1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/CodeGen/RegAllocRegistry.h" 26 #include "llvm/CodeGen/SchedulerRegistry.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/IRPrintingPasses.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/MC/SubtargetFeature.h" 35 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/PrettyStackTrace.h" 39 #include "llvm/Support/TargetRegistry.h" 40 #include "llvm/Support/Timer.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Coroutines.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Instrumentation.h" 50 #include "llvm/Transforms/ObjCARC.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Scalar/GVN.h" 53 #include "llvm/Transforms/Utils/SymbolRewriter.h" 54 #include <memory> 55 using namespace clang; 56 using namespace llvm; 57 58 namespace { 59 60 class EmitAssemblyHelper { 61 DiagnosticsEngine &Diags; 62 const CodeGenOptions &CodeGenOpts; 63 const clang::TargetOptions &TargetOpts; 64 const LangOptions &LangOpts; 65 Module *TheModule; 66 67 Timer CodeGenerationTime; 68 69 std::unique_ptr<raw_pwrite_stream> OS; 70 71 private: 72 TargetIRAnalysis getTargetIRAnalysis() const { 73 if (TM) 74 return TM->getTargetIRAnalysis(); 75 76 return TargetIRAnalysis(); 77 } 78 79 /// Set LLVM command line options passed through -backend-option. 80 void setCommandLineOpts(); 81 82 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 83 84 /// Generates the TargetMachine. 85 /// Leaves TM unchanged if it is unable to create the target machine. 86 /// Some of our clang tests specify triples which are not built 87 /// into clang. This is okay because these tests check the generated 88 /// IR, and they require DataLayout which depends on the triple. 89 /// In this case, we allow this method to fail and not report an error. 90 /// When MustCreateTM is used, we print an error if we are unable to load 91 /// the requested target. 92 void CreateTargetMachine(bool MustCreateTM); 93 94 /// Add passes necessary to emit assembly or LLVM IR. 95 /// 96 /// \return True on success. 97 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 98 raw_pwrite_stream &OS); 99 100 public: 101 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 102 const clang::TargetOptions &TOpts, 103 const LangOptions &LOpts, Module *M) 104 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 105 TheModule(M), CodeGenerationTime("codegen", "Code Generation Time") {} 106 107 ~EmitAssemblyHelper() { 108 if (CodeGenOpts.DisableFree) 109 BuryPointer(std::move(TM)); 110 } 111 112 std::unique_ptr<TargetMachine> TM; 113 114 void EmitAssembly(BackendAction Action, 115 std::unique_ptr<raw_pwrite_stream> OS); 116 }; 117 118 // We need this wrapper to access LangOpts and CGOpts from extension functions 119 // that we add to the PassManagerBuilder. 120 class PassManagerBuilderWrapper : public PassManagerBuilder { 121 public: 122 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 123 const LangOptions &LangOpts) 124 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 125 const CodeGenOptions &getCGOpts() const { return CGOpts; } 126 const LangOptions &getLangOpts() const { return LangOpts; } 127 private: 128 const CodeGenOptions &CGOpts; 129 const LangOptions &LangOpts; 130 }; 131 132 } 133 134 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 135 if (Builder.OptLevel > 0) 136 PM.add(createObjCARCAPElimPass()); 137 } 138 139 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 140 if (Builder.OptLevel > 0) 141 PM.add(createObjCARCExpandPass()); 142 } 143 144 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 145 if (Builder.OptLevel > 0) 146 PM.add(createObjCARCOptPass()); 147 } 148 149 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 150 legacy::PassManagerBase &PM) { 151 PM.add(createAddDiscriminatorsPass()); 152 } 153 154 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 155 legacy::PassManagerBase &PM) { 156 PM.add(createBoundsCheckingPass()); 157 } 158 159 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 160 legacy::PassManagerBase &PM) { 161 const PassManagerBuilderWrapper &BuilderWrapper = 162 static_cast<const PassManagerBuilderWrapper&>(Builder); 163 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 164 SanitizerCoverageOptions Opts; 165 Opts.CoverageType = 166 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 167 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 168 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 169 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 170 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 171 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 172 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 173 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 174 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 175 PM.add(createSanitizerCoverageModulePass(Opts)); 176 } 177 178 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 179 legacy::PassManagerBase &PM) { 180 const PassManagerBuilderWrapper &BuilderWrapper = 181 static_cast<const PassManagerBuilderWrapper&>(Builder); 182 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 183 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 184 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 185 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 186 UseAfterScope)); 187 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 188 } 189 190 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddressSanitizerFunctionPass( 193 /*CompileKernel*/ true, 194 /*Recover*/ true, /*UseAfterScope*/ false)); 195 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 196 /*Recover*/true)); 197 } 198 199 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 200 legacy::PassManagerBase &PM) { 201 const PassManagerBuilderWrapper &BuilderWrapper = 202 static_cast<const PassManagerBuilderWrapper&>(Builder); 203 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 204 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 205 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 206 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 207 208 // MemorySanitizer inserts complex instrumentation that mostly follows 209 // the logic of the original code, but operates on "shadow" values. 210 // It can benefit from re-running some general purpose optimization passes. 211 if (Builder.OptLevel > 0) { 212 PM.add(createEarlyCSEPass()); 213 PM.add(createReassociatePass()); 214 PM.add(createLICMPass()); 215 PM.add(createGVNPass()); 216 PM.add(createInstructionCombiningPass()); 217 PM.add(createDeadStoreEliminationPass()); 218 } 219 } 220 221 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 222 legacy::PassManagerBase &PM) { 223 PM.add(createThreadSanitizerPass()); 224 } 225 226 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 227 legacy::PassManagerBase &PM) { 228 const PassManagerBuilderWrapper &BuilderWrapper = 229 static_cast<const PassManagerBuilderWrapper&>(Builder); 230 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 231 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 232 } 233 234 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper&>(Builder); 238 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 239 EfficiencySanitizerOptions Opts; 240 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 241 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 242 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 243 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 244 PM.add(createEfficiencySanitizerPass(Opts)); 245 } 246 247 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 248 const CodeGenOptions &CodeGenOpts) { 249 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 250 if (!CodeGenOpts.SimplifyLibCalls) 251 TLII->disableAllFunctions(); 252 else { 253 // Disable individual libc/libm calls in TargetLibraryInfo. 254 LibFunc::Func F; 255 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 256 if (TLII->getLibFunc(FuncName, F)) 257 TLII->setUnavailable(F); 258 } 259 260 switch (CodeGenOpts.getVecLib()) { 261 case CodeGenOptions::Accelerate: 262 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 263 break; 264 case CodeGenOptions::SVML: 265 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 266 break; 267 default: 268 break; 269 } 270 return TLII; 271 } 272 273 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 274 legacy::PassManager *MPM) { 275 llvm::SymbolRewriter::RewriteDescriptorList DL; 276 277 llvm::SymbolRewriter::RewriteMapParser MapParser; 278 for (const auto &MapFile : Opts.RewriteMapFiles) 279 MapParser.parse(MapFile, &DL); 280 281 MPM->add(createRewriteSymbolsPass(DL)); 282 } 283 284 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 285 legacy::FunctionPassManager &FPM) { 286 if (CodeGenOpts.DisableLLVMPasses) 287 return; 288 289 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 290 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 291 292 // Handle disabling of LLVM optimization, where we want to preserve the 293 // internal module before any optimization. 294 if (CodeGenOpts.DisableLLVMOpts) { 295 OptLevel = 0; 296 Inlining = CodeGenOpts.NoInlining; 297 } 298 299 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 300 301 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 302 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 303 // are inserted before PMBuilder ones - they'd get the default-constructed 304 // TLI with an unknown target otherwise. 305 Triple TargetTriple(TheModule->getTargetTriple()); 306 std::unique_ptr<TargetLibraryInfoImpl> TLII( 307 createTLII(TargetTriple, CodeGenOpts)); 308 309 switch (Inlining) { 310 case CodeGenOptions::NoInlining: 311 break; 312 case CodeGenOptions::NormalInlining: 313 case CodeGenOptions::OnlyHintInlining: { 314 PMBuilder.Inliner = 315 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 316 break; 317 } 318 case CodeGenOptions::OnlyAlwaysInlining: 319 // Respect always_inline. 320 if (OptLevel == 0) 321 // Do not insert lifetime intrinsics at -O0. 322 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(false); 323 else 324 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(); 325 break; 326 } 327 328 PMBuilder.OptLevel = OptLevel; 329 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 330 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 331 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 332 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 333 334 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 335 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 336 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 337 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 338 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 339 340 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 341 342 // Add target-specific passes that need to run as early as possible. 343 if (TM) 344 PMBuilder.addExtension( 345 PassManagerBuilder::EP_EarlyAsPossible, 346 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 347 TM->addEarlyAsPossiblePasses(PM); 348 }); 349 350 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 351 addAddDiscriminatorsPass); 352 353 // In ObjC ARC mode, add the main ARC optimization passes. 354 if (LangOpts.ObjCAutoRefCount) { 355 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 356 addObjCARCExpandPass); 357 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 358 addObjCARCAPElimPass); 359 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 360 addObjCARCOptPass); 361 } 362 363 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 364 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 365 addBoundsCheckingPass); 366 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 367 addBoundsCheckingPass); 368 } 369 370 if (CodeGenOpts.SanitizeCoverageType || 371 CodeGenOpts.SanitizeCoverageIndirectCalls || 372 CodeGenOpts.SanitizeCoverageTraceCmp) { 373 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 374 addSanitizerCoveragePass); 375 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 376 addSanitizerCoveragePass); 377 } 378 379 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 380 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 381 addAddressSanitizerPasses); 382 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 383 addAddressSanitizerPasses); 384 } 385 386 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 387 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 388 addKernelAddressSanitizerPasses); 389 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 390 addKernelAddressSanitizerPasses); 391 } 392 393 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 394 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 395 addMemorySanitizerPass); 396 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 397 addMemorySanitizerPass); 398 } 399 400 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 401 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 402 addThreadSanitizerPass); 403 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 404 addThreadSanitizerPass); 405 } 406 407 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 408 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 409 addDataFlowSanitizerPass); 410 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 411 addDataFlowSanitizerPass); 412 } 413 414 if (LangOpts.CoroutinesTS) 415 addCoroutinePassesToExtensionPoints(PMBuilder); 416 417 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 418 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 419 addEfficiencySanitizerPass); 420 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 421 addEfficiencySanitizerPass); 422 } 423 424 // Set up the per-function pass manager. 425 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 426 if (CodeGenOpts.VerifyModule) 427 FPM.add(createVerifierPass()); 428 429 // Set up the per-module pass manager. 430 if (!CodeGenOpts.RewriteMapFiles.empty()) 431 addSymbolRewriterPass(CodeGenOpts, &MPM); 432 433 if (!CodeGenOpts.DisableGCov && 434 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 435 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 436 // LLVM's -default-gcov-version flag is set to something invalid. 437 GCOVOptions Options; 438 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 439 Options.EmitData = CodeGenOpts.EmitGcovArcs; 440 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 441 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 442 Options.NoRedZone = CodeGenOpts.DisableRedZone; 443 Options.FunctionNamesInData = 444 !CodeGenOpts.CoverageNoFunctionNamesInData; 445 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 446 MPM.add(createGCOVProfilerPass(Options)); 447 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 448 MPM.add(createStripSymbolsPass(true)); 449 } 450 451 if (CodeGenOpts.hasProfileClangInstr()) { 452 InstrProfOptions Options; 453 Options.NoRedZone = CodeGenOpts.DisableRedZone; 454 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 455 MPM.add(createInstrProfilingLegacyPass(Options)); 456 } 457 if (CodeGenOpts.hasProfileIRInstr()) { 458 PMBuilder.EnablePGOInstrGen = true; 459 if (!CodeGenOpts.InstrProfileOutput.empty()) 460 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 461 else 462 PMBuilder.PGOInstrGen = "default_%m.profraw"; 463 } 464 if (CodeGenOpts.hasProfileIRUse()) 465 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 466 467 if (!CodeGenOpts.SampleProfileFile.empty()) { 468 MPM.add(createPruneEHPass()); 469 MPM.add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 470 } 471 472 PMBuilder.populateFunctionPassManager(FPM); 473 PMBuilder.populateModulePassManager(MPM); 474 } 475 476 void EmitAssemblyHelper::setCommandLineOpts() { 477 SmallVector<const char *, 16> BackendArgs; 478 BackendArgs.push_back("clang"); // Fake program name. 479 if (!CodeGenOpts.DebugPass.empty()) { 480 BackendArgs.push_back("-debug-pass"); 481 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 482 } 483 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 484 BackendArgs.push_back("-limit-float-precision"); 485 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 486 } 487 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 488 BackendArgs.push_back(BackendOption.c_str()); 489 BackendArgs.push_back(nullptr); 490 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 491 BackendArgs.data()); 492 } 493 494 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 495 // Create the TargetMachine for generating code. 496 std::string Error; 497 std::string Triple = TheModule->getTargetTriple(); 498 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 499 if (!TheTarget) { 500 if (MustCreateTM) 501 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 502 return; 503 } 504 505 unsigned CodeModel = 506 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 507 .Case("small", llvm::CodeModel::Small) 508 .Case("kernel", llvm::CodeModel::Kernel) 509 .Case("medium", llvm::CodeModel::Medium) 510 .Case("large", llvm::CodeModel::Large) 511 .Case("default", llvm::CodeModel::Default) 512 .Default(~0u); 513 assert(CodeModel != ~0u && "invalid code model!"); 514 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 515 516 std::string FeaturesStr = 517 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 518 519 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 520 llvm::Optional<llvm::Reloc::Model> RM; 521 if (CodeGenOpts.RelocationModel == "static") { 522 RM = llvm::Reloc::Static; 523 } else if (CodeGenOpts.RelocationModel == "pic") { 524 RM = llvm::Reloc::PIC_; 525 } else if (CodeGenOpts.RelocationModel == "ropi") { 526 RM = llvm::Reloc::ROPI; 527 } else if (CodeGenOpts.RelocationModel == "rwpi") { 528 RM = llvm::Reloc::RWPI; 529 } else if (CodeGenOpts.RelocationModel == "ropi-rwpi") { 530 RM = llvm::Reloc::ROPI_RWPI; 531 } else { 532 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 533 "Invalid PIC model!"); 534 RM = llvm::Reloc::DynamicNoPIC; 535 } 536 537 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 538 switch (CodeGenOpts.OptimizationLevel) { 539 default: break; 540 case 0: OptLevel = CodeGenOpt::None; break; 541 case 3: OptLevel = CodeGenOpt::Aggressive; break; 542 } 543 544 llvm::TargetOptions Options; 545 546 Options.ThreadModel = 547 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 548 .Case("posix", llvm::ThreadModel::POSIX) 549 .Case("single", llvm::ThreadModel::Single); 550 551 // Set float ABI type. 552 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 553 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 554 "Invalid Floating Point ABI!"); 555 Options.FloatABIType = 556 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 557 .Case("soft", llvm::FloatABI::Soft) 558 .Case("softfp", llvm::FloatABI::Soft) 559 .Case("hard", llvm::FloatABI::Hard) 560 .Default(llvm::FloatABI::Default); 561 562 // Set FP fusion mode. 563 switch (CodeGenOpts.getFPContractMode()) { 564 case CodeGenOptions::FPC_Off: 565 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 566 break; 567 case CodeGenOptions::FPC_On: 568 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 569 break; 570 case CodeGenOptions::FPC_Fast: 571 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 572 break; 573 } 574 575 Options.UseInitArray = CodeGenOpts.UseInitArray; 576 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 577 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 578 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 579 580 // Set EABI version. 581 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 582 .Case("4", llvm::EABI::EABI4) 583 .Case("5", llvm::EABI::EABI5) 584 .Case("gnu", llvm::EABI::GNU) 585 .Default(llvm::EABI::Default); 586 587 if (LangOpts.SjLjExceptions) 588 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 589 590 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 591 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 592 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 593 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 594 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 595 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 596 Options.FunctionSections = CodeGenOpts.FunctionSections; 597 Options.DataSections = CodeGenOpts.DataSections; 598 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 599 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 600 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 601 602 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 603 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 604 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 605 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 606 Options.MCOptions.MCIncrementalLinkerCompatible = 607 CodeGenOpts.IncrementalLinkerCompatible; 608 Options.MCOptions.MCPIECopyRelocations = 609 CodeGenOpts.PIECopyRelocations; 610 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 611 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 612 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 613 Options.MCOptions.ABIName = TargetOpts.ABI; 614 615 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 616 Options, RM, CM, OptLevel)); 617 } 618 619 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 620 BackendAction Action, 621 raw_pwrite_stream &OS) { 622 // Add LibraryInfo. 623 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 624 std::unique_ptr<TargetLibraryInfoImpl> TLII( 625 createTLII(TargetTriple, CodeGenOpts)); 626 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 627 628 // Normal mode, emit a .s or .o file by running the code generator. Note, 629 // this also adds codegenerator level optimization passes. 630 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 631 if (Action == Backend_EmitObj) 632 CGFT = TargetMachine::CGFT_ObjectFile; 633 else if (Action == Backend_EmitMCNull) 634 CGFT = TargetMachine::CGFT_Null; 635 else 636 assert(Action == Backend_EmitAssembly && "Invalid action!"); 637 638 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 639 // "codegen" passes so that it isn't run multiple times when there is 640 // inlining happening. 641 if (CodeGenOpts.OptimizationLevel > 0) 642 CodeGenPasses.add(createObjCARCContractPass()); 643 644 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 645 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 646 Diags.Report(diag::err_fe_unable_to_interface_with_target); 647 return false; 648 } 649 650 return true; 651 } 652 653 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 654 std::unique_ptr<raw_pwrite_stream> OS) { 655 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 656 657 setCommandLineOpts(); 658 659 bool UsesCodeGen = (Action != Backend_EmitNothing && 660 Action != Backend_EmitBC && 661 Action != Backend_EmitLL); 662 CreateTargetMachine(UsesCodeGen); 663 664 if (UsesCodeGen && !TM) 665 return; 666 if (TM) 667 TheModule->setDataLayout(TM->createDataLayout()); 668 669 legacy::PassManager PerModulePasses; 670 PerModulePasses.add( 671 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 672 673 legacy::FunctionPassManager PerFunctionPasses(TheModule); 674 PerFunctionPasses.add( 675 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 676 677 CreatePasses(PerModulePasses, PerFunctionPasses); 678 679 legacy::PassManager CodeGenPasses; 680 CodeGenPasses.add( 681 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 682 683 switch (Action) { 684 case Backend_EmitNothing: 685 break; 686 687 case Backend_EmitBC: 688 PerModulePasses.add(createBitcodeWriterPass( 689 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 690 CodeGenOpts.EmitSummaryIndex)); 691 break; 692 693 case Backend_EmitLL: 694 PerModulePasses.add( 695 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 696 break; 697 698 default: 699 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 700 return; 701 } 702 703 // Before executing passes, print the final values of the LLVM options. 704 cl::PrintOptionValues(); 705 706 // Run passes. For now we do all passes at once, but eventually we 707 // would like to have the option of streaming code generation. 708 709 { 710 PrettyStackTraceString CrashInfo("Per-function optimization"); 711 712 PerFunctionPasses.doInitialization(); 713 for (Function &F : *TheModule) 714 if (!F.isDeclaration()) 715 PerFunctionPasses.run(F); 716 PerFunctionPasses.doFinalization(); 717 } 718 719 { 720 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 721 PerModulePasses.run(*TheModule); 722 } 723 724 { 725 PrettyStackTraceString CrashInfo("Code generation"); 726 CodeGenPasses.run(*TheModule); 727 } 728 } 729 730 static void runThinLTOBackend(const CodeGenOptions &CGOpts, Module *M, 731 std::unique_ptr<raw_pwrite_stream> OS) { 732 // If we are performing a ThinLTO importing compile, load the function index 733 // into memory and pass it into thinBackend, which will run the function 734 // importer and invoke LTO passes. 735 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 736 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 737 if (!IndexOrErr) { 738 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 739 "Error loading index file '" + 740 CGOpts.ThinLTOIndexFile + "': "); 741 return; 742 } 743 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 744 745 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 746 ModuleToDefinedGVSummaries; 747 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 748 749 // FIXME: We could simply import the modules mentioned in the combined index 750 // here. 751 FunctionImporter::ImportMapTy ImportList; 752 ComputeCrossModuleImportForModule(M->getModuleIdentifier(), *CombinedIndex, 753 ImportList); 754 755 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 756 MapVector<llvm::StringRef, llvm::MemoryBufferRef> ModuleMap; 757 758 for (auto &I : ImportList) { 759 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 760 llvm::MemoryBuffer::getFile(I.first()); 761 if (!MBOrErr) { 762 errs() << "Error loading imported file '" << I.first() 763 << "': " << MBOrErr.getError().message() << "\n"; 764 return; 765 } 766 ModuleMap[I.first()] = (*MBOrErr)->getMemBufferRef(); 767 OwnedImports.push_back(std::move(*MBOrErr)); 768 } 769 auto AddStream = [&](size_t Task) { 770 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 771 }; 772 lto::Config Conf; 773 if (Error E = thinBackend( 774 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 775 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 776 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 777 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 778 }); 779 } 780 } 781 782 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 783 const CodeGenOptions &CGOpts, 784 const clang::TargetOptions &TOpts, 785 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 786 Module *M, BackendAction Action, 787 std::unique_ptr<raw_pwrite_stream> OS) { 788 if (!CGOpts.ThinLTOIndexFile.empty()) { 789 runThinLTOBackend(CGOpts, M, std::move(OS)); 790 return; 791 } 792 793 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 794 795 AsmHelper.EmitAssembly(Action, std::move(OS)); 796 797 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 798 // DataLayout. 799 if (AsmHelper.TM) { 800 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 801 if (DLDesc != TDesc.getStringRepresentation()) { 802 unsigned DiagID = Diags.getCustomDiagID( 803 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 804 "expected target description '%1'"); 805 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 806 } 807 } 808 } 809 810 static const char* getSectionNameForBitcode(const Triple &T) { 811 switch (T.getObjectFormat()) { 812 case Triple::MachO: 813 return "__LLVM,__bitcode"; 814 case Triple::COFF: 815 case Triple::ELF: 816 case Triple::UnknownObjectFormat: 817 return ".llvmbc"; 818 } 819 llvm_unreachable("Unimplemented ObjectFormatType"); 820 } 821 822 static const char* getSectionNameForCommandline(const Triple &T) { 823 switch (T.getObjectFormat()) { 824 case Triple::MachO: 825 return "__LLVM,__cmdline"; 826 case Triple::COFF: 827 case Triple::ELF: 828 case Triple::UnknownObjectFormat: 829 return ".llvmcmd"; 830 } 831 llvm_unreachable("Unimplemented ObjectFormatType"); 832 } 833 834 // With -fembed-bitcode, save a copy of the llvm IR as data in the 835 // __LLVM,__bitcode section. 836 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 837 llvm::MemoryBufferRef Buf) { 838 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 839 return; 840 841 // Save llvm.compiler.used and remote it. 842 SmallVector<Constant*, 2> UsedArray; 843 SmallSet<GlobalValue*, 4> UsedGlobals; 844 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 845 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 846 for (auto *GV : UsedGlobals) { 847 if (GV->getName() != "llvm.embedded.module" && 848 GV->getName() != "llvm.cmdline") 849 UsedArray.push_back( 850 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 851 } 852 if (Used) 853 Used->eraseFromParent(); 854 855 // Embed the bitcode for the llvm module. 856 std::string Data; 857 ArrayRef<uint8_t> ModuleData; 858 Triple T(M->getTargetTriple()); 859 // Create a constant that contains the bitcode. 860 // In case of embedding a marker, ignore the input Buf and use the empty 861 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 862 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 863 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 864 (const unsigned char *)Buf.getBufferEnd())) { 865 // If the input is LLVM Assembly, bitcode is produced by serializing 866 // the module. Use-lists order need to be perserved in this case. 867 llvm::raw_string_ostream OS(Data); 868 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 869 ModuleData = 870 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 871 } else 872 // If the input is LLVM bitcode, write the input byte stream directly. 873 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 874 Buf.getBufferSize()); 875 } 876 llvm::Constant *ModuleConstant = 877 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 878 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 879 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 880 ModuleConstant); 881 GV->setSection(getSectionNameForBitcode(T)); 882 UsedArray.push_back( 883 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 884 if (llvm::GlobalVariable *Old = 885 M->getGlobalVariable("llvm.embedded.module", true)) { 886 assert(Old->hasOneUse() && 887 "llvm.embedded.module can only be used once in llvm.compiler.used"); 888 GV->takeName(Old); 889 Old->eraseFromParent(); 890 } else { 891 GV->setName("llvm.embedded.module"); 892 } 893 894 // Skip if only bitcode needs to be embedded. 895 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 896 // Embed command-line options. 897 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 898 CGOpts.CmdArgs.size()); 899 llvm::Constant *CmdConstant = 900 llvm::ConstantDataArray::get(M->getContext(), CmdData); 901 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 902 llvm::GlobalValue::PrivateLinkage, 903 CmdConstant); 904 GV->setSection(getSectionNameForCommandline(T)); 905 UsedArray.push_back( 906 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 907 if (llvm::GlobalVariable *Old = 908 M->getGlobalVariable("llvm.cmdline", true)) { 909 assert(Old->hasOneUse() && 910 "llvm.cmdline can only be used once in llvm.compiler.used"); 911 GV->takeName(Old); 912 Old->eraseFromParent(); 913 } else { 914 GV->setName("llvm.cmdline"); 915 } 916 } 917 918 if (UsedArray.empty()) 919 return; 920 921 // Recreate llvm.compiler.used. 922 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 923 auto *NewUsed = new GlobalVariable( 924 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 925 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 926 NewUsed->setSection("llvm.metadata"); 927 } 928