1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 77 #include "llvm/Transforms/ObjCARC.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/EarlyCSE.h" 80 #include "llvm/Transforms/Scalar/GVN.h" 81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 82 #include "llvm/Transforms/Utils.h" 83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 84 #include "llvm/Transforms/Utils/Debugify.h" 85 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 86 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 87 #include "llvm/Transforms/Utils/SymbolRewriter.h" 88 #include <memory> 89 using namespace clang; 90 using namespace llvm; 91 92 #define HANDLE_EXTENSION(Ext) \ 93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 94 #include "llvm/Support/Extension.def" 95 96 namespace { 97 98 // Default filename used for profile generation. 99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 100 101 class EmitAssemblyHelper { 102 DiagnosticsEngine &Diags; 103 const HeaderSearchOptions &HSOpts; 104 const CodeGenOptions &CodeGenOpts; 105 const clang::TargetOptions &TargetOpts; 106 const LangOptions &LangOpts; 107 Module *TheModule; 108 109 Timer CodeGenerationTime; 110 111 std::unique_ptr<raw_pwrite_stream> OS; 112 113 TargetIRAnalysis getTargetIRAnalysis() const { 114 if (TM) 115 return TM->getTargetIRAnalysis(); 116 117 return TargetIRAnalysis(); 118 } 119 120 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 121 122 /// Generates the TargetMachine. 123 /// Leaves TM unchanged if it is unable to create the target machine. 124 /// Some of our clang tests specify triples which are not built 125 /// into clang. This is okay because these tests check the generated 126 /// IR, and they require DataLayout which depends on the triple. 127 /// In this case, we allow this method to fail and not report an error. 128 /// When MustCreateTM is used, we print an error if we are unable to load 129 /// the requested target. 130 void CreateTargetMachine(bool MustCreateTM); 131 132 /// Add passes necessary to emit assembly or LLVM IR. 133 /// 134 /// \return True on success. 135 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 136 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 137 138 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 139 std::error_code EC; 140 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 141 llvm::sys::fs::OF_None); 142 if (EC) { 143 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 144 F.reset(); 145 } 146 return F; 147 } 148 149 public: 150 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 151 const HeaderSearchOptions &HeaderSearchOpts, 152 const CodeGenOptions &CGOpts, 153 const clang::TargetOptions &TOpts, 154 const LangOptions &LOpts, Module *M) 155 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 156 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 157 CodeGenerationTime("codegen", "Code Generation Time") {} 158 159 ~EmitAssemblyHelper() { 160 if (CodeGenOpts.DisableFree) 161 BuryPointer(std::move(TM)); 162 } 163 164 std::unique_ptr<TargetMachine> TM; 165 166 void EmitAssembly(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 169 void EmitAssemblyWithNewPassManager(BackendAction Action, 170 std::unique_ptr<raw_pwrite_stream> OS); 171 }; 172 173 // We need this wrapper to access LangOpts and CGOpts from extension functions 174 // that we add to the PassManagerBuilder. 175 class PassManagerBuilderWrapper : public PassManagerBuilder { 176 public: 177 PassManagerBuilderWrapper(const Triple &TargetTriple, 178 const CodeGenOptions &CGOpts, 179 const LangOptions &LangOpts) 180 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 181 LangOpts(LangOpts) {} 182 const Triple &getTargetTriple() const { return TargetTriple; } 183 const CodeGenOptions &getCGOpts() const { return CGOpts; } 184 const LangOptions &getLangOpts() const { return LangOpts; } 185 186 private: 187 const Triple &TargetTriple; 188 const CodeGenOptions &CGOpts; 189 const LangOptions &LangOpts; 190 }; 191 } 192 193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCAPElimPass()); 196 } 197 198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCExpandPass()); 201 } 202 203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 204 if (Builder.OptLevel > 0) 205 PM.add(createObjCARCOptPass()); 206 } 207 208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createAddDiscriminatorsPass()); 211 } 212 213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 PM.add(createBoundsCheckingLegacyPass()); 216 } 217 218 static SanitizerCoverageOptions 219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 220 SanitizerCoverageOptions Opts; 221 Opts.CoverageType = 222 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 223 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 224 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 225 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 226 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 227 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 228 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 229 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 230 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 231 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 232 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 233 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 234 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 235 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 236 return Opts; 237 } 238 239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper &>(Builder); 243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 244 auto Opts = getSancovOptsFromCGOpts(CGOpts); 245 PM.add(createModuleSanitizerCoverageLegacyPassPass( 246 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 247 CGOpts.SanitizeCoverageIgnorelistFiles)); 248 } 249 250 // Check if ASan should use GC-friendly instrumentation for globals. 251 // First of all, there is no point if -fdata-sections is off (expect for MachO, 252 // where this is not a factor). Also, on ELF this feature requires an assembler 253 // extension that only works with -integrated-as at the moment. 254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 255 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 256 return false; 257 switch (T.getObjectFormat()) { 258 case Triple::MachO: 259 case Triple::COFF: 260 return true; 261 case Triple::ELF: 262 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 263 case Triple::GOFF: 264 llvm::report_fatal_error("ASan not implemented for GOFF"); 265 case Triple::XCOFF: 266 llvm::report_fatal_error("ASan not implemented for XCOFF."); 267 case Triple::Wasm: 268 case Triple::UnknownObjectFormat: 269 break; 270 } 271 return false; 272 } 273 274 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createMemProfilerFunctionPass()); 277 PM.add(createModuleMemProfilerLegacyPassPass()); 278 } 279 280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper&>(Builder); 284 const Triple &T = BuilderWrapper.getTargetTriple(); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 287 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 288 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 289 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 290 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 291 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 292 UseAfterScope)); 293 PM.add(createModuleAddressSanitizerLegacyPassPass( 294 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 295 DestructorKind)); 296 } 297 298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 299 legacy::PassManagerBase &PM) { 300 PM.add(createAddressSanitizerFunctionPass( 301 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 302 PM.add(createModuleAddressSanitizerLegacyPassPass( 303 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 304 /*UseOdrIndicator*/ false)); 305 } 306 307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper &>(Builder); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 313 PM.add( 314 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 315 } 316 317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 PM.add(createHWAddressSanitizerLegacyPassPass( 320 /*CompileKernel*/ true, /*Recover*/ true)); 321 } 322 323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM, 325 bool CompileKernel) { 326 const PassManagerBuilderWrapper &BuilderWrapper = 327 static_cast<const PassManagerBuilderWrapper&>(Builder); 328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 329 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 330 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 331 PM.add(createMemorySanitizerLegacyPassPass( 332 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 333 334 // MemorySanitizer inserts complex instrumentation that mostly follows 335 // the logic of the original code, but operates on "shadow" values. 336 // It can benefit from re-running some general purpose optimization passes. 337 if (Builder.OptLevel > 0) { 338 PM.add(createEarlyCSEPass()); 339 PM.add(createReassociatePass()); 340 PM.add(createLICMPass()); 341 PM.add(createGVNPass()); 342 PM.add(createInstructionCombiningPass()); 343 PM.add(createDeadStoreEliminationPass()); 344 } 345 } 346 347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 350 } 351 352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 355 } 356 357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 PM.add(createThreadSanitizerLegacyPassPass()); 360 } 361 362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 363 legacy::PassManagerBase &PM) { 364 const PassManagerBuilderWrapper &BuilderWrapper = 365 static_cast<const PassManagerBuilderWrapper&>(Builder); 366 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 367 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 368 } 369 370 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 371 legacy::PassManagerBase &PM) { 372 PM.add(createEntryExitInstrumenterPass()); 373 } 374 375 static void 376 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 377 legacy::PassManagerBase &PM) { 378 PM.add(createPostInlineEntryExitInstrumenterPass()); 379 } 380 381 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 382 const CodeGenOptions &CodeGenOpts) { 383 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 384 385 switch (CodeGenOpts.getVecLib()) { 386 case CodeGenOptions::Accelerate: 387 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 388 break; 389 case CodeGenOptions::LIBMVEC: 390 switch(TargetTriple.getArch()) { 391 default: 392 break; 393 case llvm::Triple::x86_64: 394 TLII->addVectorizableFunctionsFromVecLib 395 (TargetLibraryInfoImpl::LIBMVEC_X86); 396 break; 397 } 398 break; 399 case CodeGenOptions::MASSV: 400 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 401 break; 402 case CodeGenOptions::SVML: 403 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 404 break; 405 default: 406 break; 407 } 408 return TLII; 409 } 410 411 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 412 legacy::PassManager *MPM) { 413 llvm::SymbolRewriter::RewriteDescriptorList DL; 414 415 llvm::SymbolRewriter::RewriteMapParser MapParser; 416 for (const auto &MapFile : Opts.RewriteMapFiles) 417 MapParser.parse(MapFile, &DL); 418 419 MPM->add(createRewriteSymbolsPass(DL)); 420 } 421 422 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 423 switch (CodeGenOpts.OptimizationLevel) { 424 default: 425 llvm_unreachable("Invalid optimization level!"); 426 case 0: 427 return CodeGenOpt::None; 428 case 1: 429 return CodeGenOpt::Less; 430 case 2: 431 return CodeGenOpt::Default; // O2/Os/Oz 432 case 3: 433 return CodeGenOpt::Aggressive; 434 } 435 } 436 437 static Optional<llvm::CodeModel::Model> 438 getCodeModel(const CodeGenOptions &CodeGenOpts) { 439 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 440 .Case("tiny", llvm::CodeModel::Tiny) 441 .Case("small", llvm::CodeModel::Small) 442 .Case("kernel", llvm::CodeModel::Kernel) 443 .Case("medium", llvm::CodeModel::Medium) 444 .Case("large", llvm::CodeModel::Large) 445 .Case("default", ~1u) 446 .Default(~0u); 447 assert(CodeModel != ~0u && "invalid code model!"); 448 if (CodeModel == ~1u) 449 return None; 450 return static_cast<llvm::CodeModel::Model>(CodeModel); 451 } 452 453 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 454 if (Action == Backend_EmitObj) 455 return CGFT_ObjectFile; 456 else if (Action == Backend_EmitMCNull) 457 return CGFT_Null; 458 else { 459 assert(Action == Backend_EmitAssembly && "Invalid action!"); 460 return CGFT_AssemblyFile; 461 } 462 } 463 464 static bool initTargetOptions(DiagnosticsEngine &Diags, 465 llvm::TargetOptions &Options, 466 const CodeGenOptions &CodeGenOpts, 467 const clang::TargetOptions &TargetOpts, 468 const LangOptions &LangOpts, 469 const HeaderSearchOptions &HSOpts) { 470 switch (LangOpts.getThreadModel()) { 471 case LangOptions::ThreadModelKind::POSIX: 472 Options.ThreadModel = llvm::ThreadModel::POSIX; 473 break; 474 case LangOptions::ThreadModelKind::Single: 475 Options.ThreadModel = llvm::ThreadModel::Single; 476 break; 477 } 478 479 // Set float ABI type. 480 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 481 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 482 "Invalid Floating Point ABI!"); 483 Options.FloatABIType = 484 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 485 .Case("soft", llvm::FloatABI::Soft) 486 .Case("softfp", llvm::FloatABI::Soft) 487 .Case("hard", llvm::FloatABI::Hard) 488 .Default(llvm::FloatABI::Default); 489 490 // Set FP fusion mode. 491 switch (LangOpts.getDefaultFPContractMode()) { 492 case LangOptions::FPM_Off: 493 // Preserve any contraction performed by the front-end. (Strict performs 494 // splitting of the muladd intrinsic in the backend.) 495 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 496 break; 497 case LangOptions::FPM_On: 498 case LangOptions::FPM_FastHonorPragmas: 499 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 500 break; 501 case LangOptions::FPM_Fast: 502 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 503 break; 504 } 505 506 Options.BinutilsVersion = 507 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 508 Options.UseInitArray = CodeGenOpts.UseInitArray; 509 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 510 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 511 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 512 513 // Set EABI version. 514 Options.EABIVersion = TargetOpts.EABIVersion; 515 516 if (LangOpts.hasSjLjExceptions()) 517 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 518 if (LangOpts.hasSEHExceptions()) 519 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 520 if (LangOpts.hasDWARFExceptions()) 521 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 522 if (LangOpts.hasWasmExceptions()) 523 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 524 525 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 526 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 527 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 528 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 529 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 530 531 Options.BBSections = 532 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 533 .Case("all", llvm::BasicBlockSection::All) 534 .Case("labels", llvm::BasicBlockSection::Labels) 535 .StartsWith("list=", llvm::BasicBlockSection::List) 536 .Case("none", llvm::BasicBlockSection::None) 537 .Default(llvm::BasicBlockSection::None); 538 539 if (Options.BBSections == llvm::BasicBlockSection::List) { 540 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 541 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 542 if (!MBOrErr) { 543 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 544 << MBOrErr.getError().message(); 545 return false; 546 } 547 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 548 } 549 550 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 551 Options.FunctionSections = CodeGenOpts.FunctionSections; 552 Options.DataSections = CodeGenOpts.DataSections; 553 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 554 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 555 Options.UniqueBasicBlockSectionNames = 556 CodeGenOpts.UniqueBasicBlockSectionNames; 557 Options.StackProtectorGuard = 558 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 559 .StackProtectorGuard) 560 .Case("tls", llvm::StackProtectorGuards::TLS) 561 .Case("global", llvm::StackProtectorGuards::Global) 562 .Default(llvm::StackProtectorGuards::None); 563 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 564 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 565 Options.TLSSize = CodeGenOpts.TLSSize; 566 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 567 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 568 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 569 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 570 Options.EmitAddrsig = CodeGenOpts.Addrsig; 571 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 572 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 573 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 574 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 575 Options.ValueTrackingVariableLocations = 576 CodeGenOpts.ValueTrackingVariableLocations; 577 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 578 579 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 580 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 581 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 582 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 583 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 584 Options.MCOptions.MCIncrementalLinkerCompatible = 585 CodeGenOpts.IncrementalLinkerCompatible; 586 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 587 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 588 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 589 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 590 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 591 Options.MCOptions.ABIName = TargetOpts.ABI; 592 for (const auto &Entry : HSOpts.UserEntries) 593 if (!Entry.IsFramework && 594 (Entry.Group == frontend::IncludeDirGroup::Quoted || 595 Entry.Group == frontend::IncludeDirGroup::Angled || 596 Entry.Group == frontend::IncludeDirGroup::System)) 597 Options.MCOptions.IASSearchPaths.push_back( 598 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 599 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 600 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 601 602 return true; 603 } 604 605 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 606 const LangOptions &LangOpts) { 607 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 608 return None; 609 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 610 // LLVM's -default-gcov-version flag is set to something invalid. 611 GCOVOptions Options; 612 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 613 Options.EmitData = CodeGenOpts.EmitGcovArcs; 614 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 615 Options.NoRedZone = CodeGenOpts.DisableRedZone; 616 Options.Filter = CodeGenOpts.ProfileFilterFiles; 617 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 618 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 619 return Options; 620 } 621 622 static Optional<InstrProfOptions> 623 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 624 const LangOptions &LangOpts) { 625 if (!CodeGenOpts.hasProfileClangInstr()) 626 return None; 627 InstrProfOptions Options; 628 Options.NoRedZone = CodeGenOpts.DisableRedZone; 629 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 630 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 631 return Options; 632 } 633 634 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 635 legacy::FunctionPassManager &FPM) { 636 // Handle disabling of all LLVM passes, where we want to preserve the 637 // internal module before any optimization. 638 if (CodeGenOpts.DisableLLVMPasses) 639 return; 640 641 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 642 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 643 // are inserted before PMBuilder ones - they'd get the default-constructed 644 // TLI with an unknown target otherwise. 645 Triple TargetTriple(TheModule->getTargetTriple()); 646 std::unique_ptr<TargetLibraryInfoImpl> TLII( 647 createTLII(TargetTriple, CodeGenOpts)); 648 649 // If we reached here with a non-empty index file name, then the index file 650 // was empty and we are not performing ThinLTO backend compilation (used in 651 // testing in a distributed build environment). Drop any the type test 652 // assume sequences inserted for whole program vtables so that codegen doesn't 653 // complain. 654 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 655 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 656 /*ImportSummary=*/nullptr, 657 /*DropTypeTests=*/true)); 658 659 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 660 661 // At O0 and O1 we only run the always inliner which is more efficient. At 662 // higher optimization levels we run the normal inliner. 663 if (CodeGenOpts.OptimizationLevel <= 1) { 664 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 665 !CodeGenOpts.DisableLifetimeMarkers) || 666 LangOpts.Coroutines); 667 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 668 } else { 669 // We do not want to inline hot callsites for SamplePGO module-summary build 670 // because profile annotation will happen again in ThinLTO backend, and we 671 // want the IR of the hot path to match the profile. 672 PMBuilder.Inliner = createFunctionInliningPass( 673 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 674 (!CodeGenOpts.SampleProfileFile.empty() && 675 CodeGenOpts.PrepareForThinLTO)); 676 } 677 678 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 679 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 680 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 681 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 682 // Only enable CGProfilePass when using integrated assembler, since 683 // non-integrated assemblers don't recognize .cgprofile section. 684 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 685 686 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 687 // Loop interleaving in the loop vectorizer has historically been set to be 688 // enabled when loop unrolling is enabled. 689 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 690 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 691 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 692 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 693 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 694 695 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 696 697 if (TM) 698 TM->adjustPassManager(PMBuilder); 699 700 if (CodeGenOpts.DebugInfoForProfiling || 701 !CodeGenOpts.SampleProfileFile.empty()) 702 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 703 addAddDiscriminatorsPass); 704 705 // In ObjC ARC mode, add the main ARC optimization passes. 706 if (LangOpts.ObjCAutoRefCount) { 707 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 708 addObjCARCExpandPass); 709 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 710 addObjCARCAPElimPass); 711 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 712 addObjCARCOptPass); 713 } 714 715 if (LangOpts.Coroutines) 716 addCoroutinePassesToExtensionPoints(PMBuilder); 717 718 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 719 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 720 addMemProfilerPasses); 721 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 722 addMemProfilerPasses); 723 } 724 725 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 726 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 727 addBoundsCheckingPass); 728 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 729 addBoundsCheckingPass); 730 } 731 732 if (CodeGenOpts.SanitizeCoverageType || 733 CodeGenOpts.SanitizeCoverageIndirectCalls || 734 CodeGenOpts.SanitizeCoverageTraceCmp) { 735 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 736 addSanitizerCoveragePass); 737 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 738 addSanitizerCoveragePass); 739 } 740 741 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 742 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 743 addAddressSanitizerPasses); 744 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 745 addAddressSanitizerPasses); 746 } 747 748 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 749 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 750 addKernelAddressSanitizerPasses); 751 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 752 addKernelAddressSanitizerPasses); 753 } 754 755 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 756 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 757 addHWAddressSanitizerPasses); 758 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 759 addHWAddressSanitizerPasses); 760 } 761 762 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 763 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 764 addKernelHWAddressSanitizerPasses); 765 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 766 addKernelHWAddressSanitizerPasses); 767 } 768 769 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 770 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 771 addMemorySanitizerPass); 772 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 773 addMemorySanitizerPass); 774 } 775 776 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 777 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 778 addKernelMemorySanitizerPass); 779 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 780 addKernelMemorySanitizerPass); 781 } 782 783 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 784 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 785 addThreadSanitizerPass); 786 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 787 addThreadSanitizerPass); 788 } 789 790 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 791 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 792 addDataFlowSanitizerPass); 793 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 794 addDataFlowSanitizerPass); 795 } 796 797 if (CodeGenOpts.InstrumentFunctions || 798 CodeGenOpts.InstrumentFunctionEntryBare || 799 CodeGenOpts.InstrumentFunctionsAfterInlining || 800 CodeGenOpts.InstrumentForProfiling) { 801 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 802 addEntryExitInstrumentationPass); 803 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 804 addEntryExitInstrumentationPass); 805 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 806 addPostInlineEntryExitInstrumentationPass); 807 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 808 addPostInlineEntryExitInstrumentationPass); 809 } 810 811 // Set up the per-function pass manager. 812 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 813 if (CodeGenOpts.VerifyModule) 814 FPM.add(createVerifierPass()); 815 816 // Set up the per-module pass manager. 817 if (!CodeGenOpts.RewriteMapFiles.empty()) 818 addSymbolRewriterPass(CodeGenOpts, &MPM); 819 820 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 821 MPM.add(createGCOVProfilerPass(*Options)); 822 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 823 MPM.add(createStripSymbolsPass(true)); 824 } 825 826 if (Optional<InstrProfOptions> Options = 827 getInstrProfOptions(CodeGenOpts, LangOpts)) 828 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 829 830 bool hasIRInstr = false; 831 if (CodeGenOpts.hasProfileIRInstr()) { 832 PMBuilder.EnablePGOInstrGen = true; 833 hasIRInstr = true; 834 } 835 if (CodeGenOpts.hasProfileCSIRInstr()) { 836 assert(!CodeGenOpts.hasProfileCSIRUse() && 837 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 838 "same time"); 839 assert(!hasIRInstr && 840 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 841 "same time"); 842 PMBuilder.EnablePGOCSInstrGen = true; 843 hasIRInstr = true; 844 } 845 if (hasIRInstr) { 846 if (!CodeGenOpts.InstrProfileOutput.empty()) 847 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 848 else 849 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 850 } 851 if (CodeGenOpts.hasProfileIRUse()) { 852 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 853 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 854 } 855 856 if (!CodeGenOpts.SampleProfileFile.empty()) 857 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 858 859 PMBuilder.populateFunctionPassManager(FPM); 860 PMBuilder.populateModulePassManager(MPM); 861 } 862 863 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 864 SmallVector<const char *, 16> BackendArgs; 865 BackendArgs.push_back("clang"); // Fake program name. 866 if (!CodeGenOpts.DebugPass.empty()) { 867 BackendArgs.push_back("-debug-pass"); 868 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 869 // New PM supports structure dumping. Old PM is still used for codegen, 870 // so we need to pass both options. 871 if (!CodeGenOpts.LegacyPassManager && CodeGenOpts.DebugPass == "Structure") 872 BackendArgs.push_back("-debug-pass-structure"); 873 } 874 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 875 BackendArgs.push_back("-limit-float-precision"); 876 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 877 } 878 // Check for the default "clang" invocation that won't set any cl::opt values. 879 // Skip trying to parse the command line invocation to avoid the issues 880 // described below. 881 if (BackendArgs.size() == 1) 882 return; 883 BackendArgs.push_back(nullptr); 884 // FIXME: The command line parser below is not thread-safe and shares a global 885 // state, so this call might crash or overwrite the options of another Clang 886 // instance in the same process. 887 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 888 BackendArgs.data()); 889 } 890 891 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 892 // Create the TargetMachine for generating code. 893 std::string Error; 894 std::string Triple = TheModule->getTargetTriple(); 895 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 896 if (!TheTarget) { 897 if (MustCreateTM) 898 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 899 return; 900 } 901 902 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 903 std::string FeaturesStr = 904 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 905 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 906 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 907 908 llvm::TargetOptions Options; 909 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 910 HSOpts)) 911 return; 912 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 913 Options, RM, CM, OptLevel)); 914 } 915 916 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 917 BackendAction Action, 918 raw_pwrite_stream &OS, 919 raw_pwrite_stream *DwoOS) { 920 // Add LibraryInfo. 921 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 922 std::unique_ptr<TargetLibraryInfoImpl> TLII( 923 createTLII(TargetTriple, CodeGenOpts)); 924 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 925 926 // Normal mode, emit a .s or .o file by running the code generator. Note, 927 // this also adds codegenerator level optimization passes. 928 CodeGenFileType CGFT = getCodeGenFileType(Action); 929 930 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 931 // "codegen" passes so that it isn't run multiple times when there is 932 // inlining happening. 933 if (CodeGenOpts.OptimizationLevel > 0) 934 CodeGenPasses.add(createObjCARCContractPass()); 935 936 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 937 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 938 Diags.Report(diag::err_fe_unable_to_interface_with_target); 939 return false; 940 } 941 942 return true; 943 } 944 945 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 946 std::unique_ptr<raw_pwrite_stream> OS) { 947 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 948 949 setCommandLineOpts(CodeGenOpts); 950 951 bool UsesCodeGen = (Action != Backend_EmitNothing && 952 Action != Backend_EmitBC && 953 Action != Backend_EmitLL); 954 CreateTargetMachine(UsesCodeGen); 955 956 if (UsesCodeGen && !TM) 957 return; 958 if (TM) 959 TheModule->setDataLayout(TM->createDataLayout()); 960 961 DebugifyCustomPassManager PerModulePasses; 962 DebugInfoPerPassMap DIPreservationMap; 963 if (CodeGenOpts.EnableDIPreservationVerify) { 964 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 965 PerModulePasses.setDIPreservationMap(DIPreservationMap); 966 967 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 968 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 969 CodeGenOpts.DIBugsReportFilePath); 970 } 971 PerModulePasses.add( 972 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 973 974 legacy::FunctionPassManager PerFunctionPasses(TheModule); 975 PerFunctionPasses.add( 976 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 977 978 CreatePasses(PerModulePasses, PerFunctionPasses); 979 980 legacy::PassManager CodeGenPasses; 981 CodeGenPasses.add( 982 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 983 984 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 985 986 switch (Action) { 987 case Backend_EmitNothing: 988 break; 989 990 case Backend_EmitBC: 991 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 992 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 993 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 994 if (!ThinLinkOS) 995 return; 996 } 997 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 998 CodeGenOpts.EnableSplitLTOUnit); 999 PerModulePasses.add(createWriteThinLTOBitcodePass( 1000 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1001 } else { 1002 // Emit a module summary by default for Regular LTO except for ld64 1003 // targets 1004 bool EmitLTOSummary = 1005 (CodeGenOpts.PrepareForLTO && 1006 !CodeGenOpts.DisableLLVMPasses && 1007 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1008 llvm::Triple::Apple); 1009 if (EmitLTOSummary) { 1010 if (!TheModule->getModuleFlag("ThinLTO")) 1011 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1012 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1013 uint32_t(1)); 1014 } 1015 1016 PerModulePasses.add(createBitcodeWriterPass( 1017 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1018 } 1019 break; 1020 1021 case Backend_EmitLL: 1022 PerModulePasses.add( 1023 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1024 break; 1025 1026 default: 1027 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1028 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1029 if (!DwoOS) 1030 return; 1031 } 1032 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1033 DwoOS ? &DwoOS->os() : nullptr)) 1034 return; 1035 } 1036 1037 // Before executing passes, print the final values of the LLVM options. 1038 cl::PrintOptionValues(); 1039 1040 // Run passes. For now we do all passes at once, but eventually we 1041 // would like to have the option of streaming code generation. 1042 1043 { 1044 PrettyStackTraceString CrashInfo("Per-function optimization"); 1045 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1046 1047 PerFunctionPasses.doInitialization(); 1048 for (Function &F : *TheModule) 1049 if (!F.isDeclaration()) 1050 PerFunctionPasses.run(F); 1051 PerFunctionPasses.doFinalization(); 1052 } 1053 1054 { 1055 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1056 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1057 PerModulePasses.run(*TheModule); 1058 } 1059 1060 { 1061 PrettyStackTraceString CrashInfo("Code generation"); 1062 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1063 CodeGenPasses.run(*TheModule); 1064 } 1065 1066 if (ThinLinkOS) 1067 ThinLinkOS->keep(); 1068 if (DwoOS) 1069 DwoOS->keep(); 1070 } 1071 1072 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1073 switch (Opts.OptimizationLevel) { 1074 default: 1075 llvm_unreachable("Invalid optimization level!"); 1076 1077 case 0: 1078 return PassBuilder::OptimizationLevel::O0; 1079 1080 case 1: 1081 return PassBuilder::OptimizationLevel::O1; 1082 1083 case 2: 1084 switch (Opts.OptimizeSize) { 1085 default: 1086 llvm_unreachable("Invalid optimization level for size!"); 1087 1088 case 0: 1089 return PassBuilder::OptimizationLevel::O2; 1090 1091 case 1: 1092 return PassBuilder::OptimizationLevel::Os; 1093 1094 case 2: 1095 return PassBuilder::OptimizationLevel::Oz; 1096 } 1097 1098 case 3: 1099 return PassBuilder::OptimizationLevel::O3; 1100 } 1101 } 1102 1103 static void addSanitizers(const Triple &TargetTriple, 1104 const CodeGenOptions &CodeGenOpts, 1105 const LangOptions &LangOpts, PassBuilder &PB) { 1106 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1107 PassBuilder::OptimizationLevel Level) { 1108 if (CodeGenOpts.SanitizeCoverageType || 1109 CodeGenOpts.SanitizeCoverageIndirectCalls || 1110 CodeGenOpts.SanitizeCoverageTraceCmp) { 1111 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1112 MPM.addPass(ModuleSanitizerCoveragePass( 1113 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1114 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1115 } 1116 1117 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1118 if (LangOpts.Sanitize.has(Mask)) { 1119 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1120 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1121 1122 MPM.addPass( 1123 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1124 FunctionPassManager FPM(CodeGenOpts.DebugPassManager); 1125 FPM.addPass( 1126 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1127 if (Level != PassBuilder::OptimizationLevel::O0) { 1128 // MemorySanitizer inserts complex instrumentation that mostly 1129 // follows the logic of the original code, but operates on 1130 // "shadow" values. It can benefit from re-running some 1131 // general purpose optimization passes. 1132 FPM.addPass(EarlyCSEPass()); 1133 // TODO: Consider add more passes like in 1134 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1135 // difference on size. It's not clear if the rest is still 1136 // usefull. InstCombinePass breakes 1137 // compiler-rt/test/msan/select_origin.cpp. 1138 } 1139 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1140 } 1141 }; 1142 MSanPass(SanitizerKind::Memory, false); 1143 MSanPass(SanitizerKind::KernelMemory, true); 1144 1145 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1146 MPM.addPass(ThreadSanitizerPass()); 1147 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1148 } 1149 1150 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1151 if (LangOpts.Sanitize.has(Mask)) { 1152 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1153 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1154 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1155 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1156 llvm::AsanDtorKind DestructorKind = 1157 CodeGenOpts.getSanitizeAddressDtor(); 1158 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1159 MPM.addPass(ModuleAddressSanitizerPass( 1160 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1161 DestructorKind)); 1162 MPM.addPass(createModuleToFunctionPassAdaptor( 1163 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1164 } 1165 }; 1166 ASanPass(SanitizerKind::Address, false); 1167 ASanPass(SanitizerKind::KernelAddress, true); 1168 1169 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1170 if (LangOpts.Sanitize.has(Mask)) { 1171 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1172 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1173 } 1174 }; 1175 HWASanPass(SanitizerKind::HWAddress, false); 1176 HWASanPass(SanitizerKind::KernelHWAddress, true); 1177 1178 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1179 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1180 } 1181 }); 1182 } 1183 1184 /// A clean version of `EmitAssembly` that uses the new pass manager. 1185 /// 1186 /// Not all features are currently supported in this system, but where 1187 /// necessary it falls back to the legacy pass manager to at least provide 1188 /// basic functionality. 1189 /// 1190 /// This API is planned to have its functionality finished and then to replace 1191 /// `EmitAssembly` at some point in the future when the default switches. 1192 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1193 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1194 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1195 setCommandLineOpts(CodeGenOpts); 1196 1197 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1198 Action != Backend_EmitBC && 1199 Action != Backend_EmitLL); 1200 CreateTargetMachine(RequiresCodeGen); 1201 1202 if (RequiresCodeGen && !TM) 1203 return; 1204 if (TM) 1205 TheModule->setDataLayout(TM->createDataLayout()); 1206 1207 Optional<PGOOptions> PGOOpt; 1208 1209 if (CodeGenOpts.hasProfileIRInstr()) 1210 // -fprofile-generate. 1211 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1212 ? std::string(DefaultProfileGenName) 1213 : CodeGenOpts.InstrProfileOutput, 1214 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1215 CodeGenOpts.DebugInfoForProfiling); 1216 else if (CodeGenOpts.hasProfileIRUse()) { 1217 // -fprofile-use. 1218 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1219 : PGOOptions::NoCSAction; 1220 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1221 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1222 CSAction, CodeGenOpts.DebugInfoForProfiling); 1223 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1224 // -fprofile-sample-use 1225 PGOOpt = PGOOptions( 1226 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1227 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1228 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1229 else if (CodeGenOpts.PseudoProbeForProfiling) 1230 // -fpseudo-probe-for-profiling 1231 PGOOpt = 1232 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1233 CodeGenOpts.DebugInfoForProfiling, true); 1234 else if (CodeGenOpts.DebugInfoForProfiling) 1235 // -fdebug-info-for-profiling 1236 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1237 PGOOptions::NoCSAction, true); 1238 1239 // Check to see if we want to generate a CS profile. 1240 if (CodeGenOpts.hasProfileCSIRInstr()) { 1241 assert(!CodeGenOpts.hasProfileCSIRUse() && 1242 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1243 "the same time"); 1244 if (PGOOpt.hasValue()) { 1245 assert(PGOOpt->Action != PGOOptions::IRInstr && 1246 PGOOpt->Action != PGOOptions::SampleUse && 1247 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1248 " pass"); 1249 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1250 ? std::string(DefaultProfileGenName) 1251 : CodeGenOpts.InstrProfileOutput; 1252 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1253 } else 1254 PGOOpt = PGOOptions("", 1255 CodeGenOpts.InstrProfileOutput.empty() 1256 ? std::string(DefaultProfileGenName) 1257 : CodeGenOpts.InstrProfileOutput, 1258 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1259 CodeGenOpts.DebugInfoForProfiling); 1260 } 1261 1262 PipelineTuningOptions PTO; 1263 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1264 // For historical reasons, loop interleaving is set to mirror setting for loop 1265 // unrolling. 1266 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1267 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1268 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1269 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1270 // Only enable CGProfilePass when using integrated assembler, since 1271 // non-integrated assemblers don't recognize .cgprofile section. 1272 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1273 PTO.Coroutines = LangOpts.Coroutines; 1274 1275 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1276 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1277 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1278 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1279 1280 PassInstrumentationCallbacks PIC; 1281 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1282 SI.registerCallbacks(PIC, &FAM); 1283 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1284 1285 // Attempt to load pass plugins and register their callbacks with PB. 1286 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1287 auto PassPlugin = PassPlugin::Load(PluginFN); 1288 if (PassPlugin) { 1289 PassPlugin->registerPassBuilderCallbacks(PB); 1290 } else { 1291 Diags.Report(diag::err_fe_unable_to_load_plugin) 1292 << PluginFN << toString(PassPlugin.takeError()); 1293 } 1294 } 1295 #define HANDLE_EXTENSION(Ext) \ 1296 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1297 #include "llvm/Support/Extension.def" 1298 1299 // Register the AA manager first so that our version is the one used. 1300 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1301 1302 // Register the target library analysis directly and give it a customized 1303 // preset TLI. 1304 Triple TargetTriple(TheModule->getTargetTriple()); 1305 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1306 createTLII(TargetTriple, CodeGenOpts)); 1307 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1308 1309 // Register all the basic analyses with the managers. 1310 PB.registerModuleAnalyses(MAM); 1311 PB.registerCGSCCAnalyses(CGAM); 1312 PB.registerFunctionAnalyses(FAM); 1313 PB.registerLoopAnalyses(LAM); 1314 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1315 1316 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1317 1318 if (!CodeGenOpts.DisableLLVMPasses) { 1319 // Map our optimization levels into one of the distinct levels used to 1320 // configure the pipeline. 1321 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1322 1323 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1324 bool IsLTO = CodeGenOpts.PrepareForLTO; 1325 1326 if (LangOpts.ObjCAutoRefCount) { 1327 PB.registerPipelineStartEPCallback( 1328 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1329 if (Level != PassBuilder::OptimizationLevel::O0) 1330 MPM.addPass( 1331 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1332 }); 1333 PB.registerPipelineEarlySimplificationEPCallback( 1334 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1335 if (Level != PassBuilder::OptimizationLevel::O0) 1336 MPM.addPass(ObjCARCAPElimPass()); 1337 }); 1338 PB.registerScalarOptimizerLateEPCallback( 1339 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1340 if (Level != PassBuilder::OptimizationLevel::O0) 1341 FPM.addPass(ObjCARCOptPass()); 1342 }); 1343 } 1344 1345 // If we reached here with a non-empty index file name, then the index 1346 // file was empty and we are not performing ThinLTO backend compilation 1347 // (used in testing in a distributed build environment). 1348 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1349 // If so drop any the type test assume sequences inserted for whole program 1350 // vtables so that codegen doesn't complain. 1351 if (IsThinLTOPostLink) 1352 PB.registerPipelineStartEPCallback( 1353 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1354 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1355 /*ImportSummary=*/nullptr, 1356 /*DropTypeTests=*/true)); 1357 }); 1358 1359 if (CodeGenOpts.InstrumentFunctions || 1360 CodeGenOpts.InstrumentFunctionEntryBare || 1361 CodeGenOpts.InstrumentFunctionsAfterInlining || 1362 CodeGenOpts.InstrumentForProfiling) { 1363 PB.registerPipelineStartEPCallback( 1364 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1365 MPM.addPass(createModuleToFunctionPassAdaptor( 1366 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1367 }); 1368 PB.registerOptimizerLastEPCallback( 1369 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1370 MPM.addPass(createModuleToFunctionPassAdaptor( 1371 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1372 }); 1373 } 1374 1375 // Register callbacks to schedule sanitizer passes at the appropriate part 1376 // of the pipeline. 1377 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1378 PB.registerScalarOptimizerLateEPCallback( 1379 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1380 FPM.addPass(BoundsCheckingPass()); 1381 }); 1382 1383 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1384 // done on PreLink stage. 1385 if (!IsThinLTOPostLink) 1386 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1387 1388 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1389 PB.registerPipelineStartEPCallback( 1390 [Options](ModulePassManager &MPM, 1391 PassBuilder::OptimizationLevel Level) { 1392 MPM.addPass(GCOVProfilerPass(*Options)); 1393 }); 1394 if (Optional<InstrProfOptions> Options = 1395 getInstrProfOptions(CodeGenOpts, LangOpts)) 1396 PB.registerPipelineStartEPCallback( 1397 [Options](ModulePassManager &MPM, 1398 PassBuilder::OptimizationLevel Level) { 1399 MPM.addPass(InstrProfiling(*Options, false)); 1400 }); 1401 1402 if (CodeGenOpts.OptimizationLevel == 0) { 1403 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1404 } else if (IsThinLTO) { 1405 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1406 } else if (IsLTO) { 1407 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1408 } else { 1409 MPM = PB.buildPerModuleDefaultPipeline(Level); 1410 } 1411 1412 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1413 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1414 MPM.addPass(ModuleMemProfilerPass()); 1415 } 1416 } 1417 1418 // FIXME: We still use the legacy pass manager to do code generation. We 1419 // create that pass manager here and use it as needed below. 1420 legacy::PassManager CodeGenPasses; 1421 bool NeedCodeGen = false; 1422 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1423 1424 // Append any output we need to the pass manager. 1425 switch (Action) { 1426 case Backend_EmitNothing: 1427 break; 1428 1429 case Backend_EmitBC: 1430 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1431 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1432 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1433 if (!ThinLinkOS) 1434 return; 1435 } 1436 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1437 CodeGenOpts.EnableSplitLTOUnit); 1438 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1439 : nullptr)); 1440 } else { 1441 // Emit a module summary by default for Regular LTO except for ld64 1442 // targets 1443 bool EmitLTOSummary = 1444 (CodeGenOpts.PrepareForLTO && 1445 !CodeGenOpts.DisableLLVMPasses && 1446 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1447 llvm::Triple::Apple); 1448 if (EmitLTOSummary) { 1449 if (!TheModule->getModuleFlag("ThinLTO")) 1450 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1451 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1452 uint32_t(1)); 1453 } 1454 MPM.addPass( 1455 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1456 } 1457 break; 1458 1459 case Backend_EmitLL: 1460 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1461 break; 1462 1463 case Backend_EmitAssembly: 1464 case Backend_EmitMCNull: 1465 case Backend_EmitObj: 1466 NeedCodeGen = true; 1467 CodeGenPasses.add( 1468 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1469 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1470 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1471 if (!DwoOS) 1472 return; 1473 } 1474 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1475 DwoOS ? &DwoOS->os() : nullptr)) 1476 // FIXME: Should we handle this error differently? 1477 return; 1478 break; 1479 } 1480 1481 // Before executing passes, print the final values of the LLVM options. 1482 cl::PrintOptionValues(); 1483 1484 // Now that we have all of the passes ready, run them. 1485 { 1486 PrettyStackTraceString CrashInfo("Optimizer"); 1487 MPM.run(*TheModule, MAM); 1488 } 1489 1490 // Now if needed, run the legacy PM for codegen. 1491 if (NeedCodeGen) { 1492 PrettyStackTraceString CrashInfo("Code generation"); 1493 CodeGenPasses.run(*TheModule); 1494 } 1495 1496 if (ThinLinkOS) 1497 ThinLinkOS->keep(); 1498 if (DwoOS) 1499 DwoOS->keep(); 1500 } 1501 1502 static void runThinLTOBackend( 1503 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1504 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1505 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1506 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1507 std::string ProfileRemapping, BackendAction Action) { 1508 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1509 ModuleToDefinedGVSummaries; 1510 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1511 1512 setCommandLineOpts(CGOpts); 1513 1514 // We can simply import the values mentioned in the combined index, since 1515 // we should only invoke this using the individual indexes written out 1516 // via a WriteIndexesThinBackend. 1517 FunctionImporter::ImportMapTy ImportList; 1518 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1519 return; 1520 1521 auto AddStream = [&](size_t Task) { 1522 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1523 }; 1524 lto::Config Conf; 1525 if (CGOpts.SaveTempsFilePrefix != "") { 1526 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1527 /* UseInputModulePath */ false)) { 1528 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1529 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1530 << '\n'; 1531 }); 1532 } 1533 } 1534 Conf.CPU = TOpts.CPU; 1535 Conf.CodeModel = getCodeModel(CGOpts); 1536 Conf.MAttrs = TOpts.Features; 1537 Conf.RelocModel = CGOpts.RelocationModel; 1538 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1539 Conf.OptLevel = CGOpts.OptimizationLevel; 1540 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1541 Conf.SampleProfile = std::move(SampleProfile); 1542 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1543 // For historical reasons, loop interleaving is set to mirror setting for loop 1544 // unrolling. 1545 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1546 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1547 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1548 // Only enable CGProfilePass when using integrated assembler, since 1549 // non-integrated assemblers don't recognize .cgprofile section. 1550 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1551 1552 // Context sensitive profile. 1553 if (CGOpts.hasProfileCSIRInstr()) { 1554 Conf.RunCSIRInstr = true; 1555 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1556 } else if (CGOpts.hasProfileCSIRUse()) { 1557 Conf.RunCSIRInstr = false; 1558 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1559 } 1560 1561 Conf.ProfileRemapping = std::move(ProfileRemapping); 1562 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1563 Conf.DebugPassManager = CGOpts.DebugPassManager; 1564 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1565 Conf.RemarksFilename = CGOpts.OptRecordFile; 1566 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1567 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1568 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1569 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1570 switch (Action) { 1571 case Backend_EmitNothing: 1572 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1573 return false; 1574 }; 1575 break; 1576 case Backend_EmitLL: 1577 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1578 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1579 return false; 1580 }; 1581 break; 1582 case Backend_EmitBC: 1583 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1584 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1585 return false; 1586 }; 1587 break; 1588 default: 1589 Conf.CGFileType = getCodeGenFileType(Action); 1590 break; 1591 } 1592 if (Error E = 1593 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1594 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1595 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1596 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1597 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1598 }); 1599 } 1600 } 1601 1602 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1603 const HeaderSearchOptions &HeaderOpts, 1604 const CodeGenOptions &CGOpts, 1605 const clang::TargetOptions &TOpts, 1606 const LangOptions &LOpts, 1607 StringRef TDesc, Module *M, 1608 BackendAction Action, 1609 std::unique_ptr<raw_pwrite_stream> OS) { 1610 1611 llvm::TimeTraceScope TimeScope("Backend"); 1612 1613 std::unique_ptr<llvm::Module> EmptyModule; 1614 if (!CGOpts.ThinLTOIndexFile.empty()) { 1615 // If we are performing a ThinLTO importing compile, load the function index 1616 // into memory and pass it into runThinLTOBackend, which will run the 1617 // function importer and invoke LTO passes. 1618 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1619 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1620 /*IgnoreEmptyThinLTOIndexFile*/true); 1621 if (!IndexOrErr) { 1622 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1623 "Error loading index file '" + 1624 CGOpts.ThinLTOIndexFile + "': "); 1625 return; 1626 } 1627 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1628 // A null CombinedIndex means we should skip ThinLTO compilation 1629 // (LLVM will optionally ignore empty index files, returning null instead 1630 // of an error). 1631 if (CombinedIndex) { 1632 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1633 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1634 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1635 CGOpts.ProfileRemappingFile, Action); 1636 return; 1637 } 1638 // Distributed indexing detected that nothing from the module is needed 1639 // for the final linking. So we can skip the compilation. We sill need to 1640 // output an empty object file to make sure that a linker does not fail 1641 // trying to read it. Also for some features, like CFI, we must skip 1642 // the compilation as CombinedIndex does not contain all required 1643 // information. 1644 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1645 EmptyModule->setTargetTriple(M->getTargetTriple()); 1646 M = EmptyModule.get(); 1647 } 1648 } 1649 1650 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1651 1652 if (!CGOpts.LegacyPassManager) 1653 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1654 else 1655 AsmHelper.EmitAssembly(Action, std::move(OS)); 1656 1657 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1658 // DataLayout. 1659 if (AsmHelper.TM) { 1660 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1661 if (DLDesc != TDesc) { 1662 unsigned DiagID = Diags.getCustomDiagID( 1663 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1664 "expected target description '%1'"); 1665 Diags.Report(DiagID) << DLDesc << TDesc; 1666 } 1667 } 1668 } 1669 1670 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1671 // __LLVM,__bitcode section. 1672 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1673 llvm::MemoryBufferRef Buf) { 1674 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1675 return; 1676 llvm::EmbedBitcodeInModule( 1677 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1678 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1679 CGOpts.CmdArgs); 1680 } 1681