1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetSubtargetInfo.h" 49 #include "llvm/Transforms/Coroutines.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/ObjCARC.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Utils/SymbolRewriter.h" 58 #include <memory> 59 using namespace clang; 60 using namespace llvm; 61 62 namespace { 63 64 class EmitAssemblyHelper { 65 DiagnosticsEngine &Diags; 66 const HeaderSearchOptions &HSOpts; 67 const CodeGenOptions &CodeGenOpts; 68 const clang::TargetOptions &TargetOpts; 69 const LangOptions &LangOpts; 70 Module *TheModule; 71 72 Timer CodeGenerationTime; 73 74 std::unique_ptr<raw_pwrite_stream> OS; 75 76 private: 77 TargetIRAnalysis getTargetIRAnalysis() const { 78 if (TM) 79 return TM->getTargetIRAnalysis(); 80 81 return TargetIRAnalysis(); 82 } 83 84 /// Set LLVM command line options passed through -backend-option. 85 void setCommandLineOpts(); 86 87 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 88 89 /// Generates the TargetMachine. 90 /// Leaves TM unchanged if it is unable to create the target machine. 91 /// Some of our clang tests specify triples which are not built 92 /// into clang. This is okay because these tests check the generated 93 /// IR, and they require DataLayout which depends on the triple. 94 /// In this case, we allow this method to fail and not report an error. 95 /// When MustCreateTM is used, we print an error if we are unable to load 96 /// the requested target. 97 void CreateTargetMachine(bool MustCreateTM); 98 99 /// Add passes necessary to emit assembly or LLVM IR. 100 /// 101 /// \return True on success. 102 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 103 raw_pwrite_stream &OS); 104 105 public: 106 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 107 const HeaderSearchOptions &HeaderSearchOpts, 108 const CodeGenOptions &CGOpts, 109 const clang::TargetOptions &TOpts, 110 const LangOptions &LOpts, Module *M) 111 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 112 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 113 CodeGenerationTime("codegen", "Code Generation Time") {} 114 115 ~EmitAssemblyHelper() { 116 if (CodeGenOpts.DisableFree) 117 BuryPointer(std::move(TM)); 118 } 119 120 std::unique_ptr<TargetMachine> TM; 121 122 void EmitAssembly(BackendAction Action, 123 std::unique_ptr<raw_pwrite_stream> OS); 124 125 void EmitAssemblyWithNewPassManager(BackendAction Action, 126 std::unique_ptr<raw_pwrite_stream> OS); 127 }; 128 129 // We need this wrapper to access LangOpts and CGOpts from extension functions 130 // that we add to the PassManagerBuilder. 131 class PassManagerBuilderWrapper : public PassManagerBuilder { 132 public: 133 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 134 const LangOptions &LangOpts) 135 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 136 const CodeGenOptions &getCGOpts() const { return CGOpts; } 137 const LangOptions &getLangOpts() const { return LangOpts; } 138 private: 139 const CodeGenOptions &CGOpts; 140 const LangOptions &LangOpts; 141 }; 142 143 } 144 145 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 146 if (Builder.OptLevel > 0) 147 PM.add(createObjCARCAPElimPass()); 148 } 149 150 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 151 if (Builder.OptLevel > 0) 152 PM.add(createObjCARCExpandPass()); 153 } 154 155 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCOptPass()); 158 } 159 160 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 161 legacy::PassManagerBase &PM) { 162 PM.add(createAddDiscriminatorsPass()); 163 } 164 165 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 166 legacy::PassManagerBase &PM) { 167 PM.add(createBoundsCheckingPass()); 168 } 169 170 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 const PassManagerBuilderWrapper &BuilderWrapper = 173 static_cast<const PassManagerBuilderWrapper&>(Builder); 174 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 175 SanitizerCoverageOptions Opts; 176 Opts.CoverageType = 177 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 178 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 179 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 180 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 181 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 182 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 183 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 184 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 185 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 186 PM.add(createSanitizerCoverageModulePass(Opts)); 187 } 188 189 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 const PassManagerBuilderWrapper &BuilderWrapper = 192 static_cast<const PassManagerBuilderWrapper&>(Builder); 193 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 194 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 195 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 196 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 197 UseAfterScope)); 198 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 199 } 200 201 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 202 legacy::PassManagerBase &PM) { 203 PM.add(createAddressSanitizerFunctionPass( 204 /*CompileKernel*/ true, 205 /*Recover*/ true, /*UseAfterScope*/ false)); 206 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 207 /*Recover*/true)); 208 } 209 210 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 211 legacy::PassManagerBase &PM) { 212 const PassManagerBuilderWrapper &BuilderWrapper = 213 static_cast<const PassManagerBuilderWrapper&>(Builder); 214 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 215 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 216 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 217 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 218 219 // MemorySanitizer inserts complex instrumentation that mostly follows 220 // the logic of the original code, but operates on "shadow" values. 221 // It can benefit from re-running some general purpose optimization passes. 222 if (Builder.OptLevel > 0) { 223 PM.add(createEarlyCSEPass()); 224 PM.add(createReassociatePass()); 225 PM.add(createLICMPass()); 226 PM.add(createGVNPass()); 227 PM.add(createInstructionCombiningPass()); 228 PM.add(createDeadStoreEliminationPass()); 229 } 230 } 231 232 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 PM.add(createThreadSanitizerPass()); 235 } 236 237 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 238 legacy::PassManagerBase &PM) { 239 const PassManagerBuilderWrapper &BuilderWrapper = 240 static_cast<const PassManagerBuilderWrapper&>(Builder); 241 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 242 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 243 } 244 245 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 const PassManagerBuilderWrapper &BuilderWrapper = 248 static_cast<const PassManagerBuilderWrapper&>(Builder); 249 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 250 EfficiencySanitizerOptions Opts; 251 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 252 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 253 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 254 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 255 PM.add(createEfficiencySanitizerPass(Opts)); 256 } 257 258 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 259 const CodeGenOptions &CodeGenOpts) { 260 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 261 if (!CodeGenOpts.SimplifyLibCalls) 262 TLII->disableAllFunctions(); 263 else { 264 // Disable individual libc/libm calls in TargetLibraryInfo. 265 LibFunc::Func F; 266 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 267 if (TLII->getLibFunc(FuncName, F)) 268 TLII->setUnavailable(F); 269 } 270 271 switch (CodeGenOpts.getVecLib()) { 272 case CodeGenOptions::Accelerate: 273 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 274 break; 275 case CodeGenOptions::SVML: 276 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 277 break; 278 default: 279 break; 280 } 281 return TLII; 282 } 283 284 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 285 legacy::PassManager *MPM) { 286 llvm::SymbolRewriter::RewriteDescriptorList DL; 287 288 llvm::SymbolRewriter::RewriteMapParser MapParser; 289 for (const auto &MapFile : Opts.RewriteMapFiles) 290 MapParser.parse(MapFile, &DL); 291 292 MPM->add(createRewriteSymbolsPass(DL)); 293 } 294 295 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 296 legacy::FunctionPassManager &FPM) { 297 // Handle disabling of all LLVM passes, where we want to preserve the 298 // internal module before any optimization. 299 if (CodeGenOpts.DisableLLVMPasses) 300 return; 301 302 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 303 304 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 305 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 306 // are inserted before PMBuilder ones - they'd get the default-constructed 307 // TLI with an unknown target otherwise. 308 Triple TargetTriple(TheModule->getTargetTriple()); 309 std::unique_ptr<TargetLibraryInfoImpl> TLII( 310 createTLII(TargetTriple, CodeGenOpts)); 311 312 // At O0 and O1 we only run the always inliner which is more efficient. At 313 // higher optimization levels we run the normal inliner. 314 if (CodeGenOpts.OptimizationLevel <= 1) { 315 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 316 !CodeGenOpts.DisableLifetimeMarkers); 317 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 318 } else { 319 PMBuilder.Inliner = createFunctionInliningPass( 320 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize); 321 } 322 323 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 324 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 325 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 326 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 327 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 328 329 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 330 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 331 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 332 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 333 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 334 335 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 336 337 // Add target-specific passes that need to run as early as possible. 338 if (TM) 339 PMBuilder.addExtension( 340 PassManagerBuilder::EP_EarlyAsPossible, 341 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 342 TM->addEarlyAsPossiblePasses(PM); 343 }); 344 345 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 346 addAddDiscriminatorsPass); 347 348 // In ObjC ARC mode, add the main ARC optimization passes. 349 if (LangOpts.ObjCAutoRefCount) { 350 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 351 addObjCARCExpandPass); 352 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 353 addObjCARCAPElimPass); 354 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 355 addObjCARCOptPass); 356 } 357 358 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 359 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 360 addBoundsCheckingPass); 361 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 362 addBoundsCheckingPass); 363 } 364 365 if (CodeGenOpts.SanitizeCoverageType || 366 CodeGenOpts.SanitizeCoverageIndirectCalls || 367 CodeGenOpts.SanitizeCoverageTraceCmp) { 368 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 369 addSanitizerCoveragePass); 370 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 371 addSanitizerCoveragePass); 372 } 373 374 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 375 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 376 addAddressSanitizerPasses); 377 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 378 addAddressSanitizerPasses); 379 } 380 381 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 382 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 383 addKernelAddressSanitizerPasses); 384 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 385 addKernelAddressSanitizerPasses); 386 } 387 388 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 389 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 390 addMemorySanitizerPass); 391 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 392 addMemorySanitizerPass); 393 } 394 395 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 396 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 397 addThreadSanitizerPass); 398 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 399 addThreadSanitizerPass); 400 } 401 402 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 403 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 404 addDataFlowSanitizerPass); 405 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 406 addDataFlowSanitizerPass); 407 } 408 409 if (LangOpts.CoroutinesTS) 410 addCoroutinePassesToExtensionPoints(PMBuilder); 411 412 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 413 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 414 addEfficiencySanitizerPass); 415 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 416 addEfficiencySanitizerPass); 417 } 418 419 // Set up the per-function pass manager. 420 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 421 if (CodeGenOpts.VerifyModule) 422 FPM.add(createVerifierPass()); 423 424 // Set up the per-module pass manager. 425 if (!CodeGenOpts.RewriteMapFiles.empty()) 426 addSymbolRewriterPass(CodeGenOpts, &MPM); 427 428 if (!CodeGenOpts.DisableGCov && 429 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 430 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 431 // LLVM's -default-gcov-version flag is set to something invalid. 432 GCOVOptions Options; 433 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 434 Options.EmitData = CodeGenOpts.EmitGcovArcs; 435 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 436 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 437 Options.NoRedZone = CodeGenOpts.DisableRedZone; 438 Options.FunctionNamesInData = 439 !CodeGenOpts.CoverageNoFunctionNamesInData; 440 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 441 MPM.add(createGCOVProfilerPass(Options)); 442 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 443 MPM.add(createStripSymbolsPass(true)); 444 } 445 446 if (CodeGenOpts.hasProfileClangInstr()) { 447 InstrProfOptions Options; 448 Options.NoRedZone = CodeGenOpts.DisableRedZone; 449 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 450 MPM.add(createInstrProfilingLegacyPass(Options)); 451 } 452 if (CodeGenOpts.hasProfileIRInstr()) { 453 PMBuilder.EnablePGOInstrGen = true; 454 if (!CodeGenOpts.InstrProfileOutput.empty()) 455 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 456 else 457 PMBuilder.PGOInstrGen = "default_%m.profraw"; 458 } 459 if (CodeGenOpts.hasProfileIRUse()) 460 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 461 462 if (!CodeGenOpts.SampleProfileFile.empty()) 463 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 464 465 PMBuilder.populateFunctionPassManager(FPM); 466 PMBuilder.populateModulePassManager(MPM); 467 } 468 469 void EmitAssemblyHelper::setCommandLineOpts() { 470 SmallVector<const char *, 16> BackendArgs; 471 BackendArgs.push_back("clang"); // Fake program name. 472 if (!CodeGenOpts.DebugPass.empty()) { 473 BackendArgs.push_back("-debug-pass"); 474 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 475 } 476 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 477 BackendArgs.push_back("-limit-float-precision"); 478 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 479 } 480 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 481 BackendArgs.push_back(BackendOption.c_str()); 482 BackendArgs.push_back(nullptr); 483 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 484 BackendArgs.data()); 485 } 486 487 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 488 // Create the TargetMachine for generating code. 489 std::string Error; 490 std::string Triple = TheModule->getTargetTriple(); 491 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 492 if (!TheTarget) { 493 if (MustCreateTM) 494 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 495 return; 496 } 497 498 unsigned CodeModel = 499 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 500 .Case("small", llvm::CodeModel::Small) 501 .Case("kernel", llvm::CodeModel::Kernel) 502 .Case("medium", llvm::CodeModel::Medium) 503 .Case("large", llvm::CodeModel::Large) 504 .Case("default", llvm::CodeModel::Default) 505 .Default(~0u); 506 assert(CodeModel != ~0u && "invalid code model!"); 507 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 508 509 std::string FeaturesStr = 510 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 511 512 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 513 llvm::Optional<llvm::Reloc::Model> RM; 514 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 515 .Case("static", llvm::Reloc::Static) 516 .Case("pic", llvm::Reloc::PIC_) 517 .Case("ropi", llvm::Reloc::ROPI) 518 .Case("rwpi", llvm::Reloc::RWPI) 519 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 520 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 521 assert(RM.hasValue() && "invalid PIC model!"); 522 523 CodeGenOpt::Level OptLevel; 524 switch (CodeGenOpts.OptimizationLevel) { 525 default: 526 llvm_unreachable("Invalid optimization level!"); 527 case 0: 528 OptLevel = CodeGenOpt::None; 529 break; 530 case 1: 531 OptLevel = CodeGenOpt::Less; 532 break; 533 case 2: 534 OptLevel = CodeGenOpt::Default; 535 break; // O2/Os/Oz 536 case 3: 537 OptLevel = CodeGenOpt::Aggressive; 538 break; 539 } 540 541 llvm::TargetOptions Options; 542 543 Options.ThreadModel = 544 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 545 .Case("posix", llvm::ThreadModel::POSIX) 546 .Case("single", llvm::ThreadModel::Single); 547 548 // Set float ABI type. 549 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 550 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 551 "Invalid Floating Point ABI!"); 552 Options.FloatABIType = 553 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 554 .Case("soft", llvm::FloatABI::Soft) 555 .Case("softfp", llvm::FloatABI::Soft) 556 .Case("hard", llvm::FloatABI::Hard) 557 .Default(llvm::FloatABI::Default); 558 559 // Set FP fusion mode. 560 switch (CodeGenOpts.getFPContractMode()) { 561 case CodeGenOptions::FPC_Off: 562 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 563 break; 564 case CodeGenOptions::FPC_On: 565 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 566 break; 567 case CodeGenOptions::FPC_Fast: 568 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 569 break; 570 } 571 572 Options.UseInitArray = CodeGenOpts.UseInitArray; 573 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 574 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 575 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 576 Options.DebugInfoForProfiling = CodeGenOpts.DebugInfoForProfiling; 577 578 // Set EABI version. 579 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 580 .Case("4", llvm::EABI::EABI4) 581 .Case("5", llvm::EABI::EABI5) 582 .Case("gnu", llvm::EABI::GNU) 583 .Default(llvm::EABI::Default); 584 585 if (LangOpts.SjLjExceptions) 586 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 587 588 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 589 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 590 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 591 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 592 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 593 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 594 Options.FunctionSections = CodeGenOpts.FunctionSections; 595 Options.DataSections = CodeGenOpts.DataSections; 596 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 597 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 598 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 599 600 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 601 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 602 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 603 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 604 Options.MCOptions.MCIncrementalLinkerCompatible = 605 CodeGenOpts.IncrementalLinkerCompatible; 606 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 607 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 608 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 609 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 610 Options.MCOptions.ABIName = TargetOpts.ABI; 611 for (const auto &Entry : HSOpts.UserEntries) 612 if (!Entry.IsFramework && 613 (Entry.Group == frontend::IncludeDirGroup::Quoted || 614 Entry.Group == frontend::IncludeDirGroup::Angled || 615 Entry.Group == frontend::IncludeDirGroup::System)) 616 Options.MCOptions.IASSearchPaths.push_back( 617 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 618 619 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 620 Options, RM, CM, OptLevel)); 621 } 622 623 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 624 BackendAction Action, 625 raw_pwrite_stream &OS) { 626 // Add LibraryInfo. 627 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 628 std::unique_ptr<TargetLibraryInfoImpl> TLII( 629 createTLII(TargetTriple, CodeGenOpts)); 630 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 631 632 // Normal mode, emit a .s or .o file by running the code generator. Note, 633 // this also adds codegenerator level optimization passes. 634 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 635 if (Action == Backend_EmitObj) 636 CGFT = TargetMachine::CGFT_ObjectFile; 637 else if (Action == Backend_EmitMCNull) 638 CGFT = TargetMachine::CGFT_Null; 639 else 640 assert(Action == Backend_EmitAssembly && "Invalid action!"); 641 642 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 643 // "codegen" passes so that it isn't run multiple times when there is 644 // inlining happening. 645 if (CodeGenOpts.OptimizationLevel > 0) 646 CodeGenPasses.add(createObjCARCContractPass()); 647 648 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 649 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 650 Diags.Report(diag::err_fe_unable_to_interface_with_target); 651 return false; 652 } 653 654 return true; 655 } 656 657 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 658 std::unique_ptr<raw_pwrite_stream> OS) { 659 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 660 661 setCommandLineOpts(); 662 663 bool UsesCodeGen = (Action != Backend_EmitNothing && 664 Action != Backend_EmitBC && 665 Action != Backend_EmitLL); 666 CreateTargetMachine(UsesCodeGen); 667 668 if (UsesCodeGen && !TM) 669 return; 670 if (TM) 671 TheModule->setDataLayout(TM->createDataLayout()); 672 673 legacy::PassManager PerModulePasses; 674 PerModulePasses.add( 675 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 676 677 legacy::FunctionPassManager PerFunctionPasses(TheModule); 678 PerFunctionPasses.add( 679 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 680 681 CreatePasses(PerModulePasses, PerFunctionPasses); 682 683 legacy::PassManager CodeGenPasses; 684 CodeGenPasses.add( 685 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 686 687 switch (Action) { 688 case Backend_EmitNothing: 689 break; 690 691 case Backend_EmitBC: 692 PerModulePasses.add(createBitcodeWriterPass( 693 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 694 CodeGenOpts.EmitSummaryIndex)); 695 break; 696 697 case Backend_EmitLL: 698 PerModulePasses.add( 699 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 700 break; 701 702 default: 703 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 704 return; 705 } 706 707 // Before executing passes, print the final values of the LLVM options. 708 cl::PrintOptionValues(); 709 710 // Run passes. For now we do all passes at once, but eventually we 711 // would like to have the option of streaming code generation. 712 713 { 714 PrettyStackTraceString CrashInfo("Per-function optimization"); 715 716 PerFunctionPasses.doInitialization(); 717 for (Function &F : *TheModule) 718 if (!F.isDeclaration()) 719 PerFunctionPasses.run(F); 720 PerFunctionPasses.doFinalization(); 721 } 722 723 { 724 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 725 PerModulePasses.run(*TheModule); 726 } 727 728 { 729 PrettyStackTraceString CrashInfo("Code generation"); 730 CodeGenPasses.run(*TheModule); 731 } 732 } 733 734 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 735 switch (Opts.OptimizationLevel) { 736 default: 737 llvm_unreachable("Invalid optimization level!"); 738 739 case 1: 740 return PassBuilder::O1; 741 742 case 2: 743 switch (Opts.OptimizeSize) { 744 default: 745 llvm_unreachable("Invalide optimization level for size!"); 746 747 case 0: 748 return PassBuilder::O2; 749 750 case 1: 751 return PassBuilder::Os; 752 753 case 2: 754 return PassBuilder::Oz; 755 } 756 757 case 3: 758 return PassBuilder::O3; 759 } 760 } 761 762 /// A clean version of `EmitAssembly` that uses the new pass manager. 763 /// 764 /// Not all features are currently supported in this system, but where 765 /// necessary it falls back to the legacy pass manager to at least provide 766 /// basic functionality. 767 /// 768 /// This API is planned to have its functionality finished and then to replace 769 /// `EmitAssembly` at some point in the future when the default switches. 770 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 771 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 772 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 773 setCommandLineOpts(); 774 775 // The new pass manager always makes a target machine available to passes 776 // during construction. 777 CreateTargetMachine(/*MustCreateTM*/ true); 778 if (!TM) 779 // This will already be diagnosed, just bail. 780 return; 781 TheModule->setDataLayout(TM->createDataLayout()); 782 783 PassBuilder PB(TM.get()); 784 785 LoopAnalysisManager LAM; 786 FunctionAnalysisManager FAM; 787 CGSCCAnalysisManager CGAM; 788 ModuleAnalysisManager MAM; 789 790 // Register the AA manager first so that our version is the one used. 791 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 792 793 // Register all the basic analyses with the managers. 794 PB.registerModuleAnalyses(MAM); 795 PB.registerCGSCCAnalyses(CGAM); 796 PB.registerFunctionAnalyses(FAM); 797 PB.registerLoopAnalyses(LAM); 798 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 799 800 ModulePassManager MPM; 801 802 if (!CodeGenOpts.DisableLLVMPasses) { 803 if (CodeGenOpts.OptimizationLevel == 0) { 804 // Build a minimal pipeline based on the semantics required by Clang, 805 // which is just that always inlining occurs. 806 MPM.addPass(AlwaysInlinerPass()); 807 } else { 808 // Otherwise, use the default pass pipeline. We also have to map our 809 // optimization levels into one of the distinct levels used to configure 810 // the pipeline. 811 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 812 813 MPM = PB.buildPerModuleDefaultPipeline(Level); 814 } 815 } 816 817 // FIXME: We still use the legacy pass manager to do code generation. We 818 // create that pass manager here and use it as needed below. 819 legacy::PassManager CodeGenPasses; 820 bool NeedCodeGen = false; 821 822 // Append any output we need to the pass manager. 823 switch (Action) { 824 case Backend_EmitNothing: 825 break; 826 827 case Backend_EmitBC: 828 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 829 CodeGenOpts.EmitSummaryIndex, 830 CodeGenOpts.EmitSummaryIndex)); 831 break; 832 833 case Backend_EmitLL: 834 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 835 break; 836 837 case Backend_EmitAssembly: 838 case Backend_EmitMCNull: 839 case Backend_EmitObj: 840 NeedCodeGen = true; 841 CodeGenPasses.add( 842 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 843 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 844 // FIXME: Should we handle this error differently? 845 return; 846 break; 847 } 848 849 // Before executing passes, print the final values of the LLVM options. 850 cl::PrintOptionValues(); 851 852 // Now that we have all of the passes ready, run them. 853 { 854 PrettyStackTraceString CrashInfo("Optimizer"); 855 MPM.run(*TheModule, MAM); 856 } 857 858 // Now if needed, run the legacy PM for codegen. 859 if (NeedCodeGen) { 860 PrettyStackTraceString CrashInfo("Code generation"); 861 CodeGenPasses.run(*TheModule); 862 } 863 } 864 865 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 866 std::unique_ptr<raw_pwrite_stream> OS, 867 std::string SampleProfile) { 868 StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>> 869 ModuleToDefinedGVSummaries; 870 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 871 872 // We can simply import the values mentioned in the combined index, since 873 // we should only invoke this using the individual indexes written out 874 // via a WriteIndexesThinBackend. 875 FunctionImporter::ImportMapTy ImportList; 876 for (auto &GlobalList : *CombinedIndex) { 877 auto GUID = GlobalList.first; 878 assert(GlobalList.second.size() == 1 && 879 "Expected individual combined index to have one summary per GUID"); 880 auto &Summary = GlobalList.second[0]; 881 // Skip the summaries for the importing module. These are included to 882 // e.g. record required linkage changes. 883 if (Summary->modulePath() == M->getModuleIdentifier()) 884 continue; 885 // Doesn't matter what value we plug in to the map, just needs an entry 886 // to provoke importing by thinBackend. 887 ImportList[Summary->modulePath()][GUID] = 1; 888 } 889 890 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 891 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 892 893 for (auto &I : ImportList) { 894 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 895 llvm::MemoryBuffer::getFile(I.first()); 896 if (!MBOrErr) { 897 errs() << "Error loading imported file '" << I.first() 898 << "': " << MBOrErr.getError().message() << "\n"; 899 return; 900 } 901 902 Expected<std::vector<BitcodeModule>> BMsOrErr = 903 getBitcodeModuleList(**MBOrErr); 904 if (!BMsOrErr) { 905 handleAllErrors(BMsOrErr.takeError(), [&](ErrorInfoBase &EIB) { 906 errs() << "Error loading imported file '" << I.first() 907 << "': " << EIB.message() << '\n'; 908 }); 909 return; 910 } 911 912 // The bitcode file may contain multiple modules, we want the one with a 913 // summary. 914 bool FoundModule = false; 915 for (BitcodeModule &BM : *BMsOrErr) { 916 Expected<bool> HasSummary = BM.hasSummary(); 917 if (HasSummary && *HasSummary) { 918 ModuleMap.insert({I.first(), BM}); 919 FoundModule = true; 920 break; 921 } 922 } 923 if (!FoundModule) { 924 errs() << "Error loading imported file '" << I.first() 925 << "': Could not find module summary\n"; 926 return; 927 } 928 929 OwnedImports.push_back(std::move(*MBOrErr)); 930 } 931 auto AddStream = [&](size_t Task) { 932 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 933 }; 934 lto::Config Conf; 935 Conf.SampleProfile = SampleProfile; 936 if (Error E = thinBackend( 937 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 938 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 939 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 940 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 941 }); 942 } 943 } 944 945 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 946 const HeaderSearchOptions &HeaderOpts, 947 const CodeGenOptions &CGOpts, 948 const clang::TargetOptions &TOpts, 949 const LangOptions &LOpts, 950 const llvm::DataLayout &TDesc, Module *M, 951 BackendAction Action, 952 std::unique_ptr<raw_pwrite_stream> OS) { 953 if (!CGOpts.ThinLTOIndexFile.empty()) { 954 // If we are performing a ThinLTO importing compile, load the function index 955 // into memory and pass it into runThinLTOBackend, which will run the 956 // function importer and invoke LTO passes. 957 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 958 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); 959 if (!IndexOrErr) { 960 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 961 "Error loading index file '" + 962 CGOpts.ThinLTOIndexFile + "': "); 963 return; 964 } 965 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 966 // A null CombinedIndex means we should skip ThinLTO compilation 967 // (LLVM will optionally ignore empty index files, returning null instead 968 // of an error). 969 bool DoThinLTOBackend = CombinedIndex != nullptr; 970 if (DoThinLTOBackend) { 971 runThinLTOBackend(CombinedIndex.get(), M, std::move(OS), 972 CGOpts.SampleProfileFile); 973 return; 974 } 975 } 976 977 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 978 979 if (CGOpts.ExperimentalNewPassManager) 980 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 981 else 982 AsmHelper.EmitAssembly(Action, std::move(OS)); 983 984 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 985 // DataLayout. 986 if (AsmHelper.TM) { 987 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 988 if (DLDesc != TDesc.getStringRepresentation()) { 989 unsigned DiagID = Diags.getCustomDiagID( 990 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 991 "expected target description '%1'"); 992 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 993 } 994 } 995 } 996 997 static const char* getSectionNameForBitcode(const Triple &T) { 998 switch (T.getObjectFormat()) { 999 case Triple::MachO: 1000 return "__LLVM,__bitcode"; 1001 case Triple::COFF: 1002 case Triple::ELF: 1003 case Triple::Wasm: 1004 case Triple::UnknownObjectFormat: 1005 return ".llvmbc"; 1006 } 1007 llvm_unreachable("Unimplemented ObjectFormatType"); 1008 } 1009 1010 static const char* getSectionNameForCommandline(const Triple &T) { 1011 switch (T.getObjectFormat()) { 1012 case Triple::MachO: 1013 return "__LLVM,__cmdline"; 1014 case Triple::COFF: 1015 case Triple::ELF: 1016 case Triple::Wasm: 1017 case Triple::UnknownObjectFormat: 1018 return ".llvmcmd"; 1019 } 1020 llvm_unreachable("Unimplemented ObjectFormatType"); 1021 } 1022 1023 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1024 // __LLVM,__bitcode section. 1025 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1026 llvm::MemoryBufferRef Buf) { 1027 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1028 return; 1029 1030 // Save llvm.compiler.used and remote it. 1031 SmallVector<Constant*, 2> UsedArray; 1032 SmallSet<GlobalValue*, 4> UsedGlobals; 1033 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1034 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1035 for (auto *GV : UsedGlobals) { 1036 if (GV->getName() != "llvm.embedded.module" && 1037 GV->getName() != "llvm.cmdline") 1038 UsedArray.push_back( 1039 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1040 } 1041 if (Used) 1042 Used->eraseFromParent(); 1043 1044 // Embed the bitcode for the llvm module. 1045 std::string Data; 1046 ArrayRef<uint8_t> ModuleData; 1047 Triple T(M->getTargetTriple()); 1048 // Create a constant that contains the bitcode. 1049 // In case of embedding a marker, ignore the input Buf and use the empty 1050 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1051 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1052 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1053 (const unsigned char *)Buf.getBufferEnd())) { 1054 // If the input is LLVM Assembly, bitcode is produced by serializing 1055 // the module. Use-lists order need to be perserved in this case. 1056 llvm::raw_string_ostream OS(Data); 1057 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1058 ModuleData = 1059 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1060 } else 1061 // If the input is LLVM bitcode, write the input byte stream directly. 1062 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1063 Buf.getBufferSize()); 1064 } 1065 llvm::Constant *ModuleConstant = 1066 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1067 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1068 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1069 ModuleConstant); 1070 GV->setSection(getSectionNameForBitcode(T)); 1071 UsedArray.push_back( 1072 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1073 if (llvm::GlobalVariable *Old = 1074 M->getGlobalVariable("llvm.embedded.module", true)) { 1075 assert(Old->hasOneUse() && 1076 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1077 GV->takeName(Old); 1078 Old->eraseFromParent(); 1079 } else { 1080 GV->setName("llvm.embedded.module"); 1081 } 1082 1083 // Skip if only bitcode needs to be embedded. 1084 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1085 // Embed command-line options. 1086 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1087 CGOpts.CmdArgs.size()); 1088 llvm::Constant *CmdConstant = 1089 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1090 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1091 llvm::GlobalValue::PrivateLinkage, 1092 CmdConstant); 1093 GV->setSection(getSectionNameForCommandline(T)); 1094 UsedArray.push_back( 1095 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1096 if (llvm::GlobalVariable *Old = 1097 M->getGlobalVariable("llvm.cmdline", true)) { 1098 assert(Old->hasOneUse() && 1099 "llvm.cmdline can only be used once in llvm.compiler.used"); 1100 GV->takeName(Old); 1101 Old->eraseFromParent(); 1102 } else { 1103 GV->setName("llvm.cmdline"); 1104 } 1105 } 1106 1107 if (UsedArray.empty()) 1108 return; 1109 1110 // Recreate llvm.compiler.used. 1111 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1112 auto *NewUsed = new GlobalVariable( 1113 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1114 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1115 NewUsed->setSection("llvm.metadata"); 1116 } 1117