1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Passes/StandardInstrumentations.h" 41 #include "llvm/Support/BuryPointer.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/PrettyStackTrace.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/Coroutines.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 56 #include "llvm/Transforms/InstCombine/InstCombine.h" 57 #include "llvm/Transforms/Instrumentation.h" 58 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 59 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 60 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 61 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 62 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 63 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 64 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 65 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 66 #include "llvm/Transforms/ObjCARC.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Scalar/GVN.h" 69 #include "llvm/Transforms/Utils.h" 70 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 71 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 72 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 73 #include "llvm/Transforms/Utils/SymbolRewriter.h" 74 #include <memory> 75 using namespace clang; 76 using namespace llvm; 77 78 namespace { 79 80 // Default filename used for profile generation. 81 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 82 83 class EmitAssemblyHelper { 84 DiagnosticsEngine &Diags; 85 const HeaderSearchOptions &HSOpts; 86 const CodeGenOptions &CodeGenOpts; 87 const clang::TargetOptions &TargetOpts; 88 const LangOptions &LangOpts; 89 Module *TheModule; 90 91 Timer CodeGenerationTime; 92 93 std::unique_ptr<raw_pwrite_stream> OS; 94 95 TargetIRAnalysis getTargetIRAnalysis() const { 96 if (TM) 97 return TM->getTargetIRAnalysis(); 98 99 return TargetIRAnalysis(); 100 } 101 102 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 103 104 /// Generates the TargetMachine. 105 /// Leaves TM unchanged if it is unable to create the target machine. 106 /// Some of our clang tests specify triples which are not built 107 /// into clang. This is okay because these tests check the generated 108 /// IR, and they require DataLayout which depends on the triple. 109 /// In this case, we allow this method to fail and not report an error. 110 /// When MustCreateTM is used, we print an error if we are unable to load 111 /// the requested target. 112 void CreateTargetMachine(bool MustCreateTM); 113 114 /// Add passes necessary to emit assembly or LLVM IR. 115 /// 116 /// \return True on success. 117 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 118 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 119 120 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 121 std::error_code EC; 122 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 123 llvm::sys::fs::OF_None); 124 if (EC) { 125 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 126 F.reset(); 127 } 128 return F; 129 } 130 131 public: 132 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 133 const HeaderSearchOptions &HeaderSearchOpts, 134 const CodeGenOptions &CGOpts, 135 const clang::TargetOptions &TOpts, 136 const LangOptions &LOpts, Module *M) 137 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 138 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 139 CodeGenerationTime("codegen", "Code Generation Time") {} 140 141 ~EmitAssemblyHelper() { 142 if (CodeGenOpts.DisableFree) 143 BuryPointer(std::move(TM)); 144 } 145 146 std::unique_ptr<TargetMachine> TM; 147 148 void EmitAssembly(BackendAction Action, 149 std::unique_ptr<raw_pwrite_stream> OS); 150 151 void EmitAssemblyWithNewPassManager(BackendAction Action, 152 std::unique_ptr<raw_pwrite_stream> OS); 153 }; 154 155 // We need this wrapper to access LangOpts and CGOpts from extension functions 156 // that we add to the PassManagerBuilder. 157 class PassManagerBuilderWrapper : public PassManagerBuilder { 158 public: 159 PassManagerBuilderWrapper(const Triple &TargetTriple, 160 const CodeGenOptions &CGOpts, 161 const LangOptions &LangOpts) 162 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 163 LangOpts(LangOpts) {} 164 const Triple &getTargetTriple() const { return TargetTriple; } 165 const CodeGenOptions &getCGOpts() const { return CGOpts; } 166 const LangOptions &getLangOpts() const { return LangOpts; } 167 168 private: 169 const Triple &TargetTriple; 170 const CodeGenOptions &CGOpts; 171 const LangOptions &LangOpts; 172 }; 173 } 174 175 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 176 if (Builder.OptLevel > 0) 177 PM.add(createObjCARCAPElimPass()); 178 } 179 180 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 181 if (Builder.OptLevel > 0) 182 PM.add(createObjCARCExpandPass()); 183 } 184 185 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCOptPass()); 188 } 189 190 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddDiscriminatorsPass()); 193 } 194 195 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 PM.add(createBoundsCheckingLegacyPass()); 198 } 199 200 static SanitizerCoverageOptions 201 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 209 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 210 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 211 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 212 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 213 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 214 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 217 return Opts; 218 } 219 220 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 221 legacy::PassManagerBase &PM) { 222 const PassManagerBuilderWrapper &BuilderWrapper = 223 static_cast<const PassManagerBuilderWrapper &>(Builder); 224 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 225 auto Opts = getSancovOptsFromCGOpts(CGOpts); 226 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 227 PM.add(createSanitizerCoverageLegacyPassPass(Opts)); 228 } 229 230 // Check if ASan should use GC-friendly instrumentation for globals. 231 // First of all, there is no point if -fdata-sections is off (expect for MachO, 232 // where this is not a factor). Also, on ELF this feature requires an assembler 233 // extension that only works with -integrated-as at the moment. 234 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 235 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 236 return false; 237 switch (T.getObjectFormat()) { 238 case Triple::MachO: 239 case Triple::COFF: 240 return true; 241 case Triple::ELF: 242 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 243 case Triple::XCOFF: 244 llvm::report_fatal_error("ASan not implemented for XCOFF."); 245 case Triple::Wasm: 246 case Triple::UnknownObjectFormat: 247 break; 248 } 249 return false; 250 } 251 252 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 253 legacy::PassManagerBase &PM) { 254 const PassManagerBuilderWrapper &BuilderWrapper = 255 static_cast<const PassManagerBuilderWrapper&>(Builder); 256 const Triple &T = BuilderWrapper.getTargetTriple(); 257 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 258 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 259 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 260 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 261 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 262 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 263 UseAfterScope)); 264 PM.add(createModuleAddressSanitizerLegacyPassPass( 265 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 266 } 267 268 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 PM.add(createAddressSanitizerFunctionPass( 271 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 272 PM.add(createModuleAddressSanitizerLegacyPassPass( 273 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 274 /*UseOdrIndicator*/ false)); 275 } 276 277 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 278 legacy::PassManagerBase &PM) { 279 const PassManagerBuilderWrapper &BuilderWrapper = 280 static_cast<const PassManagerBuilderWrapper &>(Builder); 281 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 282 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 283 PM.add( 284 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 285 } 286 287 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 288 legacy::PassManagerBase &PM) { 289 PM.add(createHWAddressSanitizerLegacyPassPass( 290 /*CompileKernel*/ true, /*Recover*/ true)); 291 } 292 293 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 294 legacy::PassManagerBase &PM, 295 bool CompileKernel) { 296 const PassManagerBuilderWrapper &BuilderWrapper = 297 static_cast<const PassManagerBuilderWrapper&>(Builder); 298 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 299 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 300 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 301 PM.add(createMemorySanitizerLegacyPassPass( 302 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 303 304 // MemorySanitizer inserts complex instrumentation that mostly follows 305 // the logic of the original code, but operates on "shadow" values. 306 // It can benefit from re-running some general purpose optimization passes. 307 if (Builder.OptLevel > 0) { 308 PM.add(createEarlyCSEPass()); 309 PM.add(createReassociatePass()); 310 PM.add(createLICMPass()); 311 PM.add(createGVNPass()); 312 PM.add(createInstructionCombiningPass()); 313 PM.add(createDeadStoreEliminationPass()); 314 } 315 } 316 317 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 320 } 321 322 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 325 } 326 327 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 328 legacy::PassManagerBase &PM) { 329 PM.add(createThreadSanitizerLegacyPassPass()); 330 } 331 332 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 const PassManagerBuilderWrapper &BuilderWrapper = 335 static_cast<const PassManagerBuilderWrapper&>(Builder); 336 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 337 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 338 } 339 340 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 341 const CodeGenOptions &CodeGenOpts) { 342 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 343 if (!CodeGenOpts.SimplifyLibCalls) 344 TLII->disableAllFunctions(); 345 else { 346 // Disable individual libc/libm calls in TargetLibraryInfo. 347 LibFunc F; 348 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 349 if (TLII->getLibFunc(FuncName, F)) 350 TLII->setUnavailable(F); 351 } 352 353 switch (CodeGenOpts.getVecLib()) { 354 case CodeGenOptions::Accelerate: 355 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 356 break; 357 case CodeGenOptions::MASSV: 358 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 359 break; 360 case CodeGenOptions::SVML: 361 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 362 break; 363 default: 364 break; 365 } 366 return TLII; 367 } 368 369 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 370 legacy::PassManager *MPM) { 371 llvm::SymbolRewriter::RewriteDescriptorList DL; 372 373 llvm::SymbolRewriter::RewriteMapParser MapParser; 374 for (const auto &MapFile : Opts.RewriteMapFiles) 375 MapParser.parse(MapFile, &DL); 376 377 MPM->add(createRewriteSymbolsPass(DL)); 378 } 379 380 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 381 switch (CodeGenOpts.OptimizationLevel) { 382 default: 383 llvm_unreachable("Invalid optimization level!"); 384 case 0: 385 return CodeGenOpt::None; 386 case 1: 387 return CodeGenOpt::Less; 388 case 2: 389 return CodeGenOpt::Default; // O2/Os/Oz 390 case 3: 391 return CodeGenOpt::Aggressive; 392 } 393 } 394 395 static Optional<llvm::CodeModel::Model> 396 getCodeModel(const CodeGenOptions &CodeGenOpts) { 397 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 398 .Case("tiny", llvm::CodeModel::Tiny) 399 .Case("small", llvm::CodeModel::Small) 400 .Case("kernel", llvm::CodeModel::Kernel) 401 .Case("medium", llvm::CodeModel::Medium) 402 .Case("large", llvm::CodeModel::Large) 403 .Case("default", ~1u) 404 .Default(~0u); 405 assert(CodeModel != ~0u && "invalid code model!"); 406 if (CodeModel == ~1u) 407 return None; 408 return static_cast<llvm::CodeModel::Model>(CodeModel); 409 } 410 411 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 412 if (Action == Backend_EmitObj) 413 return TargetMachine::CGFT_ObjectFile; 414 else if (Action == Backend_EmitMCNull) 415 return TargetMachine::CGFT_Null; 416 else { 417 assert(Action == Backend_EmitAssembly && "Invalid action!"); 418 return TargetMachine::CGFT_AssemblyFile; 419 } 420 } 421 422 static void initTargetOptions(llvm::TargetOptions &Options, 423 const CodeGenOptions &CodeGenOpts, 424 const clang::TargetOptions &TargetOpts, 425 const LangOptions &LangOpts, 426 const HeaderSearchOptions &HSOpts) { 427 Options.ThreadModel = 428 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 429 .Case("posix", llvm::ThreadModel::POSIX) 430 .Case("single", llvm::ThreadModel::Single); 431 432 // Set float ABI type. 433 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 434 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 435 "Invalid Floating Point ABI!"); 436 Options.FloatABIType = 437 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 438 .Case("soft", llvm::FloatABI::Soft) 439 .Case("softfp", llvm::FloatABI::Soft) 440 .Case("hard", llvm::FloatABI::Hard) 441 .Default(llvm::FloatABI::Default); 442 443 // Set FP fusion mode. 444 switch (LangOpts.getDefaultFPContractMode()) { 445 case LangOptions::FPC_Off: 446 // Preserve any contraction performed by the front-end. (Strict performs 447 // splitting of the muladd intrinsic in the backend.) 448 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 449 break; 450 case LangOptions::FPC_On: 451 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 452 break; 453 case LangOptions::FPC_Fast: 454 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 455 break; 456 } 457 458 Options.UseInitArray = CodeGenOpts.UseInitArray; 459 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 460 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 461 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 462 463 // Set EABI version. 464 Options.EABIVersion = TargetOpts.EABIVersion; 465 466 if (LangOpts.SjLjExceptions) 467 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 468 if (LangOpts.SEHExceptions) 469 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 470 if (LangOpts.DWARFExceptions) 471 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 472 473 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 474 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 475 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 476 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 477 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 478 Options.FunctionSections = CodeGenOpts.FunctionSections; 479 Options.DataSections = CodeGenOpts.DataSections; 480 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 481 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 482 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 483 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 484 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 485 Options.EmitAddrsig = CodeGenOpts.Addrsig; 486 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 487 488 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 489 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 490 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 491 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 492 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 493 Options.MCOptions.MCIncrementalLinkerCompatible = 494 CodeGenOpts.IncrementalLinkerCompatible; 495 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 496 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 497 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 498 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 499 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 500 Options.MCOptions.ABIName = TargetOpts.ABI; 501 for (const auto &Entry : HSOpts.UserEntries) 502 if (!Entry.IsFramework && 503 (Entry.Group == frontend::IncludeDirGroup::Quoted || 504 Entry.Group == frontend::IncludeDirGroup::Angled || 505 Entry.Group == frontend::IncludeDirGroup::System)) 506 Options.MCOptions.IASSearchPaths.push_back( 507 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 508 } 509 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 510 if (CodeGenOpts.DisableGCov) 511 return None; 512 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 513 return None; 514 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 515 // LLVM's -default-gcov-version flag is set to something invalid. 516 GCOVOptions Options; 517 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 518 Options.EmitData = CodeGenOpts.EmitGcovArcs; 519 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 520 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 521 Options.NoRedZone = CodeGenOpts.DisableRedZone; 522 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 523 Options.Filter = CodeGenOpts.ProfileFilterFiles; 524 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 525 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 526 return Options; 527 } 528 529 static Optional<InstrProfOptions> 530 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 531 const LangOptions &LangOpts) { 532 if (!CodeGenOpts.hasProfileClangInstr()) 533 return None; 534 InstrProfOptions Options; 535 Options.NoRedZone = CodeGenOpts.DisableRedZone; 536 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 537 538 // TODO: Surface the option to emit atomic profile counter increments at 539 // the driver level. 540 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 541 return Options; 542 } 543 544 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 545 legacy::FunctionPassManager &FPM) { 546 // Handle disabling of all LLVM passes, where we want to preserve the 547 // internal module before any optimization. 548 if (CodeGenOpts.DisableLLVMPasses) 549 return; 550 551 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 552 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 553 // are inserted before PMBuilder ones - they'd get the default-constructed 554 // TLI with an unknown target otherwise. 555 Triple TargetTriple(TheModule->getTargetTriple()); 556 std::unique_ptr<TargetLibraryInfoImpl> TLII( 557 createTLII(TargetTriple, CodeGenOpts)); 558 559 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 560 561 // At O0 and O1 we only run the always inliner which is more efficient. At 562 // higher optimization levels we run the normal inliner. 563 if (CodeGenOpts.OptimizationLevel <= 1) { 564 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 565 !CodeGenOpts.DisableLifetimeMarkers); 566 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 567 } else { 568 // We do not want to inline hot callsites for SamplePGO module-summary build 569 // because profile annotation will happen again in ThinLTO backend, and we 570 // want the IR of the hot path to match the profile. 571 PMBuilder.Inliner = createFunctionInliningPass( 572 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 573 (!CodeGenOpts.SampleProfileFile.empty() && 574 CodeGenOpts.PrepareForThinLTO)); 575 } 576 577 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 578 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 579 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 580 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 581 582 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 583 // Loop interleaving in the loop vectorizer has historically been set to be 584 // enabled when loop unrolling is enabled. 585 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 586 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 587 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 588 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 589 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 590 591 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 592 593 if (TM) 594 TM->adjustPassManager(PMBuilder); 595 596 if (CodeGenOpts.DebugInfoForProfiling || 597 !CodeGenOpts.SampleProfileFile.empty()) 598 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 599 addAddDiscriminatorsPass); 600 601 // In ObjC ARC mode, add the main ARC optimization passes. 602 if (LangOpts.ObjCAutoRefCount) { 603 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 604 addObjCARCExpandPass); 605 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 606 addObjCARCAPElimPass); 607 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 608 addObjCARCOptPass); 609 } 610 611 if (LangOpts.Coroutines) 612 addCoroutinePassesToExtensionPoints(PMBuilder); 613 614 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 615 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 616 addBoundsCheckingPass); 617 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 618 addBoundsCheckingPass); 619 } 620 621 if (CodeGenOpts.SanitizeCoverageType || 622 CodeGenOpts.SanitizeCoverageIndirectCalls || 623 CodeGenOpts.SanitizeCoverageTraceCmp) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 625 addSanitizerCoveragePass); 626 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 627 addSanitizerCoveragePass); 628 } 629 630 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addAddressSanitizerPasses); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addAddressSanitizerPasses); 635 } 636 637 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 639 addKernelAddressSanitizerPasses); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addKernelAddressSanitizerPasses); 642 } 643 644 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addHWAddressSanitizerPasses); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addHWAddressSanitizerPasses); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addKernelHWAddressSanitizerPasses); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addKernelHWAddressSanitizerPasses); 656 } 657 658 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addMemorySanitizerPass); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addMemorySanitizerPass); 663 } 664 665 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addKernelMemorySanitizerPass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addKernelMemorySanitizerPass); 670 } 671 672 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addThreadSanitizerPass); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addThreadSanitizerPass); 677 } 678 679 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 680 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 681 addDataFlowSanitizerPass); 682 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 683 addDataFlowSanitizerPass); 684 } 685 686 // Set up the per-function pass manager. 687 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 688 if (CodeGenOpts.VerifyModule) 689 FPM.add(createVerifierPass()); 690 691 // Set up the per-module pass manager. 692 if (!CodeGenOpts.RewriteMapFiles.empty()) 693 addSymbolRewriterPass(CodeGenOpts, &MPM); 694 695 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 696 MPM.add(createGCOVProfilerPass(*Options)); 697 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 698 MPM.add(createStripSymbolsPass(true)); 699 } 700 701 if (Optional<InstrProfOptions> Options = 702 getInstrProfOptions(CodeGenOpts, LangOpts)) 703 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 704 705 bool hasIRInstr = false; 706 if (CodeGenOpts.hasProfileIRInstr()) { 707 PMBuilder.EnablePGOInstrGen = true; 708 hasIRInstr = true; 709 } 710 if (CodeGenOpts.hasProfileCSIRInstr()) { 711 assert(!CodeGenOpts.hasProfileCSIRUse() && 712 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 713 "same time"); 714 assert(!hasIRInstr && 715 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 716 "same time"); 717 PMBuilder.EnablePGOCSInstrGen = true; 718 hasIRInstr = true; 719 } 720 if (hasIRInstr) { 721 if (!CodeGenOpts.InstrProfileOutput.empty()) 722 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 723 else 724 PMBuilder.PGOInstrGen = DefaultProfileGenName; 725 } 726 if (CodeGenOpts.hasProfileIRUse()) { 727 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 728 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 729 } 730 731 if (!CodeGenOpts.SampleProfileFile.empty()) 732 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 733 734 PMBuilder.populateFunctionPassManager(FPM); 735 PMBuilder.populateModulePassManager(MPM); 736 } 737 738 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 739 SmallVector<const char *, 16> BackendArgs; 740 BackendArgs.push_back("clang"); // Fake program name. 741 if (!CodeGenOpts.DebugPass.empty()) { 742 BackendArgs.push_back("-debug-pass"); 743 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 744 } 745 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 746 BackendArgs.push_back("-limit-float-precision"); 747 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 748 } 749 BackendArgs.push_back(nullptr); 750 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 751 BackendArgs.data()); 752 } 753 754 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 755 // Create the TargetMachine for generating code. 756 std::string Error; 757 std::string Triple = TheModule->getTargetTriple(); 758 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 759 if (!TheTarget) { 760 if (MustCreateTM) 761 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 762 return; 763 } 764 765 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 766 std::string FeaturesStr = 767 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 768 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 769 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 770 771 llvm::TargetOptions Options; 772 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 773 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 774 Options, RM, CM, OptLevel)); 775 } 776 777 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 778 BackendAction Action, 779 raw_pwrite_stream &OS, 780 raw_pwrite_stream *DwoOS) { 781 // Add LibraryInfo. 782 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 783 std::unique_ptr<TargetLibraryInfoImpl> TLII( 784 createTLII(TargetTriple, CodeGenOpts)); 785 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 786 787 // Normal mode, emit a .s or .o file by running the code generator. Note, 788 // this also adds codegenerator level optimization passes. 789 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 790 791 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 792 // "codegen" passes so that it isn't run multiple times when there is 793 // inlining happening. 794 if (CodeGenOpts.OptimizationLevel > 0) 795 CodeGenPasses.add(createObjCARCContractPass()); 796 797 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 798 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 799 Diags.Report(diag::err_fe_unable_to_interface_with_target); 800 return false; 801 } 802 803 return true; 804 } 805 806 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 807 std::unique_ptr<raw_pwrite_stream> OS) { 808 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 809 810 setCommandLineOpts(CodeGenOpts); 811 812 bool UsesCodeGen = (Action != Backend_EmitNothing && 813 Action != Backend_EmitBC && 814 Action != Backend_EmitLL); 815 CreateTargetMachine(UsesCodeGen); 816 817 if (UsesCodeGen && !TM) 818 return; 819 if (TM) 820 TheModule->setDataLayout(TM->createDataLayout()); 821 822 legacy::PassManager PerModulePasses; 823 PerModulePasses.add( 824 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 825 826 legacy::FunctionPassManager PerFunctionPasses(TheModule); 827 PerFunctionPasses.add( 828 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 829 830 CreatePasses(PerModulePasses, PerFunctionPasses); 831 832 legacy::PassManager CodeGenPasses; 833 CodeGenPasses.add( 834 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 835 836 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 837 838 switch (Action) { 839 case Backend_EmitNothing: 840 break; 841 842 case Backend_EmitBC: 843 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 844 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 845 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 846 if (!ThinLinkOS) 847 return; 848 } 849 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 850 CodeGenOpts.EnableSplitLTOUnit); 851 PerModulePasses.add(createWriteThinLTOBitcodePass( 852 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 853 } else { 854 // Emit a module summary by default for Regular LTO except for ld64 855 // targets 856 bool EmitLTOSummary = 857 (CodeGenOpts.PrepareForLTO && 858 !CodeGenOpts.DisableLLVMPasses && 859 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 860 llvm::Triple::Apple); 861 if (EmitLTOSummary) { 862 if (!TheModule->getModuleFlag("ThinLTO")) 863 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 864 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 865 uint32_t(1)); 866 } 867 868 PerModulePasses.add(createBitcodeWriterPass( 869 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 870 } 871 break; 872 873 case Backend_EmitLL: 874 PerModulePasses.add( 875 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 876 break; 877 878 default: 879 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 880 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 881 if (!DwoOS) 882 return; 883 } 884 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 885 DwoOS ? &DwoOS->os() : nullptr)) 886 return; 887 } 888 889 // Before executing passes, print the final values of the LLVM options. 890 cl::PrintOptionValues(); 891 892 // Run passes. For now we do all passes at once, but eventually we 893 // would like to have the option of streaming code generation. 894 895 { 896 PrettyStackTraceString CrashInfo("Per-function optimization"); 897 898 PerFunctionPasses.doInitialization(); 899 for (Function &F : *TheModule) 900 if (!F.isDeclaration()) 901 PerFunctionPasses.run(F); 902 PerFunctionPasses.doFinalization(); 903 } 904 905 { 906 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 907 PerModulePasses.run(*TheModule); 908 } 909 910 { 911 PrettyStackTraceString CrashInfo("Code generation"); 912 CodeGenPasses.run(*TheModule); 913 } 914 915 if (ThinLinkOS) 916 ThinLinkOS->keep(); 917 if (DwoOS) 918 DwoOS->keep(); 919 } 920 921 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 922 switch (Opts.OptimizationLevel) { 923 default: 924 llvm_unreachable("Invalid optimization level!"); 925 926 case 1: 927 return PassBuilder::O1; 928 929 case 2: 930 switch (Opts.OptimizeSize) { 931 default: 932 llvm_unreachable("Invalid optimization level for size!"); 933 934 case 0: 935 return PassBuilder::O2; 936 937 case 1: 938 return PassBuilder::Os; 939 940 case 2: 941 return PassBuilder::Oz; 942 } 943 944 case 3: 945 return PassBuilder::O3; 946 } 947 } 948 949 static void addSanitizersAtO0(ModulePassManager &MPM, 950 const Triple &TargetTriple, 951 const LangOptions &LangOpts, 952 const CodeGenOptions &CodeGenOpts) { 953 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 954 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 955 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 956 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 957 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 958 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 959 MPM.addPass( 960 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 961 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 962 }; 963 964 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 965 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 966 } 967 968 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 969 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 970 } 971 972 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 973 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 974 } 975 976 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 977 MPM.addPass(createModuleToFunctionPassAdaptor( 978 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 979 } 980 981 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 982 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 983 } 984 } 985 986 /// A clean version of `EmitAssembly` that uses the new pass manager. 987 /// 988 /// Not all features are currently supported in this system, but where 989 /// necessary it falls back to the legacy pass manager to at least provide 990 /// basic functionality. 991 /// 992 /// This API is planned to have its functionality finished and then to replace 993 /// `EmitAssembly` at some point in the future when the default switches. 994 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 995 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 996 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 997 setCommandLineOpts(CodeGenOpts); 998 999 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1000 Action != Backend_EmitBC && 1001 Action != Backend_EmitLL); 1002 CreateTargetMachine(RequiresCodeGen); 1003 1004 if (RequiresCodeGen && !TM) 1005 return; 1006 if (TM) 1007 TheModule->setDataLayout(TM->createDataLayout()); 1008 1009 Optional<PGOOptions> PGOOpt; 1010 1011 if (CodeGenOpts.hasProfileIRInstr()) 1012 // -fprofile-generate. 1013 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1014 ? DefaultProfileGenName 1015 : CodeGenOpts.InstrProfileOutput, 1016 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1017 CodeGenOpts.DebugInfoForProfiling); 1018 else if (CodeGenOpts.hasProfileIRUse()) { 1019 // -fprofile-use. 1020 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1021 : PGOOptions::NoCSAction; 1022 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1023 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1024 CSAction, CodeGenOpts.DebugInfoForProfiling); 1025 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1026 // -fprofile-sample-use 1027 PGOOpt = 1028 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1029 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1030 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1031 else if (CodeGenOpts.DebugInfoForProfiling) 1032 // -fdebug-info-for-profiling 1033 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1034 PGOOptions::NoCSAction, true); 1035 1036 // Check to see if we want to generate a CS profile. 1037 if (CodeGenOpts.hasProfileCSIRInstr()) { 1038 assert(!CodeGenOpts.hasProfileCSIRUse() && 1039 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1040 "the same time"); 1041 if (PGOOpt.hasValue()) { 1042 assert(PGOOpt->Action != PGOOptions::IRInstr && 1043 PGOOpt->Action != PGOOptions::SampleUse && 1044 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1045 " pass"); 1046 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1047 ? DefaultProfileGenName 1048 : CodeGenOpts.InstrProfileOutput; 1049 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1050 } else 1051 PGOOpt = PGOOptions("", 1052 CodeGenOpts.InstrProfileOutput.empty() 1053 ? DefaultProfileGenName 1054 : CodeGenOpts.InstrProfileOutput, 1055 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1056 CodeGenOpts.DebugInfoForProfiling); 1057 } 1058 1059 PipelineTuningOptions PTO; 1060 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1061 // For historical reasons, loop interleaving is set to mirror setting for loop 1062 // unrolling. 1063 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1064 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1065 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1066 1067 PassInstrumentationCallbacks PIC; 1068 StandardInstrumentations SI; 1069 SI.registerCallbacks(PIC); 1070 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1071 1072 // Attempt to load pass plugins and register their callbacks with PB. 1073 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1074 auto PassPlugin = PassPlugin::Load(PluginFN); 1075 if (PassPlugin) { 1076 PassPlugin->registerPassBuilderCallbacks(PB); 1077 } else { 1078 Diags.Report(diag::err_fe_unable_to_load_plugin) 1079 << PluginFN << toString(PassPlugin.takeError()); 1080 } 1081 } 1082 1083 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1084 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1085 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1086 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1087 1088 // Register the AA manager first so that our version is the one used. 1089 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1090 1091 // Register the target library analysis directly and give it a customized 1092 // preset TLI. 1093 Triple TargetTriple(TheModule->getTargetTriple()); 1094 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1095 createTLII(TargetTriple, CodeGenOpts)); 1096 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1097 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1098 1099 // Register all the basic analyses with the managers. 1100 PB.registerModuleAnalyses(MAM); 1101 PB.registerCGSCCAnalyses(CGAM); 1102 PB.registerFunctionAnalyses(FAM); 1103 PB.registerLoopAnalyses(LAM); 1104 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1105 1106 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1107 1108 if (!CodeGenOpts.DisableLLVMPasses) { 1109 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1110 bool IsLTO = CodeGenOpts.PrepareForLTO; 1111 1112 if (CodeGenOpts.OptimizationLevel == 0) { 1113 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1114 MPM.addPass(GCOVProfilerPass(*Options)); 1115 if (Optional<InstrProfOptions> Options = 1116 getInstrProfOptions(CodeGenOpts, LangOpts)) 1117 MPM.addPass(InstrProfiling(*Options, false)); 1118 1119 // Build a minimal pipeline based on the semantics required by Clang, 1120 // which is just that always inlining occurs. Further, disable generating 1121 // lifetime intrinsics to avoid enabling further optimizations during 1122 // code generation. 1123 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1124 1125 // At -O0, we can still do PGO. Add all the requested passes for 1126 // instrumentation PGO, if requested. 1127 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1128 PGOOpt->Action == PGOOptions::IRUse)) 1129 PB.addPGOInstrPassesForO0( 1130 MPM, CodeGenOpts.DebugPassManager, 1131 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1132 /* IsCS */ false, PGOOpt->ProfileFile, 1133 PGOOpt->ProfileRemappingFile); 1134 1135 // At -O0 we directly run necessary sanitizer passes. 1136 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1137 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1138 1139 // Lastly, add semantically necessary passes for LTO. 1140 if (IsLTO || IsThinLTO) { 1141 MPM.addPass(CanonicalizeAliasesPass()); 1142 MPM.addPass(NameAnonGlobalPass()); 1143 } 1144 } else { 1145 // Map our optimization levels into one of the distinct levels used to 1146 // configure the pipeline. 1147 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1148 1149 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1150 MPM.addPass(createModuleToFunctionPassAdaptor( 1151 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1152 }); 1153 1154 if (CodeGenOpts.SanitizeCoverageType || 1155 CodeGenOpts.SanitizeCoverageIndirectCalls || 1156 CodeGenOpts.SanitizeCoverageTraceCmp) { 1157 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1158 PB.registerPipelineStartEPCallback( 1159 [SancovOpts](ModulePassManager &MPM) { 1160 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1161 }); 1162 PB.registerOptimizerLastEPCallback( 1163 [SancovOpts](FunctionPassManager &FPM, 1164 PassBuilder::OptimizationLevel Level) { 1165 FPM.addPass(SanitizerCoveragePass(SancovOpts)); 1166 }); 1167 } 1168 1169 // Register callbacks to schedule sanitizer passes at the appropriate part of 1170 // the pipeline. 1171 // FIXME: either handle asan/the remaining sanitizers or error out 1172 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1173 PB.registerScalarOptimizerLateEPCallback( 1174 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1175 FPM.addPass(BoundsCheckingPass()); 1176 }); 1177 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1178 PB.registerOptimizerLastEPCallback( 1179 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1180 FPM.addPass(MemorySanitizerPass({})); 1181 }); 1182 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1183 PB.registerOptimizerLastEPCallback( 1184 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1185 FPM.addPass(ThreadSanitizerPass()); 1186 }); 1187 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1188 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1189 MPM.addPass( 1190 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1191 }); 1192 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1193 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1194 PB.registerOptimizerLastEPCallback( 1195 [Recover, UseAfterScope](FunctionPassManager &FPM, 1196 PassBuilder::OptimizationLevel Level) { 1197 FPM.addPass(AddressSanitizerPass( 1198 /*CompileKernel=*/false, Recover, UseAfterScope)); 1199 }); 1200 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1201 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1202 PB.registerPipelineStartEPCallback( 1203 [Recover, ModuleUseAfterScope, 1204 UseOdrIndicator](ModulePassManager &MPM) { 1205 MPM.addPass(ModuleAddressSanitizerPass( 1206 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1207 UseOdrIndicator)); 1208 }); 1209 } 1210 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1211 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1212 MPM.addPass(GCOVProfilerPass(*Options)); 1213 }); 1214 if (Optional<InstrProfOptions> Options = 1215 getInstrProfOptions(CodeGenOpts, LangOpts)) 1216 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1217 MPM.addPass(InstrProfiling(*Options, false)); 1218 }); 1219 1220 if (IsThinLTO) { 1221 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1222 Level, CodeGenOpts.DebugPassManager); 1223 MPM.addPass(CanonicalizeAliasesPass()); 1224 MPM.addPass(NameAnonGlobalPass()); 1225 } else if (IsLTO) { 1226 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1227 CodeGenOpts.DebugPassManager); 1228 MPM.addPass(CanonicalizeAliasesPass()); 1229 MPM.addPass(NameAnonGlobalPass()); 1230 } else { 1231 MPM = PB.buildPerModuleDefaultPipeline(Level, 1232 CodeGenOpts.DebugPassManager); 1233 } 1234 } 1235 1236 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1237 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1238 MPM.addPass(HWAddressSanitizerPass( 1239 /*CompileKernel=*/false, Recover)); 1240 } 1241 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1242 MPM.addPass(HWAddressSanitizerPass( 1243 /*CompileKernel=*/true, /*Recover=*/true)); 1244 } 1245 1246 if (CodeGenOpts.OptimizationLevel == 0) { 1247 if (CodeGenOpts.SanitizeCoverageType || 1248 CodeGenOpts.SanitizeCoverageIndirectCalls || 1249 CodeGenOpts.SanitizeCoverageTraceCmp) { 1250 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1251 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1252 MPM.addPass(createModuleToFunctionPassAdaptor( 1253 SanitizerCoveragePass(SancovOpts))); 1254 } 1255 1256 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1257 } 1258 } 1259 1260 // FIXME: We still use the legacy pass manager to do code generation. We 1261 // create that pass manager here and use it as needed below. 1262 legacy::PassManager CodeGenPasses; 1263 bool NeedCodeGen = false; 1264 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1265 1266 // Append any output we need to the pass manager. 1267 switch (Action) { 1268 case Backend_EmitNothing: 1269 break; 1270 1271 case Backend_EmitBC: 1272 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1273 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1274 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1275 if (!ThinLinkOS) 1276 return; 1277 } 1278 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1279 CodeGenOpts.EnableSplitLTOUnit); 1280 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1281 : nullptr)); 1282 } else { 1283 // Emit a module summary by default for Regular LTO except for ld64 1284 // targets 1285 bool EmitLTOSummary = 1286 (CodeGenOpts.PrepareForLTO && 1287 !CodeGenOpts.DisableLLVMPasses && 1288 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1289 llvm::Triple::Apple); 1290 if (EmitLTOSummary) { 1291 if (!TheModule->getModuleFlag("ThinLTO")) 1292 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1293 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1294 CodeGenOpts.EnableSplitLTOUnit); 1295 } 1296 MPM.addPass( 1297 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1298 } 1299 break; 1300 1301 case Backend_EmitLL: 1302 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1303 break; 1304 1305 case Backend_EmitAssembly: 1306 case Backend_EmitMCNull: 1307 case Backend_EmitObj: 1308 NeedCodeGen = true; 1309 CodeGenPasses.add( 1310 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1311 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1312 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1313 if (!DwoOS) 1314 return; 1315 } 1316 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1317 DwoOS ? &DwoOS->os() : nullptr)) 1318 // FIXME: Should we handle this error differently? 1319 return; 1320 break; 1321 } 1322 1323 // Before executing passes, print the final values of the LLVM options. 1324 cl::PrintOptionValues(); 1325 1326 // Now that we have all of the passes ready, run them. 1327 { 1328 PrettyStackTraceString CrashInfo("Optimizer"); 1329 MPM.run(*TheModule, MAM); 1330 } 1331 1332 // Now if needed, run the legacy PM for codegen. 1333 if (NeedCodeGen) { 1334 PrettyStackTraceString CrashInfo("Code generation"); 1335 CodeGenPasses.run(*TheModule); 1336 } 1337 1338 if (ThinLinkOS) 1339 ThinLinkOS->keep(); 1340 if (DwoOS) 1341 DwoOS->keep(); 1342 } 1343 1344 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1345 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1346 if (!BMsOrErr) 1347 return BMsOrErr.takeError(); 1348 1349 // The bitcode file may contain multiple modules, we want the one that is 1350 // marked as being the ThinLTO module. 1351 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1352 return *Bm; 1353 1354 return make_error<StringError>("Could not find module summary", 1355 inconvertibleErrorCode()); 1356 } 1357 1358 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1359 for (BitcodeModule &BM : BMs) { 1360 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1361 if (LTOInfo && LTOInfo->IsThinLTO) 1362 return &BM; 1363 } 1364 return nullptr; 1365 } 1366 1367 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1368 const HeaderSearchOptions &HeaderOpts, 1369 const CodeGenOptions &CGOpts, 1370 const clang::TargetOptions &TOpts, 1371 const LangOptions &LOpts, 1372 std::unique_ptr<raw_pwrite_stream> OS, 1373 std::string SampleProfile, 1374 std::string ProfileRemapping, 1375 BackendAction Action) { 1376 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1377 ModuleToDefinedGVSummaries; 1378 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1379 1380 setCommandLineOpts(CGOpts); 1381 1382 // We can simply import the values mentioned in the combined index, since 1383 // we should only invoke this using the individual indexes written out 1384 // via a WriteIndexesThinBackend. 1385 FunctionImporter::ImportMapTy ImportList; 1386 for (auto &GlobalList : *CombinedIndex) { 1387 // Ignore entries for undefined references. 1388 if (GlobalList.second.SummaryList.empty()) 1389 continue; 1390 1391 auto GUID = GlobalList.first; 1392 for (auto &Summary : GlobalList.second.SummaryList) { 1393 // Skip the summaries for the importing module. These are included to 1394 // e.g. record required linkage changes. 1395 if (Summary->modulePath() == M->getModuleIdentifier()) 1396 continue; 1397 // Add an entry to provoke importing by thinBackend. 1398 ImportList[Summary->modulePath()].insert(GUID); 1399 } 1400 } 1401 1402 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1403 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1404 1405 for (auto &I : ImportList) { 1406 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1407 llvm::MemoryBuffer::getFile(I.first()); 1408 if (!MBOrErr) { 1409 errs() << "Error loading imported file '" << I.first() 1410 << "': " << MBOrErr.getError().message() << "\n"; 1411 return; 1412 } 1413 1414 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1415 if (!BMOrErr) { 1416 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1417 errs() << "Error loading imported file '" << I.first() 1418 << "': " << EIB.message() << '\n'; 1419 }); 1420 return; 1421 } 1422 ModuleMap.insert({I.first(), *BMOrErr}); 1423 1424 OwnedImports.push_back(std::move(*MBOrErr)); 1425 } 1426 auto AddStream = [&](size_t Task) { 1427 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1428 }; 1429 lto::Config Conf; 1430 if (CGOpts.SaveTempsFilePrefix != "") { 1431 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1432 /* UseInputModulePath */ false)) { 1433 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1434 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1435 << '\n'; 1436 }); 1437 } 1438 } 1439 Conf.CPU = TOpts.CPU; 1440 Conf.CodeModel = getCodeModel(CGOpts); 1441 Conf.MAttrs = TOpts.Features; 1442 Conf.RelocModel = CGOpts.RelocationModel; 1443 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1444 Conf.OptLevel = CGOpts.OptimizationLevel; 1445 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1446 Conf.SampleProfile = std::move(SampleProfile); 1447 1448 // Context sensitive profile. 1449 if (CGOpts.hasProfileCSIRInstr()) { 1450 Conf.RunCSIRInstr = true; 1451 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1452 } else if (CGOpts.hasProfileCSIRUse()) { 1453 Conf.RunCSIRInstr = false; 1454 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1455 } 1456 1457 Conf.ProfileRemapping = std::move(ProfileRemapping); 1458 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1459 Conf.DebugPassManager = CGOpts.DebugPassManager; 1460 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1461 Conf.RemarksFilename = CGOpts.OptRecordFile; 1462 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1463 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1464 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1465 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1466 switch (Action) { 1467 case Backend_EmitNothing: 1468 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1469 return false; 1470 }; 1471 break; 1472 case Backend_EmitLL: 1473 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1474 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1475 return false; 1476 }; 1477 break; 1478 case Backend_EmitBC: 1479 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1480 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1481 return false; 1482 }; 1483 break; 1484 default: 1485 Conf.CGFileType = getCodeGenFileType(Action); 1486 break; 1487 } 1488 if (Error E = thinBackend( 1489 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1490 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1491 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1492 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1493 }); 1494 } 1495 } 1496 1497 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1498 const HeaderSearchOptions &HeaderOpts, 1499 const CodeGenOptions &CGOpts, 1500 const clang::TargetOptions &TOpts, 1501 const LangOptions &LOpts, 1502 const llvm::DataLayout &TDesc, Module *M, 1503 BackendAction Action, 1504 std::unique_ptr<raw_pwrite_stream> OS) { 1505 1506 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1507 1508 std::unique_ptr<llvm::Module> EmptyModule; 1509 if (!CGOpts.ThinLTOIndexFile.empty()) { 1510 // If we are performing a ThinLTO importing compile, load the function index 1511 // into memory and pass it into runThinLTOBackend, which will run the 1512 // function importer and invoke LTO passes. 1513 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1514 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1515 /*IgnoreEmptyThinLTOIndexFile*/true); 1516 if (!IndexOrErr) { 1517 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1518 "Error loading index file '" + 1519 CGOpts.ThinLTOIndexFile + "': "); 1520 return; 1521 } 1522 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1523 // A null CombinedIndex means we should skip ThinLTO compilation 1524 // (LLVM will optionally ignore empty index files, returning null instead 1525 // of an error). 1526 if (CombinedIndex) { 1527 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1528 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1529 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1530 CGOpts.ProfileRemappingFile, Action); 1531 return; 1532 } 1533 // Distributed indexing detected that nothing from the module is needed 1534 // for the final linking. So we can skip the compilation. We sill need to 1535 // output an empty object file to make sure that a linker does not fail 1536 // trying to read it. Also for some features, like CFI, we must skip 1537 // the compilation as CombinedIndex does not contain all required 1538 // information. 1539 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1540 EmptyModule->setTargetTriple(M->getTargetTriple()); 1541 M = EmptyModule.get(); 1542 } 1543 } 1544 1545 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1546 1547 if (CGOpts.ExperimentalNewPassManager) 1548 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1549 else 1550 AsmHelper.EmitAssembly(Action, std::move(OS)); 1551 1552 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1553 // DataLayout. 1554 if (AsmHelper.TM) { 1555 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1556 if (DLDesc != TDesc.getStringRepresentation()) { 1557 unsigned DiagID = Diags.getCustomDiagID( 1558 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1559 "expected target description '%1'"); 1560 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1561 } 1562 } 1563 } 1564 1565 static const char* getSectionNameForBitcode(const Triple &T) { 1566 switch (T.getObjectFormat()) { 1567 case Triple::MachO: 1568 return "__LLVM,__bitcode"; 1569 case Triple::COFF: 1570 case Triple::ELF: 1571 case Triple::Wasm: 1572 case Triple::UnknownObjectFormat: 1573 return ".llvmbc"; 1574 case Triple::XCOFF: 1575 llvm_unreachable("XCOFF is not yet implemented"); 1576 break; 1577 } 1578 llvm_unreachable("Unimplemented ObjectFormatType"); 1579 } 1580 1581 static const char* getSectionNameForCommandline(const Triple &T) { 1582 switch (T.getObjectFormat()) { 1583 case Triple::MachO: 1584 return "__LLVM,__cmdline"; 1585 case Triple::COFF: 1586 case Triple::ELF: 1587 case Triple::Wasm: 1588 case Triple::UnknownObjectFormat: 1589 return ".llvmcmd"; 1590 case Triple::XCOFF: 1591 llvm_unreachable("XCOFF is not yet implemented"); 1592 break; 1593 } 1594 llvm_unreachable("Unimplemented ObjectFormatType"); 1595 } 1596 1597 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1598 // __LLVM,__bitcode section. 1599 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1600 llvm::MemoryBufferRef Buf) { 1601 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1602 return; 1603 1604 // Save llvm.compiler.used and remote it. 1605 SmallVector<Constant*, 2> UsedArray; 1606 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1607 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1608 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1609 for (auto *GV : UsedGlobals) { 1610 if (GV->getName() != "llvm.embedded.module" && 1611 GV->getName() != "llvm.cmdline") 1612 UsedArray.push_back( 1613 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1614 } 1615 if (Used) 1616 Used->eraseFromParent(); 1617 1618 // Embed the bitcode for the llvm module. 1619 std::string Data; 1620 ArrayRef<uint8_t> ModuleData; 1621 Triple T(M->getTargetTriple()); 1622 // Create a constant that contains the bitcode. 1623 // In case of embedding a marker, ignore the input Buf and use the empty 1624 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1625 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1626 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1627 (const unsigned char *)Buf.getBufferEnd())) { 1628 // If the input is LLVM Assembly, bitcode is produced by serializing 1629 // the module. Use-lists order need to be perserved in this case. 1630 llvm::raw_string_ostream OS(Data); 1631 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1632 ModuleData = 1633 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1634 } else 1635 // If the input is LLVM bitcode, write the input byte stream directly. 1636 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1637 Buf.getBufferSize()); 1638 } 1639 llvm::Constant *ModuleConstant = 1640 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1641 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1642 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1643 ModuleConstant); 1644 GV->setSection(getSectionNameForBitcode(T)); 1645 UsedArray.push_back( 1646 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1647 if (llvm::GlobalVariable *Old = 1648 M->getGlobalVariable("llvm.embedded.module", true)) { 1649 assert(Old->hasOneUse() && 1650 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1651 GV->takeName(Old); 1652 Old->eraseFromParent(); 1653 } else { 1654 GV->setName("llvm.embedded.module"); 1655 } 1656 1657 // Skip if only bitcode needs to be embedded. 1658 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1659 // Embed command-line options. 1660 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1661 CGOpts.CmdArgs.size()); 1662 llvm::Constant *CmdConstant = 1663 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1664 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1665 llvm::GlobalValue::PrivateLinkage, 1666 CmdConstant); 1667 GV->setSection(getSectionNameForCommandline(T)); 1668 UsedArray.push_back( 1669 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1670 if (llvm::GlobalVariable *Old = 1671 M->getGlobalVariable("llvm.cmdline", true)) { 1672 assert(Old->hasOneUse() && 1673 "llvm.cmdline can only be used once in llvm.compiler.used"); 1674 GV->takeName(Old); 1675 Old->eraseFromParent(); 1676 } else { 1677 GV->setName("llvm.cmdline"); 1678 } 1679 } 1680 1681 if (UsedArray.empty()) 1682 return; 1683 1684 // Recreate llvm.compiler.used. 1685 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1686 auto *NewUsed = new GlobalVariable( 1687 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1688 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1689 NewUsed->setSection("llvm.metadata"); 1690 } 1691