1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/ObjCARC.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 58 #include "llvm/Transforms/Utils/SymbolRewriter.h" 59 #include <memory> 60 using namespace clang; 61 using namespace llvm; 62 63 namespace { 64 65 // Default filename used for profile generation. 66 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 67 68 class EmitAssemblyHelper { 69 DiagnosticsEngine &Diags; 70 const HeaderSearchOptions &HSOpts; 71 const CodeGenOptions &CodeGenOpts; 72 const clang::TargetOptions &TargetOpts; 73 const LangOptions &LangOpts; 74 Module *TheModule; 75 76 Timer CodeGenerationTime; 77 78 std::unique_ptr<raw_pwrite_stream> OS; 79 80 TargetIRAnalysis getTargetIRAnalysis() const { 81 if (TM) 82 return TM->getTargetIRAnalysis(); 83 84 return TargetIRAnalysis(); 85 } 86 87 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 88 89 /// Generates the TargetMachine. 90 /// Leaves TM unchanged if it is unable to create the target machine. 91 /// Some of our clang tests specify triples which are not built 92 /// into clang. This is okay because these tests check the generated 93 /// IR, and they require DataLayout which depends on the triple. 94 /// In this case, we allow this method to fail and not report an error. 95 /// When MustCreateTM is used, we print an error if we are unable to load 96 /// the requested target. 97 void CreateTargetMachine(bool MustCreateTM); 98 99 /// Add passes necessary to emit assembly or LLVM IR. 100 /// 101 /// \return True on success. 102 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 103 raw_pwrite_stream &OS); 104 105 public: 106 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 107 const HeaderSearchOptions &HeaderSearchOpts, 108 const CodeGenOptions &CGOpts, 109 const clang::TargetOptions &TOpts, 110 const LangOptions &LOpts, Module *M) 111 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 112 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 113 CodeGenerationTime("codegen", "Code Generation Time") {} 114 115 ~EmitAssemblyHelper() { 116 if (CodeGenOpts.DisableFree) 117 BuryPointer(std::move(TM)); 118 } 119 120 std::unique_ptr<TargetMachine> TM; 121 122 void EmitAssembly(BackendAction Action, 123 std::unique_ptr<raw_pwrite_stream> OS); 124 125 void EmitAssemblyWithNewPassManager(BackendAction Action, 126 std::unique_ptr<raw_pwrite_stream> OS); 127 }; 128 129 // We need this wrapper to access LangOpts and CGOpts from extension functions 130 // that we add to the PassManagerBuilder. 131 class PassManagerBuilderWrapper : public PassManagerBuilder { 132 public: 133 PassManagerBuilderWrapper(const Triple &TargetTriple, 134 const CodeGenOptions &CGOpts, 135 const LangOptions &LangOpts) 136 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 137 LangOpts(LangOpts) {} 138 const Triple &getTargetTriple() const { return TargetTriple; } 139 const CodeGenOptions &getCGOpts() const { return CGOpts; } 140 const LangOptions &getLangOpts() const { return LangOpts; } 141 142 private: 143 const Triple &TargetTriple; 144 const CodeGenOptions &CGOpts; 145 const LangOptions &LangOpts; 146 }; 147 } 148 149 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 150 if (Builder.OptLevel > 0) 151 PM.add(createObjCARCAPElimPass()); 152 } 153 154 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 155 if (Builder.OptLevel > 0) 156 PM.add(createObjCARCExpandPass()); 157 } 158 159 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 160 if (Builder.OptLevel > 0) 161 PM.add(createObjCARCOptPass()); 162 } 163 164 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 165 legacy::PassManagerBase &PM) { 166 PM.add(createAddDiscriminatorsPass()); 167 } 168 169 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 170 legacy::PassManagerBase &PM) { 171 PM.add(createBoundsCheckingPass()); 172 } 173 174 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 175 legacy::PassManagerBase &PM) { 176 const PassManagerBuilderWrapper &BuilderWrapper = 177 static_cast<const PassManagerBuilderWrapper&>(Builder); 178 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 179 SanitizerCoverageOptions Opts; 180 Opts.CoverageType = 181 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 182 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 183 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 184 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 185 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 186 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 187 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 188 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 189 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 190 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 191 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 192 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 193 PM.add(createSanitizerCoverageModulePass(Opts)); 194 } 195 196 // Check if ASan should use GC-friendly instrumentation for globals. 197 // First of all, there is no point if -fdata-sections is off (expect for MachO, 198 // where this is not a factor). Also, on ELF this feature requires an assembler 199 // extension that only works with -integrated-as at the moment. 200 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 201 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 202 return false; 203 switch (T.getObjectFormat()) { 204 case Triple::MachO: 205 case Triple::COFF: 206 return true; 207 case Triple::ELF: 208 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 209 default: 210 return false; 211 } 212 } 213 214 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 215 legacy::PassManagerBase &PM) { 216 const PassManagerBuilderWrapper &BuilderWrapper = 217 static_cast<const PassManagerBuilderWrapper&>(Builder); 218 const Triple &T = BuilderWrapper.getTargetTriple(); 219 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 220 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 221 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 222 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 223 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 224 UseAfterScope)); 225 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 226 UseGlobalsGC)); 227 } 228 229 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 230 legacy::PassManagerBase &PM) { 231 PM.add(createAddressSanitizerFunctionPass( 232 /*CompileKernel*/ true, 233 /*Recover*/ true, /*UseAfterScope*/ false)); 234 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 235 /*Recover*/true)); 236 } 237 238 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 239 legacy::PassManagerBase &PM) { 240 const PassManagerBuilderWrapper &BuilderWrapper = 241 static_cast<const PassManagerBuilderWrapper&>(Builder); 242 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 243 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 244 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 245 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 246 247 // MemorySanitizer inserts complex instrumentation that mostly follows 248 // the logic of the original code, but operates on "shadow" values. 249 // It can benefit from re-running some general purpose optimization passes. 250 if (Builder.OptLevel > 0) { 251 PM.add(createEarlyCSEPass()); 252 PM.add(createReassociatePass()); 253 PM.add(createLICMPass()); 254 PM.add(createGVNPass()); 255 PM.add(createInstructionCombiningPass()); 256 PM.add(createDeadStoreEliminationPass()); 257 } 258 } 259 260 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 PM.add(createThreadSanitizerPass()); 263 } 264 265 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 266 legacy::PassManagerBase &PM) { 267 const PassManagerBuilderWrapper &BuilderWrapper = 268 static_cast<const PassManagerBuilderWrapper&>(Builder); 269 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 270 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 271 } 272 273 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 274 legacy::PassManagerBase &PM) { 275 const PassManagerBuilderWrapper &BuilderWrapper = 276 static_cast<const PassManagerBuilderWrapper&>(Builder); 277 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 278 EfficiencySanitizerOptions Opts; 279 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 280 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 281 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 282 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 283 PM.add(createEfficiencySanitizerPass(Opts)); 284 } 285 286 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 287 const CodeGenOptions &CodeGenOpts) { 288 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 289 if (!CodeGenOpts.SimplifyLibCalls) 290 TLII->disableAllFunctions(); 291 else { 292 // Disable individual libc/libm calls in TargetLibraryInfo. 293 LibFunc F; 294 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 295 if (TLII->getLibFunc(FuncName, F)) 296 TLII->setUnavailable(F); 297 } 298 299 switch (CodeGenOpts.getVecLib()) { 300 case CodeGenOptions::Accelerate: 301 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 302 break; 303 case CodeGenOptions::SVML: 304 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 305 break; 306 default: 307 break; 308 } 309 return TLII; 310 } 311 312 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 313 legacy::PassManager *MPM) { 314 llvm::SymbolRewriter::RewriteDescriptorList DL; 315 316 llvm::SymbolRewriter::RewriteMapParser MapParser; 317 for (const auto &MapFile : Opts.RewriteMapFiles) 318 MapParser.parse(MapFile, &DL); 319 320 MPM->add(createRewriteSymbolsPass(DL)); 321 } 322 323 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 324 switch (CodeGenOpts.OptimizationLevel) { 325 default: 326 llvm_unreachable("Invalid optimization level!"); 327 case 0: 328 return CodeGenOpt::None; 329 case 1: 330 return CodeGenOpt::Less; 331 case 2: 332 return CodeGenOpt::Default; // O2/Os/Oz 333 case 3: 334 return CodeGenOpt::Aggressive; 335 } 336 } 337 338 static llvm::CodeModel::Model getCodeModel(const CodeGenOptions &CodeGenOpts) { 339 unsigned CodeModel = 340 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 341 .Case("small", llvm::CodeModel::Small) 342 .Case("kernel", llvm::CodeModel::Kernel) 343 .Case("medium", llvm::CodeModel::Medium) 344 .Case("large", llvm::CodeModel::Large) 345 .Case("default", llvm::CodeModel::Default) 346 .Default(~0u); 347 assert(CodeModel != ~0u && "invalid code model!"); 348 return static_cast<llvm::CodeModel::Model>(CodeModel); 349 } 350 351 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 352 // Keep this synced with the equivalent code in 353 // lib/Frontend/CompilerInvocation.cpp 354 llvm::Optional<llvm::Reloc::Model> RM; 355 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 356 .Case("static", llvm::Reloc::Static) 357 .Case("pic", llvm::Reloc::PIC_) 358 .Case("ropi", llvm::Reloc::ROPI) 359 .Case("rwpi", llvm::Reloc::RWPI) 360 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 361 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 362 assert(RM.hasValue() && "invalid PIC model!"); 363 return *RM; 364 } 365 366 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 367 if (Action == Backend_EmitObj) 368 return TargetMachine::CGFT_ObjectFile; 369 else if (Action == Backend_EmitMCNull) 370 return TargetMachine::CGFT_Null; 371 else { 372 assert(Action == Backend_EmitAssembly && "Invalid action!"); 373 return TargetMachine::CGFT_AssemblyFile; 374 } 375 } 376 377 static void initTargetOptions(llvm::TargetOptions &Options, 378 const CodeGenOptions &CodeGenOpts, 379 const clang::TargetOptions &TargetOpts, 380 const LangOptions &LangOpts, 381 const HeaderSearchOptions &HSOpts) { 382 Options.ThreadModel = 383 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 384 .Case("posix", llvm::ThreadModel::POSIX) 385 .Case("single", llvm::ThreadModel::Single); 386 387 // Set float ABI type. 388 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 389 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 390 "Invalid Floating Point ABI!"); 391 Options.FloatABIType = 392 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 393 .Case("soft", llvm::FloatABI::Soft) 394 .Case("softfp", llvm::FloatABI::Soft) 395 .Case("hard", llvm::FloatABI::Hard) 396 .Default(llvm::FloatABI::Default); 397 398 // Set FP fusion mode. 399 switch (LangOpts.getDefaultFPContractMode()) { 400 case LangOptions::FPC_Off: 401 // Preserve any contraction performed by the front-end. (Strict performs 402 // splitting of the muladd instrinsic in the backend.) 403 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 404 break; 405 case LangOptions::FPC_On: 406 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 407 break; 408 case LangOptions::FPC_Fast: 409 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 410 break; 411 } 412 413 Options.UseInitArray = CodeGenOpts.UseInitArray; 414 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 415 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 416 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 417 418 // Set EABI version. 419 Options.EABIVersion = TargetOpts.EABIVersion; 420 421 if (LangOpts.SjLjExceptions) 422 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 423 424 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 425 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 426 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 427 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 428 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 429 Options.FunctionSections = CodeGenOpts.FunctionSections; 430 Options.DataSections = CodeGenOpts.DataSections; 431 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 432 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 433 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 434 435 if (CodeGenOpts.EnableSplitDwarf) 436 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 437 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 438 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 439 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 440 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 441 Options.MCOptions.MCIncrementalLinkerCompatible = 442 CodeGenOpts.IncrementalLinkerCompatible; 443 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 444 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 445 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 446 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 447 Options.MCOptions.ABIName = TargetOpts.ABI; 448 for (const auto &Entry : HSOpts.UserEntries) 449 if (!Entry.IsFramework && 450 (Entry.Group == frontend::IncludeDirGroup::Quoted || 451 Entry.Group == frontend::IncludeDirGroup::Angled || 452 Entry.Group == frontend::IncludeDirGroup::System)) 453 Options.MCOptions.IASSearchPaths.push_back( 454 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 455 } 456 457 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 458 legacy::FunctionPassManager &FPM) { 459 // Handle disabling of all LLVM passes, where we want to preserve the 460 // internal module before any optimization. 461 if (CodeGenOpts.DisableLLVMPasses) 462 return; 463 464 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 465 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 466 // are inserted before PMBuilder ones - they'd get the default-constructed 467 // TLI with an unknown target otherwise. 468 Triple TargetTriple(TheModule->getTargetTriple()); 469 std::unique_ptr<TargetLibraryInfoImpl> TLII( 470 createTLII(TargetTriple, CodeGenOpts)); 471 472 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 473 474 // At O0 and O1 we only run the always inliner which is more efficient. At 475 // higher optimization levels we run the normal inliner. 476 if (CodeGenOpts.OptimizationLevel <= 1) { 477 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 478 !CodeGenOpts.DisableLifetimeMarkers); 479 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 480 } else { 481 // We do not want to inline hot callsites for SamplePGO module-summary build 482 // because profile annotation will happen again in ThinLTO backend, and we 483 // want the IR of the hot path to match the profile. 484 PMBuilder.Inliner = createFunctionInliningPass( 485 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 486 (!CodeGenOpts.SampleProfileFile.empty() && 487 CodeGenOpts.EmitSummaryIndex)); 488 } 489 490 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 491 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 492 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 493 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 494 495 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 496 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 497 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 498 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 499 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 500 501 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 502 503 if (TM) 504 TM->adjustPassManager(PMBuilder); 505 506 if (CodeGenOpts.DebugInfoForProfiling || 507 !CodeGenOpts.SampleProfileFile.empty()) 508 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 509 addAddDiscriminatorsPass); 510 511 // In ObjC ARC mode, add the main ARC optimization passes. 512 if (LangOpts.ObjCAutoRefCount) { 513 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 514 addObjCARCExpandPass); 515 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 516 addObjCARCAPElimPass); 517 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 518 addObjCARCOptPass); 519 } 520 521 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 522 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 523 addBoundsCheckingPass); 524 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 525 addBoundsCheckingPass); 526 } 527 528 if (CodeGenOpts.SanitizeCoverageType || 529 CodeGenOpts.SanitizeCoverageIndirectCalls || 530 CodeGenOpts.SanitizeCoverageTraceCmp) { 531 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 532 addSanitizerCoveragePass); 533 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 534 addSanitizerCoveragePass); 535 } 536 537 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 538 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 539 addAddressSanitizerPasses); 540 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 541 addAddressSanitizerPasses); 542 } 543 544 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 545 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 546 addKernelAddressSanitizerPasses); 547 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 548 addKernelAddressSanitizerPasses); 549 } 550 551 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 552 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 553 addMemorySanitizerPass); 554 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 555 addMemorySanitizerPass); 556 } 557 558 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 559 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 560 addThreadSanitizerPass); 561 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 562 addThreadSanitizerPass); 563 } 564 565 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 566 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 567 addDataFlowSanitizerPass); 568 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 569 addDataFlowSanitizerPass); 570 } 571 572 if (LangOpts.CoroutinesTS) 573 addCoroutinePassesToExtensionPoints(PMBuilder); 574 575 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 576 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 577 addEfficiencySanitizerPass); 578 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 579 addEfficiencySanitizerPass); 580 } 581 582 // Set up the per-function pass manager. 583 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 584 if (CodeGenOpts.VerifyModule) 585 FPM.add(createVerifierPass()); 586 587 // Set up the per-module pass manager. 588 if (!CodeGenOpts.RewriteMapFiles.empty()) 589 addSymbolRewriterPass(CodeGenOpts, &MPM); 590 591 if (!CodeGenOpts.DisableGCov && 592 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 593 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 594 // LLVM's -default-gcov-version flag is set to something invalid. 595 GCOVOptions Options; 596 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 597 Options.EmitData = CodeGenOpts.EmitGcovArcs; 598 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 599 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 600 Options.NoRedZone = CodeGenOpts.DisableRedZone; 601 Options.FunctionNamesInData = 602 !CodeGenOpts.CoverageNoFunctionNamesInData; 603 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 604 MPM.add(createGCOVProfilerPass(Options)); 605 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 606 MPM.add(createStripSymbolsPass(true)); 607 } 608 609 if (CodeGenOpts.hasProfileClangInstr()) { 610 InstrProfOptions Options; 611 Options.NoRedZone = CodeGenOpts.DisableRedZone; 612 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 613 MPM.add(createInstrProfilingLegacyPass(Options)); 614 } 615 if (CodeGenOpts.hasProfileIRInstr()) { 616 PMBuilder.EnablePGOInstrGen = true; 617 if (!CodeGenOpts.InstrProfileOutput.empty()) 618 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 619 else 620 PMBuilder.PGOInstrGen = DefaultProfileGenName; 621 } 622 if (CodeGenOpts.hasProfileIRUse()) 623 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 624 625 if (!CodeGenOpts.SampleProfileFile.empty()) 626 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 627 628 PMBuilder.populateFunctionPassManager(FPM); 629 PMBuilder.populateModulePassManager(MPM); 630 } 631 632 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 633 SmallVector<const char *, 16> BackendArgs; 634 BackendArgs.push_back("clang"); // Fake program name. 635 if (!CodeGenOpts.DebugPass.empty()) { 636 BackendArgs.push_back("-debug-pass"); 637 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 638 } 639 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 640 BackendArgs.push_back("-limit-float-precision"); 641 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 642 } 643 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 644 BackendArgs.push_back(BackendOption.c_str()); 645 BackendArgs.push_back(nullptr); 646 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 647 BackendArgs.data()); 648 } 649 650 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 651 // Create the TargetMachine for generating code. 652 std::string Error; 653 std::string Triple = TheModule->getTargetTriple(); 654 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 655 if (!TheTarget) { 656 if (MustCreateTM) 657 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 658 return; 659 } 660 661 llvm::CodeModel::Model CM = getCodeModel(CodeGenOpts); 662 std::string FeaturesStr = 663 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 664 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 665 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 666 667 llvm::TargetOptions Options; 668 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 669 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 670 Options, RM, CM, OptLevel)); 671 } 672 673 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 674 BackendAction Action, 675 raw_pwrite_stream &OS) { 676 // Add LibraryInfo. 677 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 678 std::unique_ptr<TargetLibraryInfoImpl> TLII( 679 createTLII(TargetTriple, CodeGenOpts)); 680 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 681 682 // Normal mode, emit a .s or .o file by running the code generator. Note, 683 // this also adds codegenerator level optimization passes. 684 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 685 686 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 687 // "codegen" passes so that it isn't run multiple times when there is 688 // inlining happening. 689 if (CodeGenOpts.OptimizationLevel > 0) 690 CodeGenPasses.add(createObjCARCContractPass()); 691 692 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 693 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 694 Diags.Report(diag::err_fe_unable_to_interface_with_target); 695 return false; 696 } 697 698 return true; 699 } 700 701 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 702 std::unique_ptr<raw_pwrite_stream> OS) { 703 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 704 705 setCommandLineOpts(CodeGenOpts); 706 707 bool UsesCodeGen = (Action != Backend_EmitNothing && 708 Action != Backend_EmitBC && 709 Action != Backend_EmitLL); 710 CreateTargetMachine(UsesCodeGen); 711 712 if (UsesCodeGen && !TM) 713 return; 714 if (TM) 715 TheModule->setDataLayout(TM->createDataLayout()); 716 717 legacy::PassManager PerModulePasses; 718 PerModulePasses.add( 719 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 720 721 legacy::FunctionPassManager PerFunctionPasses(TheModule); 722 PerFunctionPasses.add( 723 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 724 725 CreatePasses(PerModulePasses, PerFunctionPasses); 726 727 legacy::PassManager CodeGenPasses; 728 CodeGenPasses.add( 729 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 730 731 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 732 733 switch (Action) { 734 case Backend_EmitNothing: 735 break; 736 737 case Backend_EmitBC: 738 if (CodeGenOpts.EmitSummaryIndex) { 739 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 740 std::error_code EC; 741 ThinLinkOS.reset(new llvm::raw_fd_ostream( 742 CodeGenOpts.ThinLinkBitcodeFile, EC, 743 llvm::sys::fs::F_None)); 744 if (EC) { 745 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 746 << EC.message(); 747 return; 748 } 749 } 750 PerModulePasses.add( 751 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 752 } 753 else 754 PerModulePasses.add( 755 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 756 break; 757 758 case Backend_EmitLL: 759 PerModulePasses.add( 760 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 761 break; 762 763 default: 764 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 765 return; 766 } 767 768 // Before executing passes, print the final values of the LLVM options. 769 cl::PrintOptionValues(); 770 771 // Run passes. For now we do all passes at once, but eventually we 772 // would like to have the option of streaming code generation. 773 774 { 775 PrettyStackTraceString CrashInfo("Per-function optimization"); 776 777 PerFunctionPasses.doInitialization(); 778 for (Function &F : *TheModule) 779 if (!F.isDeclaration()) 780 PerFunctionPasses.run(F); 781 PerFunctionPasses.doFinalization(); 782 } 783 784 { 785 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 786 PerModulePasses.run(*TheModule); 787 } 788 789 { 790 PrettyStackTraceString CrashInfo("Code generation"); 791 CodeGenPasses.run(*TheModule); 792 } 793 } 794 795 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 796 switch (Opts.OptimizationLevel) { 797 default: 798 llvm_unreachable("Invalid optimization level!"); 799 800 case 1: 801 return PassBuilder::O1; 802 803 case 2: 804 switch (Opts.OptimizeSize) { 805 default: 806 llvm_unreachable("Invalide optimization level for size!"); 807 808 case 0: 809 return PassBuilder::O2; 810 811 case 1: 812 return PassBuilder::Os; 813 814 case 2: 815 return PassBuilder::Oz; 816 } 817 818 case 3: 819 return PassBuilder::O3; 820 } 821 } 822 823 /// A clean version of `EmitAssembly` that uses the new pass manager. 824 /// 825 /// Not all features are currently supported in this system, but where 826 /// necessary it falls back to the legacy pass manager to at least provide 827 /// basic functionality. 828 /// 829 /// This API is planned to have its functionality finished and then to replace 830 /// `EmitAssembly` at some point in the future when the default switches. 831 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 832 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 833 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 834 setCommandLineOpts(CodeGenOpts); 835 836 // The new pass manager always makes a target machine available to passes 837 // during construction. 838 CreateTargetMachine(/*MustCreateTM*/ true); 839 if (!TM) 840 // This will already be diagnosed, just bail. 841 return; 842 TheModule->setDataLayout(TM->createDataLayout()); 843 844 Optional<PGOOptions> PGOOpt; 845 846 if (CodeGenOpts.hasProfileIRInstr()) 847 // -fprofile-generate. 848 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 849 ? DefaultProfileGenName 850 : CodeGenOpts.InstrProfileOutput, 851 "", "", true, CodeGenOpts.DebugInfoForProfiling); 852 else if (CodeGenOpts.hasProfileIRUse()) 853 // -fprofile-use. 854 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 855 CodeGenOpts.DebugInfoForProfiling); 856 else if (!CodeGenOpts.SampleProfileFile.empty()) 857 // -fprofile-sample-use 858 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 859 CodeGenOpts.DebugInfoForProfiling); 860 else if (CodeGenOpts.DebugInfoForProfiling) 861 // -fdebug-info-for-profiling 862 PGOOpt = PGOOptions("", "", "", false, true); 863 864 PassBuilder PB(TM.get(), PGOOpt); 865 866 LoopAnalysisManager LAM; 867 FunctionAnalysisManager FAM; 868 CGSCCAnalysisManager CGAM; 869 ModuleAnalysisManager MAM; 870 871 // Register the AA manager first so that our version is the one used. 872 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 873 874 // Register the target library analysis directly and give it a customized 875 // preset TLI. 876 Triple TargetTriple(TheModule->getTargetTriple()); 877 std::unique_ptr<TargetLibraryInfoImpl> TLII( 878 createTLII(TargetTriple, CodeGenOpts)); 879 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 880 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 881 882 // Register all the basic analyses with the managers. 883 PB.registerModuleAnalyses(MAM); 884 PB.registerCGSCCAnalyses(CGAM); 885 PB.registerFunctionAnalyses(FAM); 886 PB.registerLoopAnalyses(LAM); 887 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 888 889 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 890 891 if (!CodeGenOpts.DisableLLVMPasses) { 892 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 893 bool IsLTO = CodeGenOpts.PrepareForLTO; 894 895 if (CodeGenOpts.OptimizationLevel == 0) { 896 // Build a minimal pipeline based on the semantics required by Clang, 897 // which is just that always inlining occurs. 898 MPM.addPass(AlwaysInlinerPass()); 899 if (IsThinLTO) 900 MPM.addPass(NameAnonGlobalPass()); 901 } else { 902 // Map our optimization levels into one of the distinct levels used to 903 // configure the pipeline. 904 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 905 906 if (IsThinLTO) { 907 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 908 Level, CodeGenOpts.DebugPassManager); 909 MPM.addPass(NameAnonGlobalPass()); 910 } else if (IsLTO) { 911 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 912 CodeGenOpts.DebugPassManager); 913 } else { 914 MPM = PB.buildPerModuleDefaultPipeline(Level, 915 CodeGenOpts.DebugPassManager); 916 } 917 } 918 } 919 920 // FIXME: We still use the legacy pass manager to do code generation. We 921 // create that pass manager here and use it as needed below. 922 legacy::PassManager CodeGenPasses; 923 bool NeedCodeGen = false; 924 Optional<raw_fd_ostream> ThinLinkOS; 925 926 // Append any output we need to the pass manager. 927 switch (Action) { 928 case Backend_EmitNothing: 929 break; 930 931 case Backend_EmitBC: 932 if (CodeGenOpts.EmitSummaryIndex) { 933 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 934 std::error_code EC; 935 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 936 llvm::sys::fs::F_None); 937 if (EC) { 938 Diags.Report(diag::err_fe_unable_to_open_output) 939 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 940 return; 941 } 942 } 943 MPM.addPass( 944 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 945 } else { 946 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 947 CodeGenOpts.EmitSummaryIndex, 948 CodeGenOpts.EmitSummaryIndex)); 949 } 950 break; 951 952 case Backend_EmitLL: 953 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 954 break; 955 956 case Backend_EmitAssembly: 957 case Backend_EmitMCNull: 958 case Backend_EmitObj: 959 NeedCodeGen = true; 960 CodeGenPasses.add( 961 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 962 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 963 // FIXME: Should we handle this error differently? 964 return; 965 break; 966 } 967 968 // Before executing passes, print the final values of the LLVM options. 969 cl::PrintOptionValues(); 970 971 // Now that we have all of the passes ready, run them. 972 { 973 PrettyStackTraceString CrashInfo("Optimizer"); 974 MPM.run(*TheModule, MAM); 975 } 976 977 // Now if needed, run the legacy PM for codegen. 978 if (NeedCodeGen) { 979 PrettyStackTraceString CrashInfo("Code generation"); 980 CodeGenPasses.run(*TheModule); 981 } 982 } 983 984 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 985 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 986 if (!BMsOrErr) 987 return BMsOrErr.takeError(); 988 989 // The bitcode file may contain multiple modules, we want the one that is 990 // marked as being the ThinLTO module. 991 for (BitcodeModule &BM : *BMsOrErr) { 992 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 993 if (LTOInfo && LTOInfo->IsThinLTO) 994 return BM; 995 } 996 997 return make_error<StringError>("Could not find module summary", 998 inconvertibleErrorCode()); 999 } 1000 1001 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1002 const HeaderSearchOptions &HeaderOpts, 1003 const CodeGenOptions &CGOpts, 1004 const clang::TargetOptions &TOpts, 1005 const LangOptions &LOpts, 1006 std::unique_ptr<raw_pwrite_stream> OS, 1007 std::string SampleProfile, 1008 BackendAction Action) { 1009 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1010 ModuleToDefinedGVSummaries; 1011 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1012 1013 setCommandLineOpts(CGOpts); 1014 1015 // We can simply import the values mentioned in the combined index, since 1016 // we should only invoke this using the individual indexes written out 1017 // via a WriteIndexesThinBackend. 1018 FunctionImporter::ImportMapTy ImportList; 1019 for (auto &GlobalList : *CombinedIndex) { 1020 // Ignore entries for undefined references. 1021 if (GlobalList.second.SummaryList.empty()) 1022 continue; 1023 1024 auto GUID = GlobalList.first; 1025 assert(GlobalList.second.SummaryList.size() == 1 && 1026 "Expected individual combined index to have one summary per GUID"); 1027 auto &Summary = GlobalList.second.SummaryList[0]; 1028 // Skip the summaries for the importing module. These are included to 1029 // e.g. record required linkage changes. 1030 if (Summary->modulePath() == M->getModuleIdentifier()) 1031 continue; 1032 // Doesn't matter what value we plug in to the map, just needs an entry 1033 // to provoke importing by thinBackend. 1034 ImportList[Summary->modulePath()][GUID] = 1; 1035 } 1036 1037 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1038 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1039 1040 for (auto &I : ImportList) { 1041 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1042 llvm::MemoryBuffer::getFile(I.first()); 1043 if (!MBOrErr) { 1044 errs() << "Error loading imported file '" << I.first() 1045 << "': " << MBOrErr.getError().message() << "\n"; 1046 return; 1047 } 1048 1049 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1050 if (!BMOrErr) { 1051 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1052 errs() << "Error loading imported file '" << I.first() 1053 << "': " << EIB.message() << '\n'; 1054 }); 1055 return; 1056 } 1057 ModuleMap.insert({I.first(), *BMOrErr}); 1058 1059 OwnedImports.push_back(std::move(*MBOrErr)); 1060 } 1061 auto AddStream = [&](size_t Task) { 1062 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1063 }; 1064 lto::Config Conf; 1065 Conf.CPU = TOpts.CPU; 1066 Conf.CodeModel = getCodeModel(CGOpts); 1067 Conf.MAttrs = TOpts.Features; 1068 Conf.RelocModel = getRelocModel(CGOpts); 1069 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1070 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1071 Conf.SampleProfile = std::move(SampleProfile); 1072 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1073 switch (Action) { 1074 case Backend_EmitNothing: 1075 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1076 return false; 1077 }; 1078 break; 1079 case Backend_EmitLL: 1080 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1081 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1082 return false; 1083 }; 1084 break; 1085 case Backend_EmitBC: 1086 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1087 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1088 return false; 1089 }; 1090 break; 1091 default: 1092 Conf.CGFileType = getCodeGenFileType(Action); 1093 break; 1094 } 1095 if (Error E = thinBackend( 1096 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1097 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1098 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1099 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1100 }); 1101 } 1102 } 1103 1104 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1105 const HeaderSearchOptions &HeaderOpts, 1106 const CodeGenOptions &CGOpts, 1107 const clang::TargetOptions &TOpts, 1108 const LangOptions &LOpts, 1109 const llvm::DataLayout &TDesc, Module *M, 1110 BackendAction Action, 1111 std::unique_ptr<raw_pwrite_stream> OS) { 1112 if (!CGOpts.ThinLTOIndexFile.empty()) { 1113 // If we are performing a ThinLTO importing compile, load the function index 1114 // into memory and pass it into runThinLTOBackend, which will run the 1115 // function importer and invoke LTO passes. 1116 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1117 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1118 /*IgnoreEmptyThinLTOIndexFile*/true); 1119 if (!IndexOrErr) { 1120 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1121 "Error loading index file '" + 1122 CGOpts.ThinLTOIndexFile + "': "); 1123 return; 1124 } 1125 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1126 // A null CombinedIndex means we should skip ThinLTO compilation 1127 // (LLVM will optionally ignore empty index files, returning null instead 1128 // of an error). 1129 bool DoThinLTOBackend = CombinedIndex != nullptr; 1130 if (DoThinLTOBackend) { 1131 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1132 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1133 return; 1134 } 1135 } 1136 1137 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1138 1139 if (CGOpts.ExperimentalNewPassManager) 1140 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1141 else 1142 AsmHelper.EmitAssembly(Action, std::move(OS)); 1143 1144 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1145 // DataLayout. 1146 if (AsmHelper.TM) { 1147 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1148 if (DLDesc != TDesc.getStringRepresentation()) { 1149 unsigned DiagID = Diags.getCustomDiagID( 1150 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1151 "expected target description '%1'"); 1152 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1153 } 1154 } 1155 } 1156 1157 static const char* getSectionNameForBitcode(const Triple &T) { 1158 switch (T.getObjectFormat()) { 1159 case Triple::MachO: 1160 return "__LLVM,__bitcode"; 1161 case Triple::COFF: 1162 case Triple::ELF: 1163 case Triple::Wasm: 1164 case Triple::UnknownObjectFormat: 1165 return ".llvmbc"; 1166 } 1167 llvm_unreachable("Unimplemented ObjectFormatType"); 1168 } 1169 1170 static const char* getSectionNameForCommandline(const Triple &T) { 1171 switch (T.getObjectFormat()) { 1172 case Triple::MachO: 1173 return "__LLVM,__cmdline"; 1174 case Triple::COFF: 1175 case Triple::ELF: 1176 case Triple::Wasm: 1177 case Triple::UnknownObjectFormat: 1178 return ".llvmcmd"; 1179 } 1180 llvm_unreachable("Unimplemented ObjectFormatType"); 1181 } 1182 1183 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1184 // __LLVM,__bitcode section. 1185 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1186 llvm::MemoryBufferRef Buf) { 1187 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1188 return; 1189 1190 // Save llvm.compiler.used and remote it. 1191 SmallVector<Constant*, 2> UsedArray; 1192 SmallSet<GlobalValue*, 4> UsedGlobals; 1193 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1194 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1195 for (auto *GV : UsedGlobals) { 1196 if (GV->getName() != "llvm.embedded.module" && 1197 GV->getName() != "llvm.cmdline") 1198 UsedArray.push_back( 1199 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1200 } 1201 if (Used) 1202 Used->eraseFromParent(); 1203 1204 // Embed the bitcode for the llvm module. 1205 std::string Data; 1206 ArrayRef<uint8_t> ModuleData; 1207 Triple T(M->getTargetTriple()); 1208 // Create a constant that contains the bitcode. 1209 // In case of embedding a marker, ignore the input Buf and use the empty 1210 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1211 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1212 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1213 (const unsigned char *)Buf.getBufferEnd())) { 1214 // If the input is LLVM Assembly, bitcode is produced by serializing 1215 // the module. Use-lists order need to be perserved in this case. 1216 llvm::raw_string_ostream OS(Data); 1217 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1218 ModuleData = 1219 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1220 } else 1221 // If the input is LLVM bitcode, write the input byte stream directly. 1222 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1223 Buf.getBufferSize()); 1224 } 1225 llvm::Constant *ModuleConstant = 1226 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1227 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1228 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1229 ModuleConstant); 1230 GV->setSection(getSectionNameForBitcode(T)); 1231 UsedArray.push_back( 1232 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1233 if (llvm::GlobalVariable *Old = 1234 M->getGlobalVariable("llvm.embedded.module", true)) { 1235 assert(Old->hasOneUse() && 1236 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1237 GV->takeName(Old); 1238 Old->eraseFromParent(); 1239 } else { 1240 GV->setName("llvm.embedded.module"); 1241 } 1242 1243 // Skip if only bitcode needs to be embedded. 1244 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1245 // Embed command-line options. 1246 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1247 CGOpts.CmdArgs.size()); 1248 llvm::Constant *CmdConstant = 1249 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1250 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1251 llvm::GlobalValue::PrivateLinkage, 1252 CmdConstant); 1253 GV->setSection(getSectionNameForCommandline(T)); 1254 UsedArray.push_back( 1255 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1256 if (llvm::GlobalVariable *Old = 1257 M->getGlobalVariable("llvm.cmdline", true)) { 1258 assert(Old->hasOneUse() && 1259 "llvm.cmdline can only be used once in llvm.compiler.used"); 1260 GV->takeName(Old); 1261 Old->eraseFromParent(); 1262 } else { 1263 GV->setName("llvm.cmdline"); 1264 } 1265 } 1266 1267 if (UsedArray.empty()) 1268 return; 1269 1270 // Recreate llvm.compiler.used. 1271 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1272 auto *NewUsed = new GlobalVariable( 1273 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1274 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1275 NewUsed->setSection("llvm.metadata"); 1276 } 1277