSection::List) 592 .Case("none", llvm::BasicBlockSection::None) 593 .Default(llvm::BasicBlockSection::None); 594 595 if (Options.BBSections == llvm::BasicBlockSection::List) { 596 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 597 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 598 if (!MBOrErr) { 599 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 600 << MBOrErr.getError().message(); 601 return false; 602 } 603 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 604 } 605 606 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 607 Options.FunctionSections = CodeGenOpts.FunctionSections; 608 Options.DataSections = CodeGenOpts.DataSections; 609 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 610 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 611 Options.UniqueBasicBlockSectionNames = 612 CodeGenOpts.UniqueBasicBlockSectionNames; 613 Options.TLSSize = CodeGenOpts.TLSSize; 614 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 615 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 616 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 617 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 618 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 619 Options.EmitAddrsig = CodeGenOpts.Addrsig; 620 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 621 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 622 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 623 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 624 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 625 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 626 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 627 Options.Hotpatch = CodeGenOpts.HotPatch; 628 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 629 630 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 631 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 632 Options.SwiftAsyncFramePointer = 633 SwiftAsyncFramePointerMode::DeploymentBased; 634 break; 635 636 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 637 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 638 break; 639 640 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 641 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 642 break; 643 } 644 645 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 646 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 647 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 648 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 649 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 650 Options.MCOptions.MCIncrementalLinkerCompatible = 651 CodeGenOpts.IncrementalLinkerCompatible; 652 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 653 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 654 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 655 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 656 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 657 Options.MCOptions.ABIName = TargetOpts.ABI; 658 for (const auto &Entry : HSOpts.UserEntries) 659 if (!Entry.IsFramework && 660 (Entry.Group == frontend::IncludeDirGroup::Quoted || 661 Entry.Group == frontend::IncludeDirGroup::Angled || 662 Entry.Group == frontend::IncludeDirGroup::System)) 663 Options.MCOptions.IASSearchPaths.push_back( 664 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 665 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 666 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 667 668 return true; 669 } 670 671 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 672 const LangOptions &LangOpts) { 673 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 674 return None; 675 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 676 // LLVM's -default-gcov-version flag is set to something invalid. 677 GCOVOptions Options; 678 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 679 Options.EmitData = CodeGenOpts.EmitGcovArcs; 680 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 681 Options.NoRedZone = CodeGenOpts.DisableRedZone; 682 Options.Filter = CodeGenOpts.ProfileFilterFiles; 683 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 684 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 685 return Options; 686 } 687 688 static Optional<InstrProfOptions> 689 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 690 const LangOptions &LangOpts) { 691 if (!CodeGenOpts.hasProfileClangInstr()) 692 return None; 693 InstrProfOptions Options; 694 Options.NoRedZone = CodeGenOpts.DisableRedZone; 695 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 696 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 697 return Options; 698 } 699 700 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 701 legacy::FunctionPassManager &FPM) { 702 // Handle disabling of all LLVM passes, where we want to preserve the 703 // internal module before any optimization. 704 if (CodeGenOpts.DisableLLVMPasses) 705 return; 706 707 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 708 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 709 // are inserted before PMBuilder ones - they'd get the default-constructed 710 // TLI with an unknown target otherwise. 711 std::unique_ptr<TargetLibraryInfoImpl> TLII( 712 createTLII(TargetTriple, CodeGenOpts)); 713 714 // If we reached here with a non-empty index file name, then the index file 715 // was empty and we are not performing ThinLTO backend compilation (used in 716 // testing in a distributed build environment). Drop any the type test 717 // assume sequences inserted for whole program vtables so that codegen doesn't 718 // complain. 719 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 720 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 721 /*ImportSummary=*/nullptr, 722 /*DropTypeTests=*/true)); 723 724 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 725 726 // At O0 and O1 we only run the always inliner which is more efficient. At 727 // higher optimization levels we run the normal inliner. 728 if (CodeGenOpts.OptimizationLevel <= 1) { 729 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 730 !CodeGenOpts.DisableLifetimeMarkers) || 731 LangOpts.Coroutines); 732 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 733 } else { 734 // We do not want to inline hot callsites for SamplePGO module-summary build 735 // because profile annotation will happen again in ThinLTO backend, and we 736 // want the IR of the hot path to match the profile. 737 PMBuilder.Inliner = createFunctionInliningPass( 738 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 739 (!CodeGenOpts.SampleProfileFile.empty() && 740 CodeGenOpts.PrepareForThinLTO)); 741 } 742 743 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 744 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 745 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 746 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 747 // Only enable CGProfilePass when using integrated assembler, since 748 // non-integrated assemblers don't recognize .cgprofile section. 749 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 750 751 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 752 // Loop interleaving in the loop vectorizer has historically been set to be 753 // enabled when loop unrolling is enabled. 754 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 755 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 756 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 757 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 758 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 759 760 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 761 762 if (TM) 763 TM->adjustPassManager(PMBuilder); 764 765 if (CodeGenOpts.DebugInfoForProfiling || 766 !CodeGenOpts.SampleProfileFile.empty()) 767 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 768 addAddDiscriminatorsPass); 769 770 // In ObjC ARC mode, add the main ARC optimization passes. 771 if (LangOpts.ObjCAutoRefCount) { 772 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 773 addObjCARCExpandPass); 774 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 775 addObjCARCAPElimPass); 776 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 777 addObjCARCOptPass); 778 } 779 780 if (LangOpts.Coroutines) 781 addCoroutinePassesToExtensionPoints(PMBuilder); 782 783 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 784 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 785 addMemProfilerPasses); 786 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 787 addMemProfilerPasses); 788 } 789 790 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 791 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 792 addBoundsCheckingPass); 793 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 794 addBoundsCheckingPass); 795 } 796 797 if (CodeGenOpts.hasSanitizeCoverage()) { 798 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 799 addSanitizerCoveragePass); 800 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 801 addSanitizerCoveragePass); 802 } 803 804 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 805 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 806 addAddressSanitizerPasses); 807 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 808 addAddressSanitizerPasses); 809 } 810 811 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 812 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 813 addKernelAddressSanitizerPasses); 814 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 815 addKernelAddressSanitizerPasses); 816 } 817 818 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 819 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 820 addHWAddressSanitizerPasses); 821 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 822 addHWAddressSanitizerPasses); 823 } 824 825 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 826 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 827 addKernelHWAddressSanitizerPasses); 828 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 829 addKernelHWAddressSanitizerPasses); 830 } 831 832 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 833 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 834 addMemorySanitizerPass); 835 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 836 addMemorySanitizerPass); 837 } 838 839 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 840 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 841 addKernelMemorySanitizerPass); 842 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 843 addKernelMemorySanitizerPass); 844 } 845 846 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 847 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 848 addThreadSanitizerPass); 849 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 850 addThreadSanitizerPass); 851 } 852 853 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 854 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 855 addDataFlowSanitizerPass); 856 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 857 addDataFlowSanitizerPass); 858 } 859 860 if (CodeGenOpts.InstrumentFunctions || 861 CodeGenOpts.InstrumentFunctionEntryBare || 862 CodeGenOpts.InstrumentFunctionsAfterInlining || 863 CodeGenOpts.InstrumentForProfiling) { 864 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 865 addEntryExitInstrumentationPass); 866 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 867 addEntryExitInstrumentationPass); 868 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 869 addPostInlineEntryExitInstrumentationPass); 870 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 871 addPostInlineEntryExitInstrumentationPass); 872 } 873 874 // Set up the per-function pass manager. 875 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 876 if (CodeGenOpts.VerifyModule) 877 FPM.add(createVerifierPass()); 878 879 // Set up the per-module pass manager. 880 if (!CodeGenOpts.RewriteMapFiles.empty()) 881 addSymbolRewriterPass(CodeGenOpts, &MPM); 882 883 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 884 MPM.add(createGCOVProfilerPass(*Options)); 885 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 886 MPM.add(createStripSymbolsPass(true)); 887 } 888 889 if (Optional<InstrProfOptions> Options = 890 getInstrProfOptions(CodeGenOpts, LangOpts)) 891 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 892 893 bool hasIRInstr = false; 894 if (CodeGenOpts.hasProfileIRInstr()) { 895 PMBuilder.EnablePGOInstrGen = true; 896 hasIRInstr = true; 897 } 898 if (CodeGenOpts.hasProfileCSIRInstr()) { 899 assert(!CodeGenOpts.hasProfileCSIRUse() && 900 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 901 "same time"); 902 assert(!hasIRInstr && 903 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 904 "same time"); 905 PMBuilder.EnablePGOCSInstrGen = true; 906 hasIRInstr = true; 907 } 908 if (hasIRInstr) { 909 if (!CodeGenOpts.InstrProfileOutput.empty()) 910 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 911 else 912 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 913 } 914 if (CodeGenOpts.hasProfileIRUse()) { 915 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 916 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 917 } 918 919 if (!CodeGenOpts.SampleProfileFile.empty()) 920 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 921 922 PMBuilder.populateFunctionPassManager(FPM); 923 PMBuilder.populateModulePassManager(MPM); 924 } 925 926 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 927 SmallVector<const char *, 16> BackendArgs; 928 BackendArgs.push_back("clang"); // Fake program name. 929 if (!CodeGenOpts.DebugPass.empty()) { 930 BackendArgs.push_back("-debug-pass"); 931 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 932 } 933 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 934 BackendArgs.push_back("-limit-float-precision"); 935 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 936 } 937 // Check for the default "clang" invocation that won't set any cl::opt values. 938 // Skip trying to parse the command line invocation to avoid the issues 939 // described below. 940 if (BackendArgs.size() == 1) 941 return; 942 BackendArgs.push_back(nullptr); 943 // FIXME: The command line parser below is not thread-safe and shares a global 944 // state, so this call might crash or overwrite the options of another Clang 945 // instance in the same process. 946 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 947 BackendArgs.data()); 948 } 949 950 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 951 // Create the TargetMachine for generating code. 952 std::string Error; 953 std::string Triple = TheModule->getTargetTriple(); 954 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 955 if (!TheTarget) { 956 if (MustCreateTM) 957 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 958 return; 959 } 960 961 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 962 std::string FeaturesStr = 963 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 964 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 965 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 966 967 llvm::TargetOptions Options; 968 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 969 HSOpts)) 970 return; 971 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 972 Options, RM, CM, OptLevel)); 973 } 974 975 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 976 BackendAction Action, 977 raw_pwrite_stream &OS, 978 raw_pwrite_stream *DwoOS) { 979 // Add LibraryInfo. 980 std::unique_ptr<TargetLibraryInfoImpl> TLII( 981 createTLII(TargetTriple, CodeGenOpts)); 982 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 983 984 // Normal mode, emit a .s or .o file by running the code generator. Note, 985 // this also adds codegenerator level optimization passes. 986 CodeGenFileType CGFT = getCodeGenFileType(Action); 987 988 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 989 // "codegen" passes so that it isn't run multiple times when there is 990 // inlining happening. 991 if (CodeGenOpts.OptimizationLevel > 0) 992 CodeGenPasses.add(createObjCARCContractPass()); 993 994 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 995 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 996 Diags.Report(diag::err_fe_unable_to_interface_with_target); 997 return false; 998 } 999 1000 return true; 1001 } 1002 1003 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 1004 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1005 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1006 1007 setCommandLineOpts(CodeGenOpts); 1008 1009 bool UsesCodeGen = actionRequiresCodeGen(Action); 1010 CreateTargetMachine(UsesCodeGen); 1011 1012 if (UsesCodeGen && !TM) 1013 return; 1014 if (TM) 1015 TheModule->setDataLayout(TM->createDataLayout()); 1016 1017 DebugifyCustomPassManager PerModulePasses; 1018 DebugInfoPerPass DebugInfoBeforePass; 1019 if (CodeGenOpts.EnableDIPreservationVerify) { 1020 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1021 PerModulePasses.setDebugInfoBeforePass(DebugInfoBeforePass); 1022 1023 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1024 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1025 CodeGenOpts.DIBugsReportFilePath); 1026 } 1027 PerModulePasses.add( 1028 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1029 1030 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1031 PerFunctionPasses.add( 1032 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1033 1034 CreatePasses(PerModulePasses, PerFunctionPasses); 1035 1036 // Add a verifier pass if requested. We don't have to do this if the action 1037 // requires code generation because there will already be a verifier pass in 1038 // the code-generation pipeline. 1039 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1040 PerModulePasses.add(createVerifierPass()); 1041 1042 legacy::PassManager CodeGenPasses; 1043 CodeGenPasses.add( 1044 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1045 1046 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1047 1048 switch (Action) { 1049 case Backend_EmitNothing: 1050 break; 1051 1052 case Backend_EmitBC: 1053 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1054 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1055 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1056 if (!ThinLinkOS) 1057 return; 1058 } 1059 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1060 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1061 CodeGenOpts.EnableSplitLTOUnit); 1062 PerModulePasses.add(createWriteThinLTOBitcodePass( 1063 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1064 } else { 1065 // Emit a module summary by default for Regular LTO except for ld64 1066 // targets 1067 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1068 if (EmitLTOSummary) { 1069 if (!TheModule->getModuleFlag("ThinLTO")) 1070 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1071 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1072 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1073 uint32_t(1)); 1074 } 1075 PerModulePasses.add(createBitcodeWriterPass( 1076 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1077 } 1078 break; 1079 1080 case Backend_EmitLL: 1081 PerModulePasses.add( 1082 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1083 break; 1084 1085 default: 1086 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1087 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1088 if (!DwoOS) 1089 return; 1090 } 1091 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1092 DwoOS ? &DwoOS->os() : nullptr)) 1093 return; 1094 } 1095 1096 // Before executing passes, print the final values of the LLVM options. 1097 cl::PrintOptionValues(); 1098 1099 // Run passes. For now we do all passes at once, but eventually we 1100 // would like to have the option of streaming code generation. 1101 1102 { 1103 PrettyStackTraceString CrashInfo("Per-function optimization"); 1104 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1105 1106 PerFunctionPasses.doInitialization(); 1107 for (Function &F : *TheModule) 1108 if (!F.isDeclaration()) 1109 PerFunctionPasses.run(F); 1110 PerFunctionPasses.doFinalization(); 1111 } 1112 1113 { 1114 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1115 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1116 PerModulePasses.run(*TheModule); 1117 } 1118 1119 { 1120 PrettyStackTraceString CrashInfo("Code generation"); 1121 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1122 CodeGenPasses.run(*TheModule); 1123 } 1124 1125 if (ThinLinkOS) 1126 ThinLinkOS->keep(); 1127 if (DwoOS) 1128 DwoOS->keep(); 1129 } 1130 1131 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1132 switch (Opts.OptimizationLevel) { 1133 default: 1134 llvm_unreachable("Invalid optimization level!"); 1135 1136 case 0: 1137 return OptimizationLevel::O0; 1138 1139 case 1: 1140 return OptimizationLevel::O1; 1141 1142 case 2: 1143 switch (Opts.OptimizeSize) { 1144 default: 1145 llvm_unreachable("Invalid optimization level for size!"); 1146 1147 case 0: 1148 return OptimizationLevel::O2; 1149 1150 case 1: 1151 return OptimizationLevel::Os; 1152 1153 case 2: 1154 return OptimizationLevel::Oz; 1155 } 1156 1157 case 3: 1158 return OptimizationLevel::O3; 1159 } 1160 } 1161 1162 static void addSanitizers(const Triple &TargetTriple, 1163 const CodeGenOptions &CodeGenOpts, 1164 const LangOptions &LangOpts, PassBuilder &PB) { 1165 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1166 OptimizationLevel Level) { 1167 if (CodeGenOpts.hasSanitizeCoverage()) { 1168 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1169 MPM.addPass(ModuleSanitizerCoveragePass( 1170 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1171 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1172 } 1173 1174 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1175 if (LangOpts.Sanitize.has(Mask)) { 1176 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1177 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1178 1179 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1180 CodeGenOpts.SanitizeMemoryParamRetval); 1181 MPM.addPass(ModuleMemorySanitizerPass(options)); 1182 FunctionPassManager FPM; 1183 FPM.addPass(MemorySanitizerPass(options)); 1184 if (Level != OptimizationLevel::O0) { 1185 // MemorySanitizer inserts complex instrumentation that mostly 1186 // follows the logic of the original code, but operates on 1187 // "shadow" values. It can benefit from re-running some 1188 // general purpose optimization passes. 1189 FPM.addPass(EarlyCSEPass()); 1190 // TODO: Consider add more passes like in 1191 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1192 // difference on size. It's not clear if the rest is still 1193 // usefull. InstCombinePass breakes 1194 // compiler-rt/test/msan/select_origin.cpp. 1195 } 1196 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1197 } 1198 }; 1199 MSanPass(SanitizerKind::Memory, false); 1200 MSanPass(SanitizerKind::KernelMemory, true); 1201 1202 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1203 MPM.addPass(ModuleThreadSanitizerPass()); 1204 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1205 } 1206 1207 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1208 if (LangOpts.Sanitize.has(Mask)) { 1209 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1210 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1211 llvm::AsanDtorKind DestructorKind = 1212 CodeGenOpts.getSanitizeAddressDtor(); 1213 AddressSanitizerOptions Opts; 1214 Opts.CompileKernel = CompileKernel; 1215 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1216 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1217 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1218 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1219 MPM.addPass(ModuleAddressSanitizerPass( 1220 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1221 } 1222 }; 1223 ASanPass(SanitizerKind::Address, false); 1224 ASanPass(SanitizerKind::KernelAddress, true); 1225 1226 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1227 if (LangOpts.Sanitize.has(Mask)) { 1228 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1229 MPM.addPass(HWAddressSanitizerPass( 1230 {CompileKernel, Recover, 1231 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1232 } 1233 }; 1234 HWASanPass(SanitizerKind::HWAddress, false); 1235 HWASanPass(SanitizerKind::KernelHWAddress, true); 1236 1237 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1238 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1239 } 1240 }); 1241 } 1242 1243 void EmitAssemblyHelper::RunOptimizationPipeline( 1244 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1245 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1246 Optional<PGOOptions> PGOOpt; 1247 1248 if (CodeGenOpts.hasProfileIRInstr()) 1249 // -fprofile-generate. 1250 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1251 ? getDefaultProfileGenName() 1252 : CodeGenOpts.InstrProfileOutput, 1253 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1254 CodeGenOpts.DebugInfoForProfiling); 1255 else if (CodeGenOpts.hasProfileIRUse()) { 1256 // -fprofile-use. 1257 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1258 : PGOOptions::NoCSAction; 1259 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1260 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1261 CSAction, CodeGenOpts.DebugInfoForProfiling); 1262 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1263 // -fprofile-sample-use 1264 PGOOpt = PGOOptions( 1265 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1266 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1267 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1268 else if (CodeGenOpts.PseudoProbeForProfiling) 1269 // -fpseudo-probe-for-profiling 1270 PGOOpt = 1271 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1272 CodeGenOpts.DebugInfoForProfiling, true); 1273 else if (CodeGenOpts.DebugInfoForProfiling) 1274 // -fdebug-info-for-profiling 1275 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1276 PGOOptions::NoCSAction, true); 1277 1278 // Check to see if we want to generate a CS profile. 1279 if (CodeGenOpts.hasProfileCSIRInstr()) { 1280 assert(!CodeGenOpts.hasProfileCSIRUse() && 1281 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1282 "the same time"); 1283 if (PGOOpt.hasValue()) { 1284 assert(PGOOpt->Action != PGOOptions::IRInstr && 1285 PGOOpt->Action != PGOOptions::SampleUse && 1286 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1287 " pass"); 1288 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1289 ? getDefaultProfileGenName() 1290 : CodeGenOpts.InstrProfileOutput; 1291 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1292 } else 1293 PGOOpt = PGOOptions("", 1294 CodeGenOpts.InstrProfileOutput.empty() 1295 ? getDefaultProfileGenName() 1296 : CodeGenOpts.InstrProfileOutput, 1297 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1298 CodeGenOpts.DebugInfoForProfiling); 1299 } 1300 if (TM) 1301 TM->setPGOOption(PGOOpt); 1302 1303 PipelineTuningOptions PTO; 1304 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1305 // For historical reasons, loop interleaving is set to mirror setting for loop 1306 // unrolling. 1307 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1308 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1309 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1310 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1311 // Only enable CGProfilePass when using integrated assembler, since 1312 // non-integrated assemblers don't recognize .cgprofile section. 1313 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1314 1315 LoopAnalysisManager LAM; 1316 FunctionAnalysisManager FAM; 1317 CGSCCAnalysisManager CGAM; 1318 ModuleAnalysisManager MAM; 1319 1320 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1321 PassInstrumentationCallbacks PIC; 1322 PrintPassOptions PrintPassOpts; 1323 PrintPassOpts.Indent = DebugPassStructure; 1324 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1325 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1326 DebugPassStructure, 1327 /*VerifyEach*/ false, PrintPassOpts); 1328 SI.registerCallbacks(PIC, &FAM); 1329 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1330 1331 // Attempt to load pass plugins and register their callbacks with PB. 1332 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1333 auto PassPlugin = PassPlugin::Load(PluginFN); 1334 if (PassPlugin) { 1335 PassPlugin->registerPassBuilderCallbacks(PB); 1336 } else { 1337 Diags.Report(diag::err_fe_unable_to_load_plugin) 1338 << PluginFN << toString(PassPlugin.takeError()); 1339 } 1340 } 1341 #define HANDLE_EXTENSION(Ext) \ 1342 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1343 #include "llvm/Support/Extension.def" 1344 1345 // Register the target library analysis directly and give it a customized 1346 // preset TLI. 1347 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1348 createTLII(TargetTriple, CodeGenOpts)); 1349 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1350 1351 // Register all the basic analyses with the managers. 1352 PB.registerModuleAnalyses(MAM); 1353 PB.registerCGSCCAnalyses(CGAM); 1354 PB.registerFunctionAnalyses(FAM); 1355 PB.registerLoopAnalyses(LAM); 1356 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1357 1358 ModulePassManager MPM; 1359 1360 if (!CodeGenOpts.DisableLLVMPasses) { 1361 // Map our optimization levels into one of the distinct levels used to 1362 // configure the pipeline. 1363 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1364 1365 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1366 bool IsLTO = CodeGenOpts.PrepareForLTO; 1367 1368 if (LangOpts.ObjCAutoRefCount) { 1369 PB.registerPipelineStartEPCallback( 1370 [](ModulePassManager &MPM, OptimizationLevel Level) { 1371 if (Level != OptimizationLevel::O0) 1372 MPM.addPass( 1373 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1374 }); 1375 PB.registerPipelineEarlySimplificationEPCallback( 1376 [](ModulePassManager &MPM, OptimizationLevel Level) { 1377 if (Level != OptimizationLevel::O0) 1378 MPM.addPass(ObjCARCAPElimPass()); 1379 }); 1380 PB.registerScalarOptimizerLateEPCallback( 1381 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1382 if (Level != OptimizationLevel::O0) 1383 FPM.addPass(ObjCARCOptPass()); 1384 }); 1385 } 1386 1387 // If we reached here with a non-empty index file name, then the index 1388 // file was empty and we are not performing ThinLTO backend compilation 1389 // (used in testing in a distributed build environment). 1390 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1391 // If so drop any the type test assume sequences inserted for whole program 1392 // vtables so that codegen doesn't complain. 1393 if (IsThinLTOPostLink) 1394 PB.registerPipelineStartEPCallback( 1395 [](ModulePassManager &MPM, OptimizationLevel Level) { 1396 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1397 /*ImportSummary=*/nullptr, 1398 /*DropTypeTests=*/true)); 1399 }); 1400 1401 if (CodeGenOpts.InstrumentFunctions || 1402 CodeGenOpts.InstrumentFunctionEntryBare || 1403 CodeGenOpts.InstrumentFunctionsAfterInlining || 1404 CodeGenOpts.InstrumentForProfiling) { 1405 PB.registerPipelineStartEPCallback( 1406 [](ModulePassManager &MPM, OptimizationLevel Level) { 1407 MPM.addPass(createModuleToFunctionPassAdaptor( 1408 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1409 }); 1410 PB.registerOptimizerLastEPCallback( 1411 [](ModulePassManager &MPM, OptimizationLevel Level) { 1412 MPM.addPass(createModuleToFunctionPassAdaptor( 1413 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1414 }); 1415 } 1416 1417 // Register callbacks to schedule sanitizer passes at the appropriate part 1418 // of the pipeline. 1419 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1420 PB.registerScalarOptimizerLateEPCallback( 1421 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1422 FPM.addPass(BoundsCheckingPass()); 1423 }); 1424 1425 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1426 // done on PreLink stage. 1427 if (!IsThinLTOPostLink) 1428 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1429 1430 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1431 PB.registerPipelineStartEPCallback( 1432 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1433 MPM.addPass(GCOVProfilerPass(*Options)); 1434 }); 1435 if (Optional<InstrProfOptions> Options = 1436 getInstrProfOptions(CodeGenOpts, LangOpts)) 1437 PB.registerPipelineStartEPCallback( 1438 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1439 MPM.addPass(InstrProfiling(*Options, false)); 1440 }); 1441 1442 if (CodeGenOpts.OptimizationLevel == 0) { 1443 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1444 } else if (IsThinLTO) { 1445 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1446 } else if (IsLTO) { 1447 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1448 } else { 1449 MPM = PB.buildPerModuleDefaultPipeline(Level); 1450 } 1451 1452 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1453 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1454 MPM.addPass(ModuleMemProfilerPass()); 1455 } 1456 } 1457 1458 // Add a verifier pass if requested. We don't have to do this if the action 1459 // requires code generation because there will already be a verifier pass in 1460 // the code-generation pipeline. 1461 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1462 MPM.addPass(VerifierPass()); 1463 1464 switch (Action) { 1465 case Backend_EmitBC: 1466 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1467 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1468 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1469 if (!ThinLinkOS) 1470 return; 1471 } 1472 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1473 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1474 CodeGenOpts.EnableSplitLTOUnit); 1475 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1476 : nullptr)); 1477 } else { 1478 // Emit a module summary by default for Regular LTO except for ld64 1479 // targets 1480 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1481 if (EmitLTOSummary) { 1482 if (!TheModule->getModuleFlag("ThinLTO")) 1483 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1484 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1485 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1486 uint32_t(1)); 1487 } 1488 MPM.addPass( 1489 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1490 } 1491 break; 1492 1493 case Backend_EmitLL: 1494 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1495 break; 1496 1497 default: 1498 break; 1499 } 1500 1501 // Now that we have all of the passes ready, run them. 1502 { 1503 PrettyStackTraceString CrashInfo("Optimizer"); 1504 llvm::TimeTraceScope TimeScope("Optimizer"); 1505 MPM.run(*TheModule, MAM); 1506 } 1507 } 1508 1509 void EmitAssemblyHelper::RunCodegenPipeline( 1510 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1511 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1512 // We still use the legacy PM to run the codegen pipeline since the new PM 1513 // does not work with the codegen pipeline. 1514 // FIXME: make the new PM work with the codegen pipeline. 1515 legacy::PassManager CodeGenPasses; 1516 1517 // Append any output we need to the pass manager. 1518 switch (Action) { 1519 case Backend_EmitAssembly: 1520 case Backend_EmitMCNull: 1521 case Backend_EmitObj: 1522 CodeGenPasses.add( 1523 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1524 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1525 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1526 if (!DwoOS) 1527 return; 1528 } 1529 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1530 DwoOS ? &DwoOS->os() : nullptr)) 1531 // FIXME: Should we handle this error differently? 1532 return; 1533 break; 1534 default: 1535 return; 1536 } 1537 1538 { 1539 PrettyStackTraceString CrashInfo("Code generation"); 1540 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1541 CodeGenPasses.run(*TheModule); 1542 } 1543 } 1544 1545 /// A clean version of `EmitAssembly` that uses the new pass manager. 1546 /// 1547 /// Not all features are currently supported in this system, but where 1548 /// necessary it falls back to the legacy pass manager to at least provide 1549 /// basic functionality. 1550 /// 1551 /// This API is planned to have its functionality finished and then to replace 1552 /// `EmitAssembly` at some point in the future when the default switches. 1553 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1554 std::unique_ptr<raw_pwrite_stream> OS) { 1555 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1556 setCommandLineOpts(CodeGenOpts); 1557 1558 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1559 CreateTargetMachine(RequiresCodeGen); 1560 1561 if (RequiresCodeGen && !TM) 1562 return; 1563 if (TM) 1564 TheModule->setDataLayout(TM->createDataLayout()); 1565 1566 // Before executing passes, print the final values of the LLVM options. 1567 cl::PrintOptionValues(); 1568 1569 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1570 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1571 RunCodegenPipeline(Action, OS, DwoOS); 1572 1573 if (ThinLinkOS) 1574 ThinLinkOS->keep(); 1575 if (DwoOS) 1576 DwoOS->keep(); 1577 } 1578 1579 static void runThinLTOBackend( 1580 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1581 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1582 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1583 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1584 std::string ProfileRemapping, BackendAction Action) { 1585 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1586 ModuleToDefinedGVSummaries; 1587 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1588 1589 setCommandLineOpts(CGOpts); 1590 1591 // We can simply import the values mentioned in the combined index, since 1592 // we should only invoke this using the individual indexes written out 1593 // via a WriteIndexesThinBackend. 1594 FunctionImporter::ImportMapTy ImportList; 1595 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1596 return; 1597 1598 auto AddStream = [&](size_t Task) { 1599 return std::make_unique<CachedFileStream>(std::move(OS), 1600 CGOpts.ObjectFilenameForDebug); 1601 }; 1602 lto::Config Conf; 1603 if (CGOpts.SaveTempsFilePrefix != "") { 1604 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1605 /* UseInputModulePath */ false)) { 1606 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1607 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1608 << '\n'; 1609 }); 1610 } 1611 } 1612 Conf.CPU = TOpts.CPU; 1613 Conf.CodeModel = getCodeModel(CGOpts); 1614 Conf.MAttrs = TOpts.Features; 1615 Conf.RelocModel = CGOpts.RelocationModel; 1616 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1617 Conf.OptLevel = CGOpts.OptimizationLevel; 1618 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1619 Conf.SampleProfile = std::move(SampleProfile); 1620 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1621 // For historical reasons, loop interleaving is set to mirror setting for loop 1622 // unrolling. 1623 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1624 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1625 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1626 // Only enable CGProfilePass when using integrated assembler, since 1627 // non-integrated assemblers don't recognize .cgprofile section. 1628 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1629 1630 // Context sensitive profile. 1631 if (CGOpts.hasProfileCSIRInstr()) { 1632 Conf.RunCSIRInstr = true; 1633 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1634 } else if (CGOpts.hasProfileCSIRUse()) { 1635 Conf.RunCSIRInstr = false; 1636 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1637 } 1638 1639 Conf.ProfileRemapping = std::move(ProfileRemapping); 1640 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1641 Conf.DebugPassManager = CGOpts.DebugPassManager; 1642 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1643 Conf.RemarksFilename = CGOpts.OptRecordFile; 1644 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1645 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1646 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1647 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1648 switch (Action) { 1649 case Backend_EmitNothing: 1650 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1651 return false; 1652 }; 1653 break; 1654 case Backend_EmitLL: 1655 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1656 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1657 return false; 1658 }; 1659 break; 1660 case Backend_EmitBC: 1661 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1662 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1663 return false; 1664 }; 1665 break; 1666 default: 1667 Conf.CGFileType = getCodeGenFileType(Action); 1668 break; 1669 } 1670 if (Error E = 1671 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1672 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1673 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1674 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1675 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1676 }); 1677 } 1678 } 1679 1680 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1681 const HeaderSearchOptions &HeaderOpts, 1682 const CodeGenOptions &CGOpts, 1683 const clang::TargetOptions &TOpts, 1684 const LangOptions &LOpts, 1685 StringRef TDesc, Module *M, 1686 BackendAction Action, 1687 std::unique_ptr<raw_pwrite_stream> OS) { 1688 1689 llvm::TimeTraceScope TimeScope("Backend"); 1690 1691 std::unique_ptr<llvm::Module> EmptyModule; 1692 if (!CGOpts.ThinLTOIndexFile.empty()) { 1693 // If we are performing a ThinLTO importing compile, load the function index 1694 // into memory and pass it into runThinLTOBackend, which will run the 1695 // function importer and invoke LTO passes. 1696 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1697 if (Error E = llvm::getModuleSummaryIndexForFile( 1698 CGOpts.ThinLTOIndexFile, 1699 /*IgnoreEmptyThinLTOIndexFile*/ true) 1700 .moveInto(CombinedIndex)) { 1701 logAllUnhandledErrors(std::move(E), errs(), 1702 "Error loading index file '" + 1703 CGOpts.ThinLTOIndexFile + "': "); 1704 return; 1705 } 1706 1707 // A null CombinedIndex means we should skip ThinLTO compilation 1708 // (LLVM will optionally ignore empty index files, returning null instead 1709 // of an error). 1710 if (CombinedIndex) { 1711 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1712 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1713 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1714 CGOpts.ProfileRemappingFile, Action); 1715 return; 1716 } 1717 // Distributed indexing detected that nothing from the module is needed 1718 // for the final linking. So we can skip the compilation. We sill need to 1719 // output an empty object file to make sure that a linker does not fail 1720 // trying to read it. Also for some features, like CFI, we must skip 1721 // the compilation as CombinedIndex does not contain all required 1722 // information. 1723 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1724 EmptyModule->setTargetTriple(M->getTargetTriple()); 1725 M = EmptyModule.get(); 1726 } 1727 } 1728 1729 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1730 1731 if (CGOpts.LegacyPassManager) 1732 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1733 else 1734 AsmHelper.EmitAssembly(Action, std::move(OS)); 1735 1736 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1737 // DataLayout. 1738 if (AsmHelper.TM) { 1739 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1740 if (DLDesc != TDesc) { 1741 unsigned DiagID = Diags.getCustomDiagID( 1742 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1743 "expected target description '%1'"); 1744 Diags.Report(DiagID) << DLDesc << TDesc; 1745 } 1746 } 1747 } 1748 1749 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1750 // __LLVM,__bitcode section. 1751 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1752 llvm::MemoryBufferRef Buf) { 1753 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1754 return; 1755 llvm::embedBitcodeInModule( 1756 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1757 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1758 CGOpts.CmdArgs); 1759 } 1760 1761 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1762 DiagnosticsEngine &Diags) { 1763 if (CGOpts.OffloadObjects.empty()) 1764 return; 1765 1766 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1767 if (OffloadObject.count(',') != 1) 1768 Diags.Report(Diags.getCustomDiagID( 1769 DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'")) 1770 << OffloadObject; 1771 auto FilenameAndSection = OffloadObject.split(','); 1772 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1773 llvm::MemoryBuffer::getFileOrSTDIN(FilenameAndSection.first); 1774 if (std::error_code EC = ObjectOrErr.getError()) { 1775 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1776 "could not open '%0' for embedding"); 1777 Diags.Report(DiagID) << FilenameAndSection.first; 1778 return; 1779 } 1780 1781 SmallString<128> SectionName( 1782 {".llvm.offloading.", FilenameAndSection.second}); 1783 llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName); 1784 } 1785 } 1786