1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/ObjCARC.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/GVN.h" 58 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 59 #include "llvm/Transforms/Utils/SymbolRewriter.h" 60 #include <memory> 61 using namespace clang; 62 using namespace llvm; 63 64 namespace { 65 66 // Default filename used for profile generation. 67 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 68 69 class EmitAssemblyHelper { 70 DiagnosticsEngine &Diags; 71 const HeaderSearchOptions &HSOpts; 72 const CodeGenOptions &CodeGenOpts; 73 const clang::TargetOptions &TargetOpts; 74 const LangOptions &LangOpts; 75 Module *TheModule; 76 77 Timer CodeGenerationTime; 78 79 std::unique_ptr<raw_pwrite_stream> OS; 80 81 TargetIRAnalysis getTargetIRAnalysis() const { 82 if (TM) 83 return TM->getTargetIRAnalysis(); 84 85 return TargetIRAnalysis(); 86 } 87 88 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 89 90 /// Generates the TargetMachine. 91 /// Leaves TM unchanged if it is unable to create the target machine. 92 /// Some of our clang tests specify triples which are not built 93 /// into clang. This is okay because these tests check the generated 94 /// IR, and they require DataLayout which depends on the triple. 95 /// In this case, we allow this method to fail and not report an error. 96 /// When MustCreateTM is used, we print an error if we are unable to load 97 /// the requested target. 98 void CreateTargetMachine(bool MustCreateTM); 99 100 /// Add passes necessary to emit assembly or LLVM IR. 101 /// 102 /// \return True on success. 103 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 104 raw_pwrite_stream &OS); 105 106 public: 107 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 108 const HeaderSearchOptions &HeaderSearchOpts, 109 const CodeGenOptions &CGOpts, 110 const clang::TargetOptions &TOpts, 111 const LangOptions &LOpts, Module *M) 112 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 113 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 114 CodeGenerationTime("codegen", "Code Generation Time") {} 115 116 ~EmitAssemblyHelper() { 117 if (CodeGenOpts.DisableFree) 118 BuryPointer(std::move(TM)); 119 } 120 121 std::unique_ptr<TargetMachine> TM; 122 123 void EmitAssembly(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 126 void EmitAssemblyWithNewPassManager(BackendAction Action, 127 std::unique_ptr<raw_pwrite_stream> OS); 128 }; 129 130 // We need this wrapper to access LangOpts and CGOpts from extension functions 131 // that we add to the PassManagerBuilder. 132 class PassManagerBuilderWrapper : public PassManagerBuilder { 133 public: 134 PassManagerBuilderWrapper(const Triple &TargetTriple, 135 const CodeGenOptions &CGOpts, 136 const LangOptions &LangOpts) 137 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 138 LangOpts(LangOpts) {} 139 const Triple &getTargetTriple() const { return TargetTriple; } 140 const CodeGenOptions &getCGOpts() const { return CGOpts; } 141 const LangOptions &getLangOpts() const { return LangOpts; } 142 143 private: 144 const Triple &TargetTriple; 145 const CodeGenOptions &CGOpts; 146 const LangOptions &LangOpts; 147 }; 148 } 149 150 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 151 if (Builder.OptLevel > 0) 152 PM.add(createObjCARCAPElimPass()); 153 } 154 155 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCExpandPass()); 158 } 159 160 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 161 if (Builder.OptLevel > 0) 162 PM.add(createObjCARCOptPass()); 163 } 164 165 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 166 legacy::PassManagerBase &PM) { 167 PM.add(createAddDiscriminatorsPass()); 168 } 169 170 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 PM.add(createBoundsCheckingLegacyPass()); 173 } 174 175 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 176 legacy::PassManagerBase &PM) { 177 const PassManagerBuilderWrapper &BuilderWrapper = 178 static_cast<const PassManagerBuilderWrapper&>(Builder); 179 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 180 SanitizerCoverageOptions Opts; 181 Opts.CoverageType = 182 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 183 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 184 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 185 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 186 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 187 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 188 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 189 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 190 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 191 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 192 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 193 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 194 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 195 PM.add(createSanitizerCoverageModulePass(Opts)); 196 } 197 198 // Check if ASan should use GC-friendly instrumentation for globals. 199 // First of all, there is no point if -fdata-sections is off (expect for MachO, 200 // where this is not a factor). Also, on ELF this feature requires an assembler 201 // extension that only works with -integrated-as at the moment. 202 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 203 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 204 return false; 205 switch (T.getObjectFormat()) { 206 case Triple::MachO: 207 case Triple::COFF: 208 return true; 209 case Triple::ELF: 210 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 211 default: 212 return false; 213 } 214 } 215 216 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 217 legacy::PassManagerBase &PM) { 218 const PassManagerBuilderWrapper &BuilderWrapper = 219 static_cast<const PassManagerBuilderWrapper&>(Builder); 220 const Triple &T = BuilderWrapper.getTargetTriple(); 221 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 222 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 223 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 224 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 225 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 226 UseAfterScope)); 227 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 228 UseGlobalsGC)); 229 } 230 231 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 PM.add(createAddressSanitizerFunctionPass( 234 /*CompileKernel*/ true, 235 /*Recover*/ true, /*UseAfterScope*/ false)); 236 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 237 /*Recover*/true)); 238 } 239 240 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper &>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 246 PM.add(createHWAddressSanitizerPass(Recover)); 247 } 248 249 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 250 legacy::PassManagerBase &PM) { 251 const PassManagerBuilderWrapper &BuilderWrapper = 252 static_cast<const PassManagerBuilderWrapper&>(Builder); 253 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 254 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 255 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 256 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 257 258 // MemorySanitizer inserts complex instrumentation that mostly follows 259 // the logic of the original code, but operates on "shadow" values. 260 // It can benefit from re-running some general purpose optimization passes. 261 if (Builder.OptLevel > 0) { 262 PM.add(createEarlyCSEPass()); 263 PM.add(createReassociatePass()); 264 PM.add(createLICMPass()); 265 PM.add(createGVNPass()); 266 PM.add(createInstructionCombiningPass()); 267 PM.add(createDeadStoreEliminationPass()); 268 } 269 } 270 271 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 272 legacy::PassManagerBase &PM) { 273 PM.add(createThreadSanitizerPass()); 274 } 275 276 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper&>(Builder); 280 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 281 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 282 } 283 284 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 285 legacy::PassManagerBase &PM) { 286 const PassManagerBuilderWrapper &BuilderWrapper = 287 static_cast<const PassManagerBuilderWrapper&>(Builder); 288 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 289 EfficiencySanitizerOptions Opts; 290 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 291 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 292 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 293 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 294 PM.add(createEfficiencySanitizerPass(Opts)); 295 } 296 297 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 298 const CodeGenOptions &CodeGenOpts) { 299 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 300 if (!CodeGenOpts.SimplifyLibCalls) 301 TLII->disableAllFunctions(); 302 else { 303 // Disable individual libc/libm calls in TargetLibraryInfo. 304 LibFunc F; 305 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 306 if (TLII->getLibFunc(FuncName, F)) 307 TLII->setUnavailable(F); 308 } 309 310 switch (CodeGenOpts.getVecLib()) { 311 case CodeGenOptions::Accelerate: 312 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 313 break; 314 case CodeGenOptions::SVML: 315 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 316 break; 317 default: 318 break; 319 } 320 return TLII; 321 } 322 323 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 324 legacy::PassManager *MPM) { 325 llvm::SymbolRewriter::RewriteDescriptorList DL; 326 327 llvm::SymbolRewriter::RewriteMapParser MapParser; 328 for (const auto &MapFile : Opts.RewriteMapFiles) 329 MapParser.parse(MapFile, &DL); 330 331 MPM->add(createRewriteSymbolsPass(DL)); 332 } 333 334 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 335 switch (CodeGenOpts.OptimizationLevel) { 336 default: 337 llvm_unreachable("Invalid optimization level!"); 338 case 0: 339 return CodeGenOpt::None; 340 case 1: 341 return CodeGenOpt::Less; 342 case 2: 343 return CodeGenOpt::Default; // O2/Os/Oz 344 case 3: 345 return CodeGenOpt::Aggressive; 346 } 347 } 348 349 static Optional<llvm::CodeModel::Model> 350 getCodeModel(const CodeGenOptions &CodeGenOpts) { 351 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 352 .Case("small", llvm::CodeModel::Small) 353 .Case("kernel", llvm::CodeModel::Kernel) 354 .Case("medium", llvm::CodeModel::Medium) 355 .Case("large", llvm::CodeModel::Large) 356 .Case("default", ~1u) 357 .Default(~0u); 358 assert(CodeModel != ~0u && "invalid code model!"); 359 if (CodeModel == ~1u) 360 return None; 361 return static_cast<llvm::CodeModel::Model>(CodeModel); 362 } 363 364 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 365 // Keep this synced with the equivalent code in 366 // lib/Frontend/CompilerInvocation.cpp 367 llvm::Optional<llvm::Reloc::Model> RM; 368 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 369 .Case("static", llvm::Reloc::Static) 370 .Case("pic", llvm::Reloc::PIC_) 371 .Case("ropi", llvm::Reloc::ROPI) 372 .Case("rwpi", llvm::Reloc::RWPI) 373 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 374 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 375 assert(RM.hasValue() && "invalid PIC model!"); 376 return *RM; 377 } 378 379 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 380 if (Action == Backend_EmitObj) 381 return TargetMachine::CGFT_ObjectFile; 382 else if (Action == Backend_EmitMCNull) 383 return TargetMachine::CGFT_Null; 384 else { 385 assert(Action == Backend_EmitAssembly && "Invalid action!"); 386 return TargetMachine::CGFT_AssemblyFile; 387 } 388 } 389 390 static void initTargetOptions(llvm::TargetOptions &Options, 391 const CodeGenOptions &CodeGenOpts, 392 const clang::TargetOptions &TargetOpts, 393 const LangOptions &LangOpts, 394 const HeaderSearchOptions &HSOpts) { 395 Options.ThreadModel = 396 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 397 .Case("posix", llvm::ThreadModel::POSIX) 398 .Case("single", llvm::ThreadModel::Single); 399 400 // Set float ABI type. 401 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 402 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 403 "Invalid Floating Point ABI!"); 404 Options.FloatABIType = 405 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 406 .Case("soft", llvm::FloatABI::Soft) 407 .Case("softfp", llvm::FloatABI::Soft) 408 .Case("hard", llvm::FloatABI::Hard) 409 .Default(llvm::FloatABI::Default); 410 411 // Set FP fusion mode. 412 switch (LangOpts.getDefaultFPContractMode()) { 413 case LangOptions::FPC_Off: 414 // Preserve any contraction performed by the front-end. (Strict performs 415 // splitting of the muladd instrinsic in the backend.) 416 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 417 break; 418 case LangOptions::FPC_On: 419 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 420 break; 421 case LangOptions::FPC_Fast: 422 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 423 break; 424 } 425 426 Options.UseInitArray = CodeGenOpts.UseInitArray; 427 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 428 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 429 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 430 431 // Set EABI version. 432 Options.EABIVersion = TargetOpts.EABIVersion; 433 434 if (LangOpts.SjLjExceptions) 435 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 436 if (LangOpts.SEHExceptions) 437 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 438 if (LangOpts.DWARFExceptions) 439 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 440 441 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 442 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 443 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 444 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 445 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 446 Options.FunctionSections = CodeGenOpts.FunctionSections; 447 Options.DataSections = CodeGenOpts.DataSections; 448 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 449 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 450 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 451 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 452 453 if (CodeGenOpts.EnableSplitDwarf) 454 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 455 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 456 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 457 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 458 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 459 Options.MCOptions.MCIncrementalLinkerCompatible = 460 CodeGenOpts.IncrementalLinkerCompatible; 461 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 462 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 463 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 464 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 465 Options.MCOptions.ABIName = TargetOpts.ABI; 466 for (const auto &Entry : HSOpts.UserEntries) 467 if (!Entry.IsFramework && 468 (Entry.Group == frontend::IncludeDirGroup::Quoted || 469 Entry.Group == frontend::IncludeDirGroup::Angled || 470 Entry.Group == frontend::IncludeDirGroup::System)) 471 Options.MCOptions.IASSearchPaths.push_back( 472 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 473 } 474 475 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 476 legacy::FunctionPassManager &FPM) { 477 // Handle disabling of all LLVM passes, where we want to preserve the 478 // internal module before any optimization. 479 if (CodeGenOpts.DisableLLVMPasses) 480 return; 481 482 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 483 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 484 // are inserted before PMBuilder ones - they'd get the default-constructed 485 // TLI with an unknown target otherwise. 486 Triple TargetTriple(TheModule->getTargetTriple()); 487 std::unique_ptr<TargetLibraryInfoImpl> TLII( 488 createTLII(TargetTriple, CodeGenOpts)); 489 490 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 491 492 // At O0 and O1 we only run the always inliner which is more efficient. At 493 // higher optimization levels we run the normal inliner. 494 if (CodeGenOpts.OptimizationLevel <= 1) { 495 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 496 !CodeGenOpts.DisableLifetimeMarkers); 497 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 498 } else { 499 // We do not want to inline hot callsites for SamplePGO module-summary build 500 // because profile annotation will happen again in ThinLTO backend, and we 501 // want the IR of the hot path to match the profile. 502 PMBuilder.Inliner = createFunctionInliningPass( 503 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 504 (!CodeGenOpts.SampleProfileFile.empty() && 505 CodeGenOpts.EmitSummaryIndex)); 506 } 507 508 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 509 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 510 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 511 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 512 513 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 514 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 515 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 516 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 517 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 518 519 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 520 521 if (TM) 522 TM->adjustPassManager(PMBuilder); 523 524 if (CodeGenOpts.DebugInfoForProfiling || 525 !CodeGenOpts.SampleProfileFile.empty()) 526 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 527 addAddDiscriminatorsPass); 528 529 // In ObjC ARC mode, add the main ARC optimization passes. 530 if (LangOpts.ObjCAutoRefCount) { 531 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 532 addObjCARCExpandPass); 533 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 534 addObjCARCAPElimPass); 535 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 536 addObjCARCOptPass); 537 } 538 539 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 540 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 541 addBoundsCheckingPass); 542 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 543 addBoundsCheckingPass); 544 } 545 546 if (CodeGenOpts.SanitizeCoverageType || 547 CodeGenOpts.SanitizeCoverageIndirectCalls || 548 CodeGenOpts.SanitizeCoverageTraceCmp) { 549 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 550 addSanitizerCoveragePass); 551 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 552 addSanitizerCoveragePass); 553 } 554 555 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 556 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 557 addAddressSanitizerPasses); 558 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 559 addAddressSanitizerPasses); 560 } 561 562 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 563 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 564 addKernelAddressSanitizerPasses); 565 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 566 addKernelAddressSanitizerPasses); 567 } 568 569 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 570 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 571 addHWAddressSanitizerPasses); 572 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 573 addHWAddressSanitizerPasses); 574 } 575 576 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 577 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 578 addMemorySanitizerPass); 579 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 580 addMemorySanitizerPass); 581 } 582 583 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 584 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 585 addThreadSanitizerPass); 586 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 587 addThreadSanitizerPass); 588 } 589 590 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 591 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 592 addDataFlowSanitizerPass); 593 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 594 addDataFlowSanitizerPass); 595 } 596 597 if (LangOpts.CoroutinesTS) 598 addCoroutinePassesToExtensionPoints(PMBuilder); 599 600 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 601 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 602 addEfficiencySanitizerPass); 603 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 604 addEfficiencySanitizerPass); 605 } 606 607 // Set up the per-function pass manager. 608 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 609 if (CodeGenOpts.VerifyModule) 610 FPM.add(createVerifierPass()); 611 612 // Set up the per-module pass manager. 613 if (!CodeGenOpts.RewriteMapFiles.empty()) 614 addSymbolRewriterPass(CodeGenOpts, &MPM); 615 616 if (!CodeGenOpts.DisableGCov && 617 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 618 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 619 // LLVM's -default-gcov-version flag is set to something invalid. 620 GCOVOptions Options; 621 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 622 Options.EmitData = CodeGenOpts.EmitGcovArcs; 623 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 624 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 625 Options.NoRedZone = CodeGenOpts.DisableRedZone; 626 Options.FunctionNamesInData = 627 !CodeGenOpts.CoverageNoFunctionNamesInData; 628 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 629 MPM.add(createGCOVProfilerPass(Options)); 630 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 631 MPM.add(createStripSymbolsPass(true)); 632 } 633 634 if (CodeGenOpts.hasProfileClangInstr()) { 635 InstrProfOptions Options; 636 Options.NoRedZone = CodeGenOpts.DisableRedZone; 637 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 638 MPM.add(createInstrProfilingLegacyPass(Options)); 639 } 640 if (CodeGenOpts.hasProfileIRInstr()) { 641 PMBuilder.EnablePGOInstrGen = true; 642 if (!CodeGenOpts.InstrProfileOutput.empty()) 643 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 644 else 645 PMBuilder.PGOInstrGen = DefaultProfileGenName; 646 } 647 if (CodeGenOpts.hasProfileIRUse()) 648 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 649 650 if (!CodeGenOpts.SampleProfileFile.empty()) 651 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 652 653 PMBuilder.populateFunctionPassManager(FPM); 654 PMBuilder.populateModulePassManager(MPM); 655 } 656 657 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 658 SmallVector<const char *, 16> BackendArgs; 659 BackendArgs.push_back("clang"); // Fake program name. 660 if (!CodeGenOpts.DebugPass.empty()) { 661 BackendArgs.push_back("-debug-pass"); 662 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 663 } 664 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 665 BackendArgs.push_back("-limit-float-precision"); 666 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 667 } 668 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 669 BackendArgs.push_back(BackendOption.c_str()); 670 BackendArgs.push_back(nullptr); 671 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 672 BackendArgs.data()); 673 } 674 675 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 676 // Create the TargetMachine for generating code. 677 std::string Error; 678 std::string Triple = TheModule->getTargetTriple(); 679 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 680 if (!TheTarget) { 681 if (MustCreateTM) 682 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 683 return; 684 } 685 686 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 687 std::string FeaturesStr = 688 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 689 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 690 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 691 692 llvm::TargetOptions Options; 693 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 694 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 695 Options, RM, CM, OptLevel)); 696 } 697 698 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 699 BackendAction Action, 700 raw_pwrite_stream &OS) { 701 // Add LibraryInfo. 702 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 703 std::unique_ptr<TargetLibraryInfoImpl> TLII( 704 createTLII(TargetTriple, CodeGenOpts)); 705 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 706 707 // Normal mode, emit a .s or .o file by running the code generator. Note, 708 // this also adds codegenerator level optimization passes. 709 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 710 711 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 712 // "codegen" passes so that it isn't run multiple times when there is 713 // inlining happening. 714 if (CodeGenOpts.OptimizationLevel > 0) 715 CodeGenPasses.add(createObjCARCContractPass()); 716 717 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 718 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 719 Diags.Report(diag::err_fe_unable_to_interface_with_target); 720 return false; 721 } 722 723 return true; 724 } 725 726 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 727 std::unique_ptr<raw_pwrite_stream> OS) { 728 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 729 730 setCommandLineOpts(CodeGenOpts); 731 732 bool UsesCodeGen = (Action != Backend_EmitNothing && 733 Action != Backend_EmitBC && 734 Action != Backend_EmitLL); 735 CreateTargetMachine(UsesCodeGen); 736 737 if (UsesCodeGen && !TM) 738 return; 739 if (TM) 740 TheModule->setDataLayout(TM->createDataLayout()); 741 742 legacy::PassManager PerModulePasses; 743 PerModulePasses.add( 744 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 745 746 legacy::FunctionPassManager PerFunctionPasses(TheModule); 747 PerFunctionPasses.add( 748 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 749 750 CreatePasses(PerModulePasses, PerFunctionPasses); 751 752 legacy::PassManager CodeGenPasses; 753 CodeGenPasses.add( 754 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 755 756 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 757 758 switch (Action) { 759 case Backend_EmitNothing: 760 break; 761 762 case Backend_EmitBC: 763 if (CodeGenOpts.EmitSummaryIndex) { 764 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 765 std::error_code EC; 766 ThinLinkOS.reset(new llvm::raw_fd_ostream( 767 CodeGenOpts.ThinLinkBitcodeFile, EC, 768 llvm::sys::fs::F_None)); 769 if (EC) { 770 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 771 << EC.message(); 772 return; 773 } 774 } 775 PerModulePasses.add( 776 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 777 } 778 else 779 PerModulePasses.add( 780 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 781 break; 782 783 case Backend_EmitLL: 784 PerModulePasses.add( 785 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 786 break; 787 788 default: 789 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 790 return; 791 } 792 793 // Before executing passes, print the final values of the LLVM options. 794 cl::PrintOptionValues(); 795 796 // Run passes. For now we do all passes at once, but eventually we 797 // would like to have the option of streaming code generation. 798 799 { 800 PrettyStackTraceString CrashInfo("Per-function optimization"); 801 802 PerFunctionPasses.doInitialization(); 803 for (Function &F : *TheModule) 804 if (!F.isDeclaration()) 805 PerFunctionPasses.run(F); 806 PerFunctionPasses.doFinalization(); 807 } 808 809 { 810 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 811 PerModulePasses.run(*TheModule); 812 } 813 814 { 815 PrettyStackTraceString CrashInfo("Code generation"); 816 CodeGenPasses.run(*TheModule); 817 } 818 } 819 820 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 821 switch (Opts.OptimizationLevel) { 822 default: 823 llvm_unreachable("Invalid optimization level!"); 824 825 case 1: 826 return PassBuilder::O1; 827 828 case 2: 829 switch (Opts.OptimizeSize) { 830 default: 831 llvm_unreachable("Invalide optimization level for size!"); 832 833 case 0: 834 return PassBuilder::O2; 835 836 case 1: 837 return PassBuilder::Os; 838 839 case 2: 840 return PassBuilder::Oz; 841 } 842 843 case 3: 844 return PassBuilder::O3; 845 } 846 } 847 848 /// A clean version of `EmitAssembly` that uses the new pass manager. 849 /// 850 /// Not all features are currently supported in this system, but where 851 /// necessary it falls back to the legacy pass manager to at least provide 852 /// basic functionality. 853 /// 854 /// This API is planned to have its functionality finished and then to replace 855 /// `EmitAssembly` at some point in the future when the default switches. 856 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 857 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 858 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 859 setCommandLineOpts(CodeGenOpts); 860 861 // The new pass manager always makes a target machine available to passes 862 // during construction. 863 CreateTargetMachine(/*MustCreateTM*/ true); 864 if (!TM) 865 // This will already be diagnosed, just bail. 866 return; 867 TheModule->setDataLayout(TM->createDataLayout()); 868 869 Optional<PGOOptions> PGOOpt; 870 871 if (CodeGenOpts.hasProfileIRInstr()) 872 // -fprofile-generate. 873 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 874 ? DefaultProfileGenName 875 : CodeGenOpts.InstrProfileOutput, 876 "", "", true, CodeGenOpts.DebugInfoForProfiling); 877 else if (CodeGenOpts.hasProfileIRUse()) 878 // -fprofile-use. 879 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 880 CodeGenOpts.DebugInfoForProfiling); 881 else if (!CodeGenOpts.SampleProfileFile.empty()) 882 // -fprofile-sample-use 883 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 884 CodeGenOpts.DebugInfoForProfiling); 885 else if (CodeGenOpts.DebugInfoForProfiling) 886 // -fdebug-info-for-profiling 887 PGOOpt = PGOOptions("", "", "", false, true); 888 889 PassBuilder PB(TM.get(), PGOOpt); 890 891 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 892 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 893 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 894 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 895 896 // Register the AA manager first so that our version is the one used. 897 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 898 899 // Register the target library analysis directly and give it a customized 900 // preset TLI. 901 Triple TargetTriple(TheModule->getTargetTriple()); 902 std::unique_ptr<TargetLibraryInfoImpl> TLII( 903 createTLII(TargetTriple, CodeGenOpts)); 904 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 905 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 906 907 // Register all the basic analyses with the managers. 908 PB.registerModuleAnalyses(MAM); 909 PB.registerCGSCCAnalyses(CGAM); 910 PB.registerFunctionAnalyses(FAM); 911 PB.registerLoopAnalyses(LAM); 912 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 913 914 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 915 916 if (!CodeGenOpts.DisableLLVMPasses) { 917 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 918 bool IsLTO = CodeGenOpts.PrepareForLTO; 919 920 if (CodeGenOpts.OptimizationLevel == 0) { 921 // Build a minimal pipeline based on the semantics required by Clang, 922 // which is just that always inlining occurs. 923 MPM.addPass(AlwaysInlinerPass()); 924 925 // At -O0 we directly run necessary sanitizer passes. 926 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 927 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 928 929 // Lastly, add a semantically necessary pass for ThinLTO. 930 if (IsThinLTO) 931 MPM.addPass(NameAnonGlobalPass()); 932 } else { 933 // Map our optimization levels into one of the distinct levels used to 934 // configure the pipeline. 935 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 936 937 // Register callbacks to schedule sanitizer passes at the appropriate part of 938 // the pipeline. 939 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 940 PB.registerScalarOptimizerLateEPCallback( 941 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 942 FPM.addPass(BoundsCheckingPass()); 943 }); 944 945 if (IsThinLTO) { 946 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 947 Level, CodeGenOpts.DebugPassManager); 948 MPM.addPass(NameAnonGlobalPass()); 949 } else if (IsLTO) { 950 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 951 CodeGenOpts.DebugPassManager); 952 } else { 953 MPM = PB.buildPerModuleDefaultPipeline(Level, 954 CodeGenOpts.DebugPassManager); 955 } 956 } 957 } 958 959 // FIXME: We still use the legacy pass manager to do code generation. We 960 // create that pass manager here and use it as needed below. 961 legacy::PassManager CodeGenPasses; 962 bool NeedCodeGen = false; 963 Optional<raw_fd_ostream> ThinLinkOS; 964 965 // Append any output we need to the pass manager. 966 switch (Action) { 967 case Backend_EmitNothing: 968 break; 969 970 case Backend_EmitBC: 971 if (CodeGenOpts.EmitSummaryIndex) { 972 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 973 std::error_code EC; 974 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 975 llvm::sys::fs::F_None); 976 if (EC) { 977 Diags.Report(diag::err_fe_unable_to_open_output) 978 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 979 return; 980 } 981 } 982 MPM.addPass( 983 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 984 } else { 985 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 986 CodeGenOpts.EmitSummaryIndex, 987 CodeGenOpts.EmitSummaryIndex)); 988 } 989 break; 990 991 case Backend_EmitLL: 992 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 993 break; 994 995 case Backend_EmitAssembly: 996 case Backend_EmitMCNull: 997 case Backend_EmitObj: 998 NeedCodeGen = true; 999 CodeGenPasses.add( 1000 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1001 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1002 // FIXME: Should we handle this error differently? 1003 return; 1004 break; 1005 } 1006 1007 // Before executing passes, print the final values of the LLVM options. 1008 cl::PrintOptionValues(); 1009 1010 // Now that we have all of the passes ready, run them. 1011 { 1012 PrettyStackTraceString CrashInfo("Optimizer"); 1013 MPM.run(*TheModule, MAM); 1014 } 1015 1016 // Now if needed, run the legacy PM for codegen. 1017 if (NeedCodeGen) { 1018 PrettyStackTraceString CrashInfo("Code generation"); 1019 CodeGenPasses.run(*TheModule); 1020 } 1021 } 1022 1023 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1024 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1025 if (!BMsOrErr) 1026 return BMsOrErr.takeError(); 1027 1028 // The bitcode file may contain multiple modules, we want the one that is 1029 // marked as being the ThinLTO module. 1030 for (BitcodeModule &BM : *BMsOrErr) { 1031 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1032 if (LTOInfo && LTOInfo->IsThinLTO) 1033 return BM; 1034 } 1035 1036 return make_error<StringError>("Could not find module summary", 1037 inconvertibleErrorCode()); 1038 } 1039 1040 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1041 const HeaderSearchOptions &HeaderOpts, 1042 const CodeGenOptions &CGOpts, 1043 const clang::TargetOptions &TOpts, 1044 const LangOptions &LOpts, 1045 std::unique_ptr<raw_pwrite_stream> OS, 1046 std::string SampleProfile, 1047 BackendAction Action) { 1048 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1049 ModuleToDefinedGVSummaries; 1050 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1051 1052 setCommandLineOpts(CGOpts); 1053 1054 // We can simply import the values mentioned in the combined index, since 1055 // we should only invoke this using the individual indexes written out 1056 // via a WriteIndexesThinBackend. 1057 FunctionImporter::ImportMapTy ImportList; 1058 for (auto &GlobalList : *CombinedIndex) { 1059 // Ignore entries for undefined references. 1060 if (GlobalList.second.SummaryList.empty()) 1061 continue; 1062 1063 auto GUID = GlobalList.first; 1064 assert(GlobalList.second.SummaryList.size() == 1 && 1065 "Expected individual combined index to have one summary per GUID"); 1066 auto &Summary = GlobalList.second.SummaryList[0]; 1067 // Skip the summaries for the importing module. These are included to 1068 // e.g. record required linkage changes. 1069 if (Summary->modulePath() == M->getModuleIdentifier()) 1070 continue; 1071 // Doesn't matter what value we plug in to the map, just needs an entry 1072 // to provoke importing by thinBackend. 1073 ImportList[Summary->modulePath()][GUID] = 1; 1074 } 1075 1076 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1077 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1078 1079 for (auto &I : ImportList) { 1080 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1081 llvm::MemoryBuffer::getFile(I.first()); 1082 if (!MBOrErr) { 1083 errs() << "Error loading imported file '" << I.first() 1084 << "': " << MBOrErr.getError().message() << "\n"; 1085 return; 1086 } 1087 1088 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1089 if (!BMOrErr) { 1090 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1091 errs() << "Error loading imported file '" << I.first() 1092 << "': " << EIB.message() << '\n'; 1093 }); 1094 return; 1095 } 1096 ModuleMap.insert({I.first(), *BMOrErr}); 1097 1098 OwnedImports.push_back(std::move(*MBOrErr)); 1099 } 1100 auto AddStream = [&](size_t Task) { 1101 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1102 }; 1103 lto::Config Conf; 1104 Conf.CPU = TOpts.CPU; 1105 Conf.CodeModel = getCodeModel(CGOpts); 1106 Conf.MAttrs = TOpts.Features; 1107 Conf.RelocModel = getRelocModel(CGOpts); 1108 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1109 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1110 Conf.SampleProfile = std::move(SampleProfile); 1111 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1112 Conf.DebugPassManager = CGOpts.DebugPassManager; 1113 switch (Action) { 1114 case Backend_EmitNothing: 1115 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1116 return false; 1117 }; 1118 break; 1119 case Backend_EmitLL: 1120 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1121 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1122 return false; 1123 }; 1124 break; 1125 case Backend_EmitBC: 1126 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1127 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1128 return false; 1129 }; 1130 break; 1131 default: 1132 Conf.CGFileType = getCodeGenFileType(Action); 1133 break; 1134 } 1135 if (Error E = thinBackend( 1136 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1137 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1138 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1139 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1140 }); 1141 } 1142 } 1143 1144 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1145 const HeaderSearchOptions &HeaderOpts, 1146 const CodeGenOptions &CGOpts, 1147 const clang::TargetOptions &TOpts, 1148 const LangOptions &LOpts, 1149 const llvm::DataLayout &TDesc, Module *M, 1150 BackendAction Action, 1151 std::unique_ptr<raw_pwrite_stream> OS) { 1152 if (!CGOpts.ThinLTOIndexFile.empty()) { 1153 // If we are performing a ThinLTO importing compile, load the function index 1154 // into memory and pass it into runThinLTOBackend, which will run the 1155 // function importer and invoke LTO passes. 1156 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1157 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1158 /*IgnoreEmptyThinLTOIndexFile*/true); 1159 if (!IndexOrErr) { 1160 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1161 "Error loading index file '" + 1162 CGOpts.ThinLTOIndexFile + "': "); 1163 return; 1164 } 1165 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1166 // A null CombinedIndex means we should skip ThinLTO compilation 1167 // (LLVM will optionally ignore empty index files, returning null instead 1168 // of an error). 1169 bool DoThinLTOBackend = CombinedIndex != nullptr; 1170 if (DoThinLTOBackend) { 1171 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1172 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1173 return; 1174 } 1175 } 1176 1177 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1178 1179 if (CGOpts.ExperimentalNewPassManager) 1180 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1181 else 1182 AsmHelper.EmitAssembly(Action, std::move(OS)); 1183 1184 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1185 // DataLayout. 1186 if (AsmHelper.TM) { 1187 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1188 if (DLDesc != TDesc.getStringRepresentation()) { 1189 unsigned DiagID = Diags.getCustomDiagID( 1190 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1191 "expected target description '%1'"); 1192 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1193 } 1194 } 1195 } 1196 1197 static const char* getSectionNameForBitcode(const Triple &T) { 1198 switch (T.getObjectFormat()) { 1199 case Triple::MachO: 1200 return "__LLVM,__bitcode"; 1201 case Triple::COFF: 1202 case Triple::ELF: 1203 case Triple::Wasm: 1204 case Triple::UnknownObjectFormat: 1205 return ".llvmbc"; 1206 } 1207 llvm_unreachable("Unimplemented ObjectFormatType"); 1208 } 1209 1210 static const char* getSectionNameForCommandline(const Triple &T) { 1211 switch (T.getObjectFormat()) { 1212 case Triple::MachO: 1213 return "__LLVM,__cmdline"; 1214 case Triple::COFF: 1215 case Triple::ELF: 1216 case Triple::Wasm: 1217 case Triple::UnknownObjectFormat: 1218 return ".llvmcmd"; 1219 } 1220 llvm_unreachable("Unimplemented ObjectFormatType"); 1221 } 1222 1223 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1224 // __LLVM,__bitcode section. 1225 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1226 llvm::MemoryBufferRef Buf) { 1227 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1228 return; 1229 1230 // Save llvm.compiler.used and remote it. 1231 SmallVector<Constant*, 2> UsedArray; 1232 SmallSet<GlobalValue*, 4> UsedGlobals; 1233 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1234 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1235 for (auto *GV : UsedGlobals) { 1236 if (GV->getName() != "llvm.embedded.module" && 1237 GV->getName() != "llvm.cmdline") 1238 UsedArray.push_back( 1239 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1240 } 1241 if (Used) 1242 Used->eraseFromParent(); 1243 1244 // Embed the bitcode for the llvm module. 1245 std::string Data; 1246 ArrayRef<uint8_t> ModuleData; 1247 Triple T(M->getTargetTriple()); 1248 // Create a constant that contains the bitcode. 1249 // In case of embedding a marker, ignore the input Buf and use the empty 1250 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1251 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1252 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1253 (const unsigned char *)Buf.getBufferEnd())) { 1254 // If the input is LLVM Assembly, bitcode is produced by serializing 1255 // the module. Use-lists order need to be perserved in this case. 1256 llvm::raw_string_ostream OS(Data); 1257 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1258 ModuleData = 1259 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1260 } else 1261 // If the input is LLVM bitcode, write the input byte stream directly. 1262 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1263 Buf.getBufferSize()); 1264 } 1265 llvm::Constant *ModuleConstant = 1266 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1267 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1268 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1269 ModuleConstant); 1270 GV->setSection(getSectionNameForBitcode(T)); 1271 UsedArray.push_back( 1272 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1273 if (llvm::GlobalVariable *Old = 1274 M->getGlobalVariable("llvm.embedded.module", true)) { 1275 assert(Old->hasOneUse() && 1276 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1277 GV->takeName(Old); 1278 Old->eraseFromParent(); 1279 } else { 1280 GV->setName("llvm.embedded.module"); 1281 } 1282 1283 // Skip if only bitcode needs to be embedded. 1284 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1285 // Embed command-line options. 1286 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1287 CGOpts.CmdArgs.size()); 1288 llvm::Constant *CmdConstant = 1289 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1290 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1291 llvm::GlobalValue::PrivateLinkage, 1292 CmdConstant); 1293 GV->setSection(getSectionNameForCommandline(T)); 1294 UsedArray.push_back( 1295 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1296 if (llvm::GlobalVariable *Old = 1297 M->getGlobalVariable("llvm.cmdline", true)) { 1298 assert(Old->hasOneUse() && 1299 "llvm.cmdline can only be used once in llvm.compiler.used"); 1300 GV->takeName(Old); 1301 Old->eraseFromParent(); 1302 } else { 1303 GV->setName("llvm.cmdline"); 1304 } 1305 } 1306 1307 if (UsedArray.empty()) 1308 return; 1309 1310 // Recreate llvm.compiler.used. 1311 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1312 auto *NewUsed = new GlobalVariable( 1313 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1314 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1315 NewUsed->setSection("llvm.metadata"); 1316 } 1317