1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 72 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 73 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 74 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 75 #include "llvm/Transforms/ObjCARC.h" 76 #include "llvm/Transforms/Scalar.h" 77 #include "llvm/Transforms/Scalar/GVN.h" 78 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 79 #include "llvm/Transforms/Utils.h" 80 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 81 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 82 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 83 #include "llvm/Transforms/Utils/SymbolRewriter.h" 84 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 85 #include <memory> 86 using namespace clang; 87 using namespace llvm; 88 89 #define HANDLE_EXTENSION(Ext) \ 90 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 91 #include "llvm/Support/Extension.def" 92 93 namespace { 94 95 // Default filename used for profile generation. 96 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 97 98 class EmitAssemblyHelper { 99 DiagnosticsEngine &Diags; 100 const HeaderSearchOptions &HSOpts; 101 const CodeGenOptions &CodeGenOpts; 102 const clang::TargetOptions &TargetOpts; 103 const LangOptions &LangOpts; 104 Module *TheModule; 105 106 Timer CodeGenerationTime; 107 108 std::unique_ptr<raw_pwrite_stream> OS; 109 110 TargetIRAnalysis getTargetIRAnalysis() const { 111 if (TM) 112 return TM->getTargetIRAnalysis(); 113 114 return TargetIRAnalysis(); 115 } 116 117 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 118 119 /// Generates the TargetMachine. 120 /// Leaves TM unchanged if it is unable to create the target machine. 121 /// Some of our clang tests specify triples which are not built 122 /// into clang. This is okay because these tests check the generated 123 /// IR, and they require DataLayout which depends on the triple. 124 /// In this case, we allow this method to fail and not report an error. 125 /// When MustCreateTM is used, we print an error if we are unable to load 126 /// the requested target. 127 void CreateTargetMachine(bool MustCreateTM); 128 129 /// Add passes necessary to emit assembly or LLVM IR. 130 /// 131 /// \return True on success. 132 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 133 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 134 135 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 136 std::error_code EC; 137 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 138 llvm::sys::fs::OF_None); 139 if (EC) { 140 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 141 F.reset(); 142 } 143 return F; 144 } 145 146 public: 147 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 148 const HeaderSearchOptions &HeaderSearchOpts, 149 const CodeGenOptions &CGOpts, 150 const clang::TargetOptions &TOpts, 151 const LangOptions &LOpts, Module *M) 152 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 153 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 154 CodeGenerationTime("codegen", "Code Generation Time") {} 155 156 ~EmitAssemblyHelper() { 157 if (CodeGenOpts.DisableFree) 158 BuryPointer(std::move(TM)); 159 } 160 161 std::unique_ptr<TargetMachine> TM; 162 163 void EmitAssembly(BackendAction Action, 164 std::unique_ptr<raw_pwrite_stream> OS); 165 166 void EmitAssemblyWithNewPassManager(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 }; 169 170 // We need this wrapper to access LangOpts and CGOpts from extension functions 171 // that we add to the PassManagerBuilder. 172 class PassManagerBuilderWrapper : public PassManagerBuilder { 173 public: 174 PassManagerBuilderWrapper(const Triple &TargetTriple, 175 const CodeGenOptions &CGOpts, 176 const LangOptions &LangOpts) 177 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 178 LangOpts(LangOpts) {} 179 const Triple &getTargetTriple() const { return TargetTriple; } 180 const CodeGenOptions &getCGOpts() const { return CGOpts; } 181 const LangOptions &getLangOpts() const { return LangOpts; } 182 183 private: 184 const Triple &TargetTriple; 185 const CodeGenOptions &CGOpts; 186 const LangOptions &LangOpts; 187 }; 188 } 189 190 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 191 if (Builder.OptLevel > 0) 192 PM.add(createObjCARCAPElimPass()); 193 } 194 195 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 196 if (Builder.OptLevel > 0) 197 PM.add(createObjCARCExpandPass()); 198 } 199 200 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 201 if (Builder.OptLevel > 0) 202 PM.add(createObjCARCOptPass()); 203 } 204 205 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 206 legacy::PassManagerBase &PM) { 207 PM.add(createAddDiscriminatorsPass()); 208 } 209 210 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 211 legacy::PassManagerBase &PM) { 212 PM.add(createBoundsCheckingLegacyPass()); 213 } 214 215 static SanitizerCoverageOptions 216 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 217 SanitizerCoverageOptions Opts; 218 Opts.CoverageType = 219 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 220 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 221 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 222 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 223 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 224 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 225 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 226 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 227 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 228 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 229 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 230 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 231 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 232 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 233 return Opts; 234 } 235 236 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 237 legacy::PassManagerBase &PM) { 238 const PassManagerBuilderWrapper &BuilderWrapper = 239 static_cast<const PassManagerBuilderWrapper &>(Builder); 240 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 241 auto Opts = getSancovOptsFromCGOpts(CGOpts); 242 PM.add(createModuleSanitizerCoverageLegacyPassPass( 243 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 244 CGOpts.SanitizeCoverageBlocklistFiles)); 245 } 246 247 // Check if ASan should use GC-friendly instrumentation for globals. 248 // First of all, there is no point if -fdata-sections is off (expect for MachO, 249 // where this is not a factor). Also, on ELF this feature requires an assembler 250 // extension that only works with -integrated-as at the moment. 251 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 252 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 253 return false; 254 switch (T.getObjectFormat()) { 255 case Triple::MachO: 256 case Triple::COFF: 257 return true; 258 case Triple::ELF: 259 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 260 case Triple::GOFF: 261 llvm::report_fatal_error("ASan not implemented for GOFF"); 262 case Triple::XCOFF: 263 llvm::report_fatal_error("ASan not implemented for XCOFF."); 264 case Triple::Wasm: 265 case Triple::UnknownObjectFormat: 266 break; 267 } 268 return false; 269 } 270 271 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 272 legacy::PassManagerBase &PM) { 273 PM.add(createMemProfilerFunctionPass()); 274 PM.add(createModuleMemProfilerLegacyPassPass()); 275 } 276 277 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 278 legacy::PassManagerBase &PM) { 279 const PassManagerBuilderWrapper &BuilderWrapper = 280 static_cast<const PassManagerBuilderWrapper&>(Builder); 281 const Triple &T = BuilderWrapper.getTargetTriple(); 282 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 283 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 284 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 285 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 286 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 287 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 288 UseAfterScope)); 289 PM.add(createModuleAddressSanitizerLegacyPassPass( 290 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 291 } 292 293 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 294 legacy::PassManagerBase &PM) { 295 PM.add(createAddressSanitizerFunctionPass( 296 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 297 PM.add(createModuleAddressSanitizerLegacyPassPass( 298 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 299 /*UseOdrIndicator*/ false)); 300 } 301 302 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 const PassManagerBuilderWrapper &BuilderWrapper = 305 static_cast<const PassManagerBuilderWrapper &>(Builder); 306 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 307 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 308 PM.add( 309 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 310 } 311 312 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 313 legacy::PassManagerBase &PM) { 314 PM.add(createHWAddressSanitizerLegacyPassPass( 315 /*CompileKernel*/ true, /*Recover*/ true)); 316 } 317 318 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 319 legacy::PassManagerBase &PM, 320 bool CompileKernel) { 321 const PassManagerBuilderWrapper &BuilderWrapper = 322 static_cast<const PassManagerBuilderWrapper&>(Builder); 323 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 324 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 325 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 326 PM.add(createMemorySanitizerLegacyPassPass( 327 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 328 329 // MemorySanitizer inserts complex instrumentation that mostly follows 330 // the logic of the original code, but operates on "shadow" values. 331 // It can benefit from re-running some general purpose optimization passes. 332 if (Builder.OptLevel > 0) { 333 PM.add(createEarlyCSEPass()); 334 PM.add(createReassociatePass()); 335 PM.add(createLICMPass()); 336 PM.add(createGVNPass()); 337 PM.add(createInstructionCombiningPass()); 338 PM.add(createDeadStoreEliminationPass()); 339 } 340 } 341 342 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 345 } 346 347 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 350 } 351 352 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 PM.add(createThreadSanitizerLegacyPassPass()); 355 } 356 357 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 const PassManagerBuilderWrapper &BuilderWrapper = 360 static_cast<const PassManagerBuilderWrapper&>(Builder); 361 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 362 PM.add( 363 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 364 } 365 366 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 367 const CodeGenOptions &CodeGenOpts) { 368 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 369 370 switch (CodeGenOpts.getVecLib()) { 371 case CodeGenOptions::Accelerate: 372 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 373 break; 374 case CodeGenOptions::LIBMVEC: 375 switch(TargetTriple.getArch()) { 376 default: 377 break; 378 case llvm::Triple::x86_64: 379 TLII->addVectorizableFunctionsFromVecLib 380 (TargetLibraryInfoImpl::LIBMVEC_X86); 381 break; 382 } 383 break; 384 case CodeGenOptions::MASSV: 385 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 386 break; 387 case CodeGenOptions::SVML: 388 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 389 break; 390 default: 391 break; 392 } 393 return TLII; 394 } 395 396 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 397 legacy::PassManager *MPM) { 398 llvm::SymbolRewriter::RewriteDescriptorList DL; 399 400 llvm::SymbolRewriter::RewriteMapParser MapParser; 401 for (const auto &MapFile : Opts.RewriteMapFiles) 402 MapParser.parse(MapFile, &DL); 403 404 MPM->add(createRewriteSymbolsPass(DL)); 405 } 406 407 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 408 switch (CodeGenOpts.OptimizationLevel) { 409 default: 410 llvm_unreachable("Invalid optimization level!"); 411 case 0: 412 return CodeGenOpt::None; 413 case 1: 414 return CodeGenOpt::Less; 415 case 2: 416 return CodeGenOpt::Default; // O2/Os/Oz 417 case 3: 418 return CodeGenOpt::Aggressive; 419 } 420 } 421 422 static Optional<llvm::CodeModel::Model> 423 getCodeModel(const CodeGenOptions &CodeGenOpts) { 424 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 425 .Case("tiny", llvm::CodeModel::Tiny) 426 .Case("small", llvm::CodeModel::Small) 427 .Case("kernel", llvm::CodeModel::Kernel) 428 .Case("medium", llvm::CodeModel::Medium) 429 .Case("large", llvm::CodeModel::Large) 430 .Case("default", ~1u) 431 .Default(~0u); 432 assert(CodeModel != ~0u && "invalid code model!"); 433 if (CodeModel == ~1u) 434 return None; 435 return static_cast<llvm::CodeModel::Model>(CodeModel); 436 } 437 438 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 439 if (Action == Backend_EmitObj) 440 return CGFT_ObjectFile; 441 else if (Action == Backend_EmitMCNull) 442 return CGFT_Null; 443 else { 444 assert(Action == Backend_EmitAssembly && "Invalid action!"); 445 return CGFT_AssemblyFile; 446 } 447 } 448 449 static bool initTargetOptions(DiagnosticsEngine &Diags, 450 llvm::TargetOptions &Options, 451 const CodeGenOptions &CodeGenOpts, 452 const clang::TargetOptions &TargetOpts, 453 const LangOptions &LangOpts, 454 const HeaderSearchOptions &HSOpts) { 455 Options.ThreadModel = 456 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 457 .Case("posix", llvm::ThreadModel::POSIX) 458 .Case("single", llvm::ThreadModel::Single); 459 460 // Set float ABI type. 461 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 462 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 463 "Invalid Floating Point ABI!"); 464 Options.FloatABIType = 465 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 466 .Case("soft", llvm::FloatABI::Soft) 467 .Case("softfp", llvm::FloatABI::Soft) 468 .Case("hard", llvm::FloatABI::Hard) 469 .Default(llvm::FloatABI::Default); 470 471 // Set FP fusion mode. 472 switch (LangOpts.getDefaultFPContractMode()) { 473 case LangOptions::FPM_Off: 474 // Preserve any contraction performed by the front-end. (Strict performs 475 // splitting of the muladd intrinsic in the backend.) 476 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 477 break; 478 case LangOptions::FPM_On: 479 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 480 break; 481 case LangOptions::FPM_Fast: 482 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 483 break; 484 } 485 486 Options.UseInitArray = CodeGenOpts.UseInitArray; 487 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 488 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 489 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 490 491 // Set EABI version. 492 Options.EABIVersion = TargetOpts.EABIVersion; 493 494 if (LangOpts.SjLjExceptions) 495 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 496 if (LangOpts.SEHExceptions) 497 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 498 if (LangOpts.DWARFExceptions) 499 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 500 if (LangOpts.WasmExceptions) 501 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 502 503 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 504 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 505 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 506 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 507 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 508 509 Options.BBSections = 510 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 511 .Case("all", llvm::BasicBlockSection::All) 512 .Case("labels", llvm::BasicBlockSection::Labels) 513 .StartsWith("list=", llvm::BasicBlockSection::List) 514 .Case("none", llvm::BasicBlockSection::None) 515 .Default(llvm::BasicBlockSection::None); 516 517 if (Options.BBSections == llvm::BasicBlockSection::List) { 518 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 519 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 520 if (!MBOrErr) { 521 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 522 << MBOrErr.getError().message(); 523 return false; 524 } 525 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 526 } 527 528 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 529 Options.FunctionSections = CodeGenOpts.FunctionSections; 530 Options.DataSections = CodeGenOpts.DataSections; 531 Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility; 532 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 533 Options.UniqueBasicBlockSectionNames = 534 CodeGenOpts.UniqueBasicBlockSectionNames; 535 Options.StackProtectorGuard = 536 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 537 .StackProtectorGuard) 538 .Case("tls", llvm::StackProtectorGuards::TLS) 539 .Case("global", llvm::StackProtectorGuards::Global) 540 .Default(llvm::StackProtectorGuards::None); 541 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 542 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 543 Options.TLSSize = CodeGenOpts.TLSSize; 544 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 545 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 546 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 547 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 548 Options.EmitAddrsig = CodeGenOpts.Addrsig; 549 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 550 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 551 Options.ValueTrackingVariableLocations = 552 CodeGenOpts.ValueTrackingVariableLocations; 553 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 554 555 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 556 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 557 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 558 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 559 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 560 Options.MCOptions.MCIncrementalLinkerCompatible = 561 CodeGenOpts.IncrementalLinkerCompatible; 562 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 563 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 564 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 565 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 566 Options.MCOptions.ABIName = TargetOpts.ABI; 567 for (const auto &Entry : HSOpts.UserEntries) 568 if (!Entry.IsFramework && 569 (Entry.Group == frontend::IncludeDirGroup::Quoted || 570 Entry.Group == frontend::IncludeDirGroup::Angled || 571 Entry.Group == frontend::IncludeDirGroup::System)) 572 Options.MCOptions.IASSearchPaths.push_back( 573 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 574 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 575 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 576 577 return true; 578 } 579 580 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 581 const LangOptions &LangOpts) { 582 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 583 return None; 584 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 585 // LLVM's -default-gcov-version flag is set to something invalid. 586 GCOVOptions Options; 587 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 588 Options.EmitData = CodeGenOpts.EmitGcovArcs; 589 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 590 Options.NoRedZone = CodeGenOpts.DisableRedZone; 591 Options.Filter = CodeGenOpts.ProfileFilterFiles; 592 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 593 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 594 return Options; 595 } 596 597 static Optional<InstrProfOptions> 598 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 599 const LangOptions &LangOpts) { 600 if (!CodeGenOpts.hasProfileClangInstr()) 601 return None; 602 InstrProfOptions Options; 603 Options.NoRedZone = CodeGenOpts.DisableRedZone; 604 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 605 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 606 return Options; 607 } 608 609 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 610 legacy::FunctionPassManager &FPM) { 611 // Handle disabling of all LLVM passes, where we want to preserve the 612 // internal module before any optimization. 613 if (CodeGenOpts.DisableLLVMPasses) 614 return; 615 616 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 617 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 618 // are inserted before PMBuilder ones - they'd get the default-constructed 619 // TLI with an unknown target otherwise. 620 Triple TargetTriple(TheModule->getTargetTriple()); 621 std::unique_ptr<TargetLibraryInfoImpl> TLII( 622 createTLII(TargetTriple, CodeGenOpts)); 623 624 // If we reached here with a non-empty index file name, then the index file 625 // was empty and we are not performing ThinLTO backend compilation (used in 626 // testing in a distributed build environment). Drop any the type test 627 // assume sequences inserted for whole program vtables so that codegen doesn't 628 // complain. 629 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 630 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 631 /*ImportSummary=*/nullptr, 632 /*DropTypeTests=*/true)); 633 634 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 635 636 // At O0 and O1 we only run the always inliner which is more efficient. At 637 // higher optimization levels we run the normal inliner. 638 if (CodeGenOpts.OptimizationLevel <= 1) { 639 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 640 !CodeGenOpts.DisableLifetimeMarkers) || 641 LangOpts.Coroutines); 642 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 643 } else { 644 // We do not want to inline hot callsites for SamplePGO module-summary build 645 // because profile annotation will happen again in ThinLTO backend, and we 646 // want the IR of the hot path to match the profile. 647 PMBuilder.Inliner = createFunctionInliningPass( 648 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 649 (!CodeGenOpts.SampleProfileFile.empty() && 650 CodeGenOpts.PrepareForThinLTO)); 651 } 652 653 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 654 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 655 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 656 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 657 // Only enable CGProfilePass when using integrated assembler, since 658 // non-integrated assemblers don't recognize .cgprofile section. 659 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 660 661 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 662 // Loop interleaving in the loop vectorizer has historically been set to be 663 // enabled when loop unrolling is enabled. 664 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 665 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 666 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 667 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 668 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 669 670 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 671 672 if (TM) 673 TM->adjustPassManager(PMBuilder); 674 675 if (CodeGenOpts.DebugInfoForProfiling || 676 !CodeGenOpts.SampleProfileFile.empty()) 677 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 678 addAddDiscriminatorsPass); 679 680 // In ObjC ARC mode, add the main ARC optimization passes. 681 if (LangOpts.ObjCAutoRefCount) { 682 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 683 addObjCARCExpandPass); 684 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 685 addObjCARCAPElimPass); 686 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 687 addObjCARCOptPass); 688 } 689 690 if (LangOpts.Coroutines) 691 addCoroutinePassesToExtensionPoints(PMBuilder); 692 693 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 694 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 695 addMemProfilerPasses); 696 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 697 addMemProfilerPasses); 698 } 699 700 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 701 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 702 addBoundsCheckingPass); 703 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 704 addBoundsCheckingPass); 705 } 706 707 if (CodeGenOpts.SanitizeCoverageType || 708 CodeGenOpts.SanitizeCoverageIndirectCalls || 709 CodeGenOpts.SanitizeCoverageTraceCmp) { 710 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 711 addSanitizerCoveragePass); 712 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 713 addSanitizerCoveragePass); 714 } 715 716 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 717 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 718 addAddressSanitizerPasses); 719 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 720 addAddressSanitizerPasses); 721 } 722 723 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 724 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 725 addKernelAddressSanitizerPasses); 726 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 727 addKernelAddressSanitizerPasses); 728 } 729 730 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 731 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 732 addHWAddressSanitizerPasses); 733 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 734 addHWAddressSanitizerPasses); 735 } 736 737 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 738 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 739 addKernelHWAddressSanitizerPasses); 740 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 741 addKernelHWAddressSanitizerPasses); 742 } 743 744 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 745 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 746 addMemorySanitizerPass); 747 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 748 addMemorySanitizerPass); 749 } 750 751 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 752 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 753 addKernelMemorySanitizerPass); 754 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 755 addKernelMemorySanitizerPass); 756 } 757 758 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 759 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 760 addThreadSanitizerPass); 761 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 762 addThreadSanitizerPass); 763 } 764 765 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 766 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 767 addDataFlowSanitizerPass); 768 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 769 addDataFlowSanitizerPass); 770 } 771 772 // Set up the per-function pass manager. 773 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 774 if (CodeGenOpts.VerifyModule) 775 FPM.add(createVerifierPass()); 776 777 // Set up the per-module pass manager. 778 if (!CodeGenOpts.RewriteMapFiles.empty()) 779 addSymbolRewriterPass(CodeGenOpts, &MPM); 780 781 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 782 // with unique names. 783 if (CodeGenOpts.UniqueInternalLinkageNames) { 784 MPM.add(createUniqueInternalLinkageNamesPass()); 785 } 786 787 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 788 MPM.add(createGCOVProfilerPass(*Options)); 789 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 790 MPM.add(createStripSymbolsPass(true)); 791 } 792 793 if (Optional<InstrProfOptions> Options = 794 getInstrProfOptions(CodeGenOpts, LangOpts)) 795 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 796 797 bool hasIRInstr = false; 798 if (CodeGenOpts.hasProfileIRInstr()) { 799 PMBuilder.EnablePGOInstrGen = true; 800 hasIRInstr = true; 801 } 802 if (CodeGenOpts.hasProfileCSIRInstr()) { 803 assert(!CodeGenOpts.hasProfileCSIRUse() && 804 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 805 "same time"); 806 assert(!hasIRInstr && 807 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 808 "same time"); 809 PMBuilder.EnablePGOCSInstrGen = true; 810 hasIRInstr = true; 811 } 812 if (hasIRInstr) { 813 if (!CodeGenOpts.InstrProfileOutput.empty()) 814 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 815 else 816 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 817 } 818 if (CodeGenOpts.hasProfileIRUse()) { 819 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 820 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 821 } 822 823 if (!CodeGenOpts.SampleProfileFile.empty()) 824 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 825 826 PMBuilder.populateFunctionPassManager(FPM); 827 PMBuilder.populateModulePassManager(MPM); 828 } 829 830 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 831 SmallVector<const char *, 16> BackendArgs; 832 BackendArgs.push_back("clang"); // Fake program name. 833 if (!CodeGenOpts.DebugPass.empty()) { 834 BackendArgs.push_back("-debug-pass"); 835 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 836 } 837 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 838 BackendArgs.push_back("-limit-float-precision"); 839 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 840 } 841 BackendArgs.push_back(nullptr); 842 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 843 BackendArgs.data()); 844 } 845 846 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 847 // Create the TargetMachine for generating code. 848 std::string Error; 849 std::string Triple = TheModule->getTargetTriple(); 850 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 851 if (!TheTarget) { 852 if (MustCreateTM) 853 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 854 return; 855 } 856 857 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 858 std::string FeaturesStr = 859 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 860 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 861 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 862 863 llvm::TargetOptions Options; 864 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 865 HSOpts)) 866 return; 867 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 868 Options, RM, CM, OptLevel)); 869 } 870 871 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 872 BackendAction Action, 873 raw_pwrite_stream &OS, 874 raw_pwrite_stream *DwoOS) { 875 // Add LibraryInfo. 876 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 877 std::unique_ptr<TargetLibraryInfoImpl> TLII( 878 createTLII(TargetTriple, CodeGenOpts)); 879 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 880 881 // Normal mode, emit a .s or .o file by running the code generator. Note, 882 // this also adds codegenerator level optimization passes. 883 CodeGenFileType CGFT = getCodeGenFileType(Action); 884 885 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 886 // "codegen" passes so that it isn't run multiple times when there is 887 // inlining happening. 888 if (CodeGenOpts.OptimizationLevel > 0) 889 CodeGenPasses.add(createObjCARCContractPass()); 890 891 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 892 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 893 Diags.Report(diag::err_fe_unable_to_interface_with_target); 894 return false; 895 } 896 897 return true; 898 } 899 900 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 901 std::unique_ptr<raw_pwrite_stream> OS) { 902 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 903 904 setCommandLineOpts(CodeGenOpts); 905 906 bool UsesCodeGen = (Action != Backend_EmitNothing && 907 Action != Backend_EmitBC && 908 Action != Backend_EmitLL); 909 CreateTargetMachine(UsesCodeGen); 910 911 if (UsesCodeGen && !TM) 912 return; 913 if (TM) 914 TheModule->setDataLayout(TM->createDataLayout()); 915 916 legacy::PassManager PerModulePasses; 917 PerModulePasses.add( 918 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 919 920 legacy::FunctionPassManager PerFunctionPasses(TheModule); 921 PerFunctionPasses.add( 922 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 923 924 CreatePasses(PerModulePasses, PerFunctionPasses); 925 926 legacy::PassManager CodeGenPasses; 927 CodeGenPasses.add( 928 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 929 930 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 931 932 switch (Action) { 933 case Backend_EmitNothing: 934 break; 935 936 case Backend_EmitBC: 937 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 938 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 939 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 940 if (!ThinLinkOS) 941 return; 942 } 943 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 944 CodeGenOpts.EnableSplitLTOUnit); 945 PerModulePasses.add(createWriteThinLTOBitcodePass( 946 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 947 } else { 948 // Emit a module summary by default for Regular LTO except for ld64 949 // targets 950 bool EmitLTOSummary = 951 (CodeGenOpts.PrepareForLTO && 952 !CodeGenOpts.DisableLLVMPasses && 953 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 954 llvm::Triple::Apple); 955 if (EmitLTOSummary) { 956 if (!TheModule->getModuleFlag("ThinLTO")) 957 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 958 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 959 uint32_t(1)); 960 } 961 962 PerModulePasses.add(createBitcodeWriterPass( 963 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 964 } 965 break; 966 967 case Backend_EmitLL: 968 PerModulePasses.add( 969 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 970 break; 971 972 default: 973 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 974 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 975 if (!DwoOS) 976 return; 977 } 978 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 979 DwoOS ? &DwoOS->os() : nullptr)) 980 return; 981 } 982 983 // Before executing passes, print the final values of the LLVM options. 984 cl::PrintOptionValues(); 985 986 // Run passes. For now we do all passes at once, but eventually we 987 // would like to have the option of streaming code generation. 988 989 { 990 PrettyStackTraceString CrashInfo("Per-function optimization"); 991 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 992 993 PerFunctionPasses.doInitialization(); 994 for (Function &F : *TheModule) 995 if (!F.isDeclaration()) 996 PerFunctionPasses.run(F); 997 PerFunctionPasses.doFinalization(); 998 } 999 1000 { 1001 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1002 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1003 PerModulePasses.run(*TheModule); 1004 } 1005 1006 { 1007 PrettyStackTraceString CrashInfo("Code generation"); 1008 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1009 CodeGenPasses.run(*TheModule); 1010 } 1011 1012 if (ThinLinkOS) 1013 ThinLinkOS->keep(); 1014 if (DwoOS) 1015 DwoOS->keep(); 1016 } 1017 1018 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1019 switch (Opts.OptimizationLevel) { 1020 default: 1021 llvm_unreachable("Invalid optimization level!"); 1022 1023 case 0: 1024 return PassBuilder::OptimizationLevel::O0; 1025 1026 case 1: 1027 return PassBuilder::OptimizationLevel::O1; 1028 1029 case 2: 1030 switch (Opts.OptimizeSize) { 1031 default: 1032 llvm_unreachable("Invalid optimization level for size!"); 1033 1034 case 0: 1035 return PassBuilder::OptimizationLevel::O2; 1036 1037 case 1: 1038 return PassBuilder::OptimizationLevel::Os; 1039 1040 case 2: 1041 return PassBuilder::OptimizationLevel::Oz; 1042 } 1043 1044 case 3: 1045 return PassBuilder::OptimizationLevel::O3; 1046 } 1047 } 1048 1049 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1050 const LangOptions &LangOpts, 1051 const CodeGenOptions &CodeGenOpts) { 1052 if (!LangOpts.Coroutines) 1053 return; 1054 1055 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1056 1057 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1058 CGPM.addPass(CoroSplitPass()); 1059 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1060 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1061 1062 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1063 } 1064 1065 static void addSanitizersAtO0(ModulePassManager &MPM, 1066 const Triple &TargetTriple, 1067 const LangOptions &LangOpts, 1068 const CodeGenOptions &CodeGenOpts) { 1069 if (CodeGenOpts.SanitizeCoverageType || 1070 CodeGenOpts.SanitizeCoverageIndirectCalls || 1071 CodeGenOpts.SanitizeCoverageTraceCmp) { 1072 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1073 MPM.addPass(ModuleSanitizerCoveragePass( 1074 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1075 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1076 } 1077 1078 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1079 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1080 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1081 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1082 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1083 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1084 MPM.addPass( 1085 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1086 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1087 }; 1088 1089 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1090 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1091 } 1092 1093 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1094 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1095 } 1096 1097 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1098 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1099 MPM.addPass(HWAddressSanitizerPass( 1100 /*CompileKernel=*/false, Recover)); 1101 } 1102 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1103 MPM.addPass(HWAddressSanitizerPass( 1104 /*CompileKernel=*/true, /*Recover=*/true)); 1105 } 1106 1107 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1108 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1109 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1110 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1111 MPM.addPass(createModuleToFunctionPassAdaptor( 1112 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1113 } 1114 1115 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1116 MPM.addPass(createModuleToFunctionPassAdaptor( 1117 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1118 } 1119 1120 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1121 MPM.addPass(ThreadSanitizerPass()); 1122 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1123 } 1124 } 1125 1126 /// A clean version of `EmitAssembly` that uses the new pass manager. 1127 /// 1128 /// Not all features are currently supported in this system, but where 1129 /// necessary it falls back to the legacy pass manager to at least provide 1130 /// basic functionality. 1131 /// 1132 /// This API is planned to have its functionality finished and then to replace 1133 /// `EmitAssembly` at some point in the future when the default switches. 1134 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1135 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1136 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1137 setCommandLineOpts(CodeGenOpts); 1138 1139 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1140 Action != Backend_EmitBC && 1141 Action != Backend_EmitLL); 1142 CreateTargetMachine(RequiresCodeGen); 1143 1144 if (RequiresCodeGen && !TM) 1145 return; 1146 if (TM) 1147 TheModule->setDataLayout(TM->createDataLayout()); 1148 1149 Optional<PGOOptions> PGOOpt; 1150 1151 if (CodeGenOpts.hasProfileIRInstr()) 1152 // -fprofile-generate. 1153 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1154 ? std::string(DefaultProfileGenName) 1155 : CodeGenOpts.InstrProfileOutput, 1156 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1157 CodeGenOpts.DebugInfoForProfiling); 1158 else if (CodeGenOpts.hasProfileIRUse()) { 1159 // -fprofile-use. 1160 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1161 : PGOOptions::NoCSAction; 1162 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1163 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1164 CSAction, CodeGenOpts.DebugInfoForProfiling); 1165 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1166 // -fprofile-sample-use 1167 PGOOpt = 1168 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1169 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1170 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1171 else if (CodeGenOpts.DebugInfoForProfiling) 1172 // -fdebug-info-for-profiling 1173 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1174 PGOOptions::NoCSAction, true); 1175 1176 // Check to see if we want to generate a CS profile. 1177 if (CodeGenOpts.hasProfileCSIRInstr()) { 1178 assert(!CodeGenOpts.hasProfileCSIRUse() && 1179 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1180 "the same time"); 1181 if (PGOOpt.hasValue()) { 1182 assert(PGOOpt->Action != PGOOptions::IRInstr && 1183 PGOOpt->Action != PGOOptions::SampleUse && 1184 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1185 " pass"); 1186 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1187 ? std::string(DefaultProfileGenName) 1188 : CodeGenOpts.InstrProfileOutput; 1189 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1190 } else 1191 PGOOpt = PGOOptions("", 1192 CodeGenOpts.InstrProfileOutput.empty() 1193 ? std::string(DefaultProfileGenName) 1194 : CodeGenOpts.InstrProfileOutput, 1195 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1196 CodeGenOpts.DebugInfoForProfiling); 1197 } 1198 1199 PipelineTuningOptions PTO; 1200 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1201 // For historical reasons, loop interleaving is set to mirror setting for loop 1202 // unrolling. 1203 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1204 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1205 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1206 // Only enable CGProfilePass when using integrated assembler, since 1207 // non-integrated assemblers don't recognize .cgprofile section. 1208 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1209 PTO.Coroutines = LangOpts.Coroutines; 1210 1211 PassInstrumentationCallbacks PIC; 1212 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1213 SI.registerCallbacks(PIC); 1214 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1215 1216 // Attempt to load pass plugins and register their callbacks with PB. 1217 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1218 auto PassPlugin = PassPlugin::Load(PluginFN); 1219 if (PassPlugin) { 1220 PassPlugin->registerPassBuilderCallbacks(PB); 1221 } else { 1222 Diags.Report(diag::err_fe_unable_to_load_plugin) 1223 << PluginFN << toString(PassPlugin.takeError()); 1224 } 1225 } 1226 #define HANDLE_EXTENSION(Ext) \ 1227 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1228 #include "llvm/Support/Extension.def" 1229 1230 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1231 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1232 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1233 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1234 1235 // Register the AA manager first so that our version is the one used. 1236 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1237 1238 // Register the target library analysis directly and give it a customized 1239 // preset TLI. 1240 Triple TargetTriple(TheModule->getTargetTriple()); 1241 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1242 createTLII(TargetTriple, CodeGenOpts)); 1243 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1244 1245 // Register all the basic analyses with the managers. 1246 PB.registerModuleAnalyses(MAM); 1247 PB.registerCGSCCAnalyses(CGAM); 1248 PB.registerFunctionAnalyses(FAM); 1249 PB.registerLoopAnalyses(LAM); 1250 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1251 1252 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1253 1254 if (!CodeGenOpts.DisableLLVMPasses) { 1255 // Map our optimization levels into one of the distinct levels used to 1256 // configure the pipeline. 1257 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1258 1259 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1260 bool IsLTO = CodeGenOpts.PrepareForLTO; 1261 1262 if (CodeGenOpts.OptimizationLevel == 0) { 1263 // If we reached here with a non-empty index file name, then the index 1264 // file was empty and we are not performing ThinLTO backend compilation 1265 // (used in testing in a distributed build environment). Drop any the type 1266 // test assume sequences inserted for whole program vtables so that 1267 // codegen doesn't complain. 1268 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1269 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1270 /*ImportSummary=*/nullptr, 1271 /*DropTypeTests=*/true)); 1272 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1273 MPM.addPass(GCOVProfilerPass(*Options)); 1274 if (Optional<InstrProfOptions> Options = 1275 getInstrProfOptions(CodeGenOpts, LangOpts)) 1276 MPM.addPass(InstrProfiling(*Options, false)); 1277 1278 // Build a minimal pipeline based on the semantics required by Clang, 1279 // which is just that always inlining occurs. Further, disable generating 1280 // lifetime intrinsics to avoid enabling further optimizations during 1281 // code generation. 1282 // However, we need to insert lifetime intrinsics to avoid invalid access 1283 // caused by multithreaded coroutines. 1284 MPM.addPass( 1285 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1286 1287 // At -O0, we can still do PGO. Add all the requested passes for 1288 // instrumentation PGO, if requested. 1289 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1290 PGOOpt->Action == PGOOptions::IRUse)) 1291 PB.addPGOInstrPassesForO0( 1292 MPM, 1293 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1294 /* IsCS */ false, PGOOpt->ProfileFile, 1295 PGOOpt->ProfileRemappingFile); 1296 1297 // At -O0 we directly run necessary sanitizer passes. 1298 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1299 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1300 1301 // Lastly, add semantically necessary passes for LTO. 1302 if (IsLTO || IsThinLTO) { 1303 MPM.addPass(CanonicalizeAliasesPass()); 1304 MPM.addPass(NameAnonGlobalPass()); 1305 } 1306 } else { 1307 // If we reached here with a non-empty index file name, then the index 1308 // file was empty and we are not performing ThinLTO backend compilation 1309 // (used in testing in a distributed build environment). Drop any the type 1310 // test assume sequences inserted for whole program vtables so that 1311 // codegen doesn't complain. 1312 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1313 PB.registerPipelineStartEPCallback( 1314 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1315 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1316 /*ImportSummary=*/nullptr, 1317 /*DropTypeTests=*/true)); 1318 }); 1319 1320 PB.registerPipelineStartEPCallback( 1321 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1322 MPM.addPass(createModuleToFunctionPassAdaptor( 1323 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1324 }); 1325 1326 // Register callbacks to schedule sanitizer passes at the appropriate part of 1327 // the pipeline. 1328 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1329 PB.registerScalarOptimizerLateEPCallback( 1330 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1331 FPM.addPass(BoundsCheckingPass()); 1332 }); 1333 1334 if (CodeGenOpts.SanitizeCoverageType || 1335 CodeGenOpts.SanitizeCoverageIndirectCalls || 1336 CodeGenOpts.SanitizeCoverageTraceCmp) { 1337 PB.registerOptimizerLastEPCallback( 1338 [this](ModulePassManager &MPM, 1339 PassBuilder::OptimizationLevel Level) { 1340 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1341 MPM.addPass(ModuleSanitizerCoveragePass( 1342 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1343 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1344 }); 1345 } 1346 1347 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1348 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1349 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1350 PB.registerOptimizerLastEPCallback( 1351 [TrackOrigins, Recover](ModulePassManager &MPM, 1352 PassBuilder::OptimizationLevel Level) { 1353 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1354 MPM.addPass(createModuleToFunctionPassAdaptor( 1355 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1356 }); 1357 } 1358 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1359 PB.registerOptimizerLastEPCallback( 1360 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1361 MPM.addPass(ThreadSanitizerPass()); 1362 MPM.addPass( 1363 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1364 }); 1365 } 1366 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1367 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1368 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1369 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1370 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1371 PB.registerOptimizerLastEPCallback( 1372 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1373 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1374 MPM.addPass( 1375 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1376 MPM.addPass(ModuleAddressSanitizerPass( 1377 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1378 UseOdrIndicator)); 1379 MPM.addPass( 1380 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1381 /*CompileKernel=*/false, Recover, UseAfterScope))); 1382 }); 1383 } 1384 1385 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1386 bool Recover = 1387 CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1388 PB.registerOptimizerLastEPCallback( 1389 [Recover](ModulePassManager &MPM, 1390 PassBuilder::OptimizationLevel Level) { 1391 MPM.addPass(HWAddressSanitizerPass( 1392 /*CompileKernel=*/false, Recover)); 1393 }); 1394 } 1395 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1396 bool Recover = 1397 CodeGenOpts.SanitizeRecover.has(SanitizerKind::KernelHWAddress); 1398 PB.registerOptimizerLastEPCallback( 1399 [Recover](ModulePassManager &MPM, 1400 PassBuilder::OptimizationLevel Level) { 1401 MPM.addPass(HWAddressSanitizerPass( 1402 /*CompileKernel=*/true, Recover)); 1403 }); 1404 } 1405 1406 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1407 PB.registerPipelineStartEPCallback( 1408 [Options](ModulePassManager &MPM, 1409 PassBuilder::OptimizationLevel Level) { 1410 MPM.addPass(GCOVProfilerPass(*Options)); 1411 }); 1412 if (Optional<InstrProfOptions> Options = 1413 getInstrProfOptions(CodeGenOpts, LangOpts)) 1414 PB.registerPipelineStartEPCallback( 1415 [Options](ModulePassManager &MPM, 1416 PassBuilder::OptimizationLevel Level) { 1417 MPM.addPass(InstrProfiling(*Options, false)); 1418 }); 1419 1420 if (IsThinLTO) { 1421 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1422 MPM.addPass(CanonicalizeAliasesPass()); 1423 MPM.addPass(NameAnonGlobalPass()); 1424 } else if (IsLTO) { 1425 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1426 MPM.addPass(CanonicalizeAliasesPass()); 1427 MPM.addPass(NameAnonGlobalPass()); 1428 } else { 1429 MPM = PB.buildPerModuleDefaultPipeline(Level); 1430 } 1431 } 1432 1433 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1434 // symbols with unique names. 1435 if (CodeGenOpts.UniqueInternalLinkageNames) 1436 MPM.addPass(UniqueInternalLinkageNamesPass()); 1437 1438 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1439 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1440 MPM.addPass(ModuleMemProfilerPass()); 1441 } 1442 1443 if (CodeGenOpts.OptimizationLevel == 0) { 1444 PB.runRegisteredEPCallbacks(MPM, Level, CodeGenOpts.DebugPassManager); 1445 1446 // FIXME: the backends do not handle matrix intrinsics currently. Make 1447 // sure they are also lowered in O0. A lightweight version of the pass 1448 // should run in the backend pipeline on demand. 1449 if (LangOpts.MatrixTypes) 1450 MPM.addPass( 1451 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1452 1453 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1454 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1455 } 1456 } 1457 1458 // FIXME: We still use the legacy pass manager to do code generation. We 1459 // create that pass manager here and use it as needed below. 1460 legacy::PassManager CodeGenPasses; 1461 bool NeedCodeGen = false; 1462 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1463 1464 // Append any output we need to the pass manager. 1465 switch (Action) { 1466 case Backend_EmitNothing: 1467 break; 1468 1469 case Backend_EmitBC: 1470 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1471 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1472 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1473 if (!ThinLinkOS) 1474 return; 1475 } 1476 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1477 CodeGenOpts.EnableSplitLTOUnit); 1478 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1479 : nullptr)); 1480 } else { 1481 // Emit a module summary by default for Regular LTO except for ld64 1482 // targets 1483 bool EmitLTOSummary = 1484 (CodeGenOpts.PrepareForLTO && 1485 !CodeGenOpts.DisableLLVMPasses && 1486 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1487 llvm::Triple::Apple); 1488 if (EmitLTOSummary) { 1489 if (!TheModule->getModuleFlag("ThinLTO")) 1490 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1491 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1492 uint32_t(1)); 1493 } 1494 MPM.addPass( 1495 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1496 } 1497 break; 1498 1499 case Backend_EmitLL: 1500 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1501 break; 1502 1503 case Backend_EmitAssembly: 1504 case Backend_EmitMCNull: 1505 case Backend_EmitObj: 1506 NeedCodeGen = true; 1507 CodeGenPasses.add( 1508 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1509 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1510 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1511 if (!DwoOS) 1512 return; 1513 } 1514 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1515 DwoOS ? &DwoOS->os() : nullptr)) 1516 // FIXME: Should we handle this error differently? 1517 return; 1518 break; 1519 } 1520 1521 // Before executing passes, print the final values of the LLVM options. 1522 cl::PrintOptionValues(); 1523 1524 // Now that we have all of the passes ready, run them. 1525 { 1526 PrettyStackTraceString CrashInfo("Optimizer"); 1527 MPM.run(*TheModule, MAM); 1528 } 1529 1530 // Now if needed, run the legacy PM for codegen. 1531 if (NeedCodeGen) { 1532 PrettyStackTraceString CrashInfo("Code generation"); 1533 CodeGenPasses.run(*TheModule); 1534 } 1535 1536 if (ThinLinkOS) 1537 ThinLinkOS->keep(); 1538 if (DwoOS) 1539 DwoOS->keep(); 1540 } 1541 1542 static void runThinLTOBackend( 1543 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1544 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1545 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1546 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1547 std::string ProfileRemapping, BackendAction Action) { 1548 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1549 ModuleToDefinedGVSummaries; 1550 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1551 1552 setCommandLineOpts(CGOpts); 1553 1554 // We can simply import the values mentioned in the combined index, since 1555 // we should only invoke this using the individual indexes written out 1556 // via a WriteIndexesThinBackend. 1557 FunctionImporter::ImportMapTy ImportList; 1558 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1559 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1560 if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap, 1561 OwnedImports)) 1562 return; 1563 1564 auto AddStream = [&](size_t Task) { 1565 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1566 }; 1567 lto::Config Conf; 1568 if (CGOpts.SaveTempsFilePrefix != "") { 1569 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1570 /* UseInputModulePath */ false)) { 1571 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1572 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1573 << '\n'; 1574 }); 1575 } 1576 } 1577 Conf.CPU = TOpts.CPU; 1578 Conf.CodeModel = getCodeModel(CGOpts); 1579 Conf.MAttrs = TOpts.Features; 1580 Conf.RelocModel = CGOpts.RelocationModel; 1581 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1582 Conf.OptLevel = CGOpts.OptimizationLevel; 1583 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1584 Conf.SampleProfile = std::move(SampleProfile); 1585 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1586 // For historical reasons, loop interleaving is set to mirror setting for loop 1587 // unrolling. 1588 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1589 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1590 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1591 // Only enable CGProfilePass when using integrated assembler, since 1592 // non-integrated assemblers don't recognize .cgprofile section. 1593 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1594 1595 // Context sensitive profile. 1596 if (CGOpts.hasProfileCSIRInstr()) { 1597 Conf.RunCSIRInstr = true; 1598 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1599 } else if (CGOpts.hasProfileCSIRUse()) { 1600 Conf.RunCSIRInstr = false; 1601 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1602 } 1603 1604 Conf.ProfileRemapping = std::move(ProfileRemapping); 1605 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1606 Conf.DebugPassManager = CGOpts.DebugPassManager; 1607 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1608 Conf.RemarksFilename = CGOpts.OptRecordFile; 1609 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1610 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1611 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1612 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1613 switch (Action) { 1614 case Backend_EmitNothing: 1615 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1616 return false; 1617 }; 1618 break; 1619 case Backend_EmitLL: 1620 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1621 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1622 return false; 1623 }; 1624 break; 1625 case Backend_EmitBC: 1626 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1627 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1628 return false; 1629 }; 1630 break; 1631 default: 1632 Conf.CGFileType = getCodeGenFileType(Action); 1633 break; 1634 } 1635 if (Error E = 1636 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1637 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1638 ModuleMap, CGOpts.CmdArgs)) { 1639 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1640 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1641 }); 1642 } 1643 } 1644 1645 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1646 const HeaderSearchOptions &HeaderOpts, 1647 const CodeGenOptions &CGOpts, 1648 const clang::TargetOptions &TOpts, 1649 const LangOptions &LOpts, 1650 const llvm::DataLayout &TDesc, Module *M, 1651 BackendAction Action, 1652 std::unique_ptr<raw_pwrite_stream> OS) { 1653 1654 llvm::TimeTraceScope TimeScope("Backend"); 1655 1656 std::unique_ptr<llvm::Module> EmptyModule; 1657 if (!CGOpts.ThinLTOIndexFile.empty()) { 1658 // If we are performing a ThinLTO importing compile, load the function index 1659 // into memory and pass it into runThinLTOBackend, which will run the 1660 // function importer and invoke LTO passes. 1661 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1662 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1663 /*IgnoreEmptyThinLTOIndexFile*/true); 1664 if (!IndexOrErr) { 1665 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1666 "Error loading index file '" + 1667 CGOpts.ThinLTOIndexFile + "': "); 1668 return; 1669 } 1670 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1671 // A null CombinedIndex means we should skip ThinLTO compilation 1672 // (LLVM will optionally ignore empty index files, returning null instead 1673 // of an error). 1674 if (CombinedIndex) { 1675 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1676 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1677 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1678 CGOpts.ProfileRemappingFile, Action); 1679 return; 1680 } 1681 // Distributed indexing detected that nothing from the module is needed 1682 // for the final linking. So we can skip the compilation. We sill need to 1683 // output an empty object file to make sure that a linker does not fail 1684 // trying to read it. Also for some features, like CFI, we must skip 1685 // the compilation as CombinedIndex does not contain all required 1686 // information. 1687 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1688 EmptyModule->setTargetTriple(M->getTargetTriple()); 1689 M = EmptyModule.get(); 1690 } 1691 } 1692 1693 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1694 1695 if (CGOpts.ExperimentalNewPassManager) 1696 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1697 else 1698 AsmHelper.EmitAssembly(Action, std::move(OS)); 1699 1700 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1701 // DataLayout. 1702 if (AsmHelper.TM) { 1703 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1704 if (DLDesc != TDesc.getStringRepresentation()) { 1705 unsigned DiagID = Diags.getCustomDiagID( 1706 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1707 "expected target description '%1'"); 1708 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1709 } 1710 } 1711 } 1712 1713 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1714 // __LLVM,__bitcode section. 1715 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1716 llvm::MemoryBufferRef Buf) { 1717 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1718 return; 1719 llvm::EmbedBitcodeInModule( 1720 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1721 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1722 CGOpts.CmdArgs); 1723 } 1724