1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace { 98 99 // Default filename used for profile generation. 100 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 101 102 class EmitAssemblyHelper { 103 DiagnosticsEngine &Diags; 104 const HeaderSearchOptions &HSOpts; 105 const CodeGenOptions &CodeGenOpts; 106 const clang::TargetOptions &TargetOpts; 107 const LangOptions &LangOpts; 108 Module *TheModule; 109 110 Timer CodeGenerationTime; 111 112 std::unique_ptr<raw_pwrite_stream> OS; 113 114 TargetIRAnalysis getTargetIRAnalysis() const { 115 if (TM) 116 return TM->getTargetIRAnalysis(); 117 118 return TargetIRAnalysis(); 119 } 120 121 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 122 123 /// Generates the TargetMachine. 124 /// Leaves TM unchanged if it is unable to create the target machine. 125 /// Some of our clang tests specify triples which are not built 126 /// into clang. This is okay because these tests check the generated 127 /// IR, and they require DataLayout which depends on the triple. 128 /// In this case, we allow this method to fail and not report an error. 129 /// When MustCreateTM is used, we print an error if we are unable to load 130 /// the requested target. 131 void CreateTargetMachine(bool MustCreateTM); 132 133 /// Add passes necessary to emit assembly or LLVM IR. 134 /// 135 /// \return True on success. 136 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 137 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 138 139 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 140 std::error_code EC; 141 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 142 llvm::sys::fs::OF_None); 143 if (EC) { 144 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 145 F.reset(); 146 } 147 return F; 148 } 149 150 void 151 RunOptimizationPipeline(BackendAction Action, 152 std::unique_ptr<raw_pwrite_stream> &OS, 153 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 154 void RunCodegenPipeline(BackendAction Action, 155 std::unique_ptr<raw_pwrite_stream> &OS, 156 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 157 158 public: 159 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 160 const HeaderSearchOptions &HeaderSearchOpts, 161 const CodeGenOptions &CGOpts, 162 const clang::TargetOptions &TOpts, 163 const LangOptions &LOpts, Module *M) 164 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 165 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 166 CodeGenerationTime("codegen", "Code Generation Time") {} 167 168 ~EmitAssemblyHelper() { 169 if (CodeGenOpts.DisableFree) 170 BuryPointer(std::move(TM)); 171 } 172 173 std::unique_ptr<TargetMachine> TM; 174 175 // Emit output using the legacy pass manager for the optimization pipeline. 176 // This will be removed soon when using the legacy pass manager for the 177 // optimization pipeline is no longer supported. 178 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 179 std::unique_ptr<raw_pwrite_stream> OS); 180 181 // Emit output using the new pass manager for the optimization pipeline. This 182 // is the default. 183 void EmitAssembly(BackendAction Action, 184 std::unique_ptr<raw_pwrite_stream> OS); 185 }; 186 187 // We need this wrapper to access LangOpts and CGOpts from extension functions 188 // that we add to the PassManagerBuilder. 189 class PassManagerBuilderWrapper : public PassManagerBuilder { 190 public: 191 PassManagerBuilderWrapper(const Triple &TargetTriple, 192 const CodeGenOptions &CGOpts, 193 const LangOptions &LangOpts) 194 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 195 LangOpts(LangOpts) {} 196 const Triple &getTargetTriple() const { return TargetTriple; } 197 const CodeGenOptions &getCGOpts() const { return CGOpts; } 198 const LangOptions &getLangOpts() const { return LangOpts; } 199 200 private: 201 const Triple &TargetTriple; 202 const CodeGenOptions &CGOpts; 203 const LangOptions &LangOpts; 204 }; 205 } 206 207 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 208 if (Builder.OptLevel > 0) 209 PM.add(createObjCARCAPElimPass()); 210 } 211 212 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 213 if (Builder.OptLevel > 0) 214 PM.add(createObjCARCExpandPass()); 215 } 216 217 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 218 if (Builder.OptLevel > 0) 219 PM.add(createObjCARCOptPass()); 220 } 221 222 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 223 legacy::PassManagerBase &PM) { 224 PM.add(createAddDiscriminatorsPass()); 225 } 226 227 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 228 legacy::PassManagerBase &PM) { 229 PM.add(createBoundsCheckingLegacyPass()); 230 } 231 232 static SanitizerCoverageOptions 233 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 234 SanitizerCoverageOptions Opts; 235 Opts.CoverageType = 236 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 237 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 238 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 239 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 240 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 241 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 242 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 243 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 244 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 245 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 246 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 247 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 248 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 249 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 250 return Opts; 251 } 252 253 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper &>(Builder); 257 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 258 auto Opts = getSancovOptsFromCGOpts(CGOpts); 259 PM.add(createModuleSanitizerCoverageLegacyPassPass( 260 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 261 CGOpts.SanitizeCoverageIgnorelistFiles)); 262 } 263 264 // Check if ASan should use GC-friendly instrumentation for globals. 265 // First of all, there is no point if -fdata-sections is off (expect for MachO, 266 // where this is not a factor). Also, on ELF this feature requires an assembler 267 // extension that only works with -integrated-as at the moment. 268 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 269 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 270 return false; 271 switch (T.getObjectFormat()) { 272 case Triple::MachO: 273 case Triple::COFF: 274 return true; 275 case Triple::ELF: 276 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 277 case Triple::GOFF: 278 llvm::report_fatal_error("ASan not implemented for GOFF"); 279 case Triple::XCOFF: 280 llvm::report_fatal_error("ASan not implemented for XCOFF."); 281 case Triple::Wasm: 282 case Triple::UnknownObjectFormat: 283 break; 284 } 285 return false; 286 } 287 288 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 289 legacy::PassManagerBase &PM) { 290 PM.add(createMemProfilerFunctionPass()); 291 PM.add(createModuleMemProfilerLegacyPassPass()); 292 } 293 294 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 295 legacy::PassManagerBase &PM) { 296 const PassManagerBuilderWrapper &BuilderWrapper = 297 static_cast<const PassManagerBuilderWrapper&>(Builder); 298 const Triple &T = BuilderWrapper.getTargetTriple(); 299 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 300 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 301 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 302 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 303 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 304 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 305 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 306 CGOpts.getSanitizeAddressUseAfterReturn(); 307 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 308 UseAfterScope, UseAfterReturn)); 309 PM.add(createModuleAddressSanitizerLegacyPassPass( 310 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 311 DestructorKind)); 312 } 313 314 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 PM.add(createAddressSanitizerFunctionPass( 317 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 318 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 319 PM.add(createModuleAddressSanitizerLegacyPassPass( 320 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 321 /*UseOdrIndicator*/ false)); 322 } 323 324 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 325 legacy::PassManagerBase &PM) { 326 const PassManagerBuilderWrapper &BuilderWrapper = 327 static_cast<const PassManagerBuilderWrapper &>(Builder); 328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 329 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 330 PM.add(createHWAddressSanitizerLegacyPassPass( 331 /*CompileKernel*/ false, Recover, 332 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 333 } 334 335 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 336 legacy::PassManagerBase &PM) { 337 const PassManagerBuilderWrapper &BuilderWrapper = 338 static_cast<const PassManagerBuilderWrapper &>(Builder); 339 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 340 PM.add(createHWAddressSanitizerLegacyPassPass( 341 /*CompileKernel*/ true, /*Recover*/ true, 342 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 343 } 344 345 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 346 legacy::PassManagerBase &PM, 347 bool CompileKernel) { 348 const PassManagerBuilderWrapper &BuilderWrapper = 349 static_cast<const PassManagerBuilderWrapper&>(Builder); 350 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 351 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 352 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 353 PM.add(createMemorySanitizerLegacyPassPass( 354 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 355 356 // MemorySanitizer inserts complex instrumentation that mostly follows 357 // the logic of the original code, but operates on "shadow" values. 358 // It can benefit from re-running some general purpose optimization passes. 359 if (Builder.OptLevel > 0) { 360 PM.add(createEarlyCSEPass()); 361 PM.add(createReassociatePass()); 362 PM.add(createLICMPass()); 363 PM.add(createGVNPass()); 364 PM.add(createInstructionCombiningPass()); 365 PM.add(createDeadStoreEliminationPass()); 366 } 367 } 368 369 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 370 legacy::PassManagerBase &PM) { 371 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 372 } 373 374 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 375 legacy::PassManagerBase &PM) { 376 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 377 } 378 379 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 380 legacy::PassManagerBase &PM) { 381 PM.add(createThreadSanitizerLegacyPassPass()); 382 } 383 384 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 385 legacy::PassManagerBase &PM) { 386 const PassManagerBuilderWrapper &BuilderWrapper = 387 static_cast<const PassManagerBuilderWrapper&>(Builder); 388 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 389 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 390 } 391 392 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 393 legacy::PassManagerBase &PM) { 394 PM.add(createEntryExitInstrumenterPass()); 395 } 396 397 static void 398 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 399 legacy::PassManagerBase &PM) { 400 PM.add(createPostInlineEntryExitInstrumenterPass()); 401 } 402 403 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 404 const CodeGenOptions &CodeGenOpts) { 405 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 406 407 switch (CodeGenOpts.getVecLib()) { 408 case CodeGenOptions::Accelerate: 409 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 410 break; 411 case CodeGenOptions::LIBMVEC: 412 switch(TargetTriple.getArch()) { 413 default: 414 break; 415 case llvm::Triple::x86_64: 416 TLII->addVectorizableFunctionsFromVecLib 417 (TargetLibraryInfoImpl::LIBMVEC_X86); 418 break; 419 } 420 break; 421 case CodeGenOptions::MASSV: 422 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 423 break; 424 case CodeGenOptions::SVML: 425 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 426 break; 427 case CodeGenOptions::Darwin_libsystem_m: 428 TLII->addVectorizableFunctionsFromVecLib( 429 TargetLibraryInfoImpl::DarwinLibSystemM); 430 break; 431 default: 432 break; 433 } 434 return TLII; 435 } 436 437 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 438 legacy::PassManager *MPM) { 439 llvm::SymbolRewriter::RewriteDescriptorList DL; 440 441 llvm::SymbolRewriter::RewriteMapParser MapParser; 442 for (const auto &MapFile : Opts.RewriteMapFiles) 443 MapParser.parse(MapFile, &DL); 444 445 MPM->add(createRewriteSymbolsPass(DL)); 446 } 447 448 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 449 switch (CodeGenOpts.OptimizationLevel) { 450 default: 451 llvm_unreachable("Invalid optimization level!"); 452 case 0: 453 return CodeGenOpt::None; 454 case 1: 455 return CodeGenOpt::Less; 456 case 2: 457 return CodeGenOpt::Default; // O2/Os/Oz 458 case 3: 459 return CodeGenOpt::Aggressive; 460 } 461 } 462 463 static Optional<llvm::CodeModel::Model> 464 getCodeModel(const CodeGenOptions &CodeGenOpts) { 465 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 466 .Case("tiny", llvm::CodeModel::Tiny) 467 .Case("small", llvm::CodeModel::Small) 468 .Case("kernel", llvm::CodeModel::Kernel) 469 .Case("medium", llvm::CodeModel::Medium) 470 .Case("large", llvm::CodeModel::Large) 471 .Case("default", ~1u) 472 .Default(~0u); 473 assert(CodeModel != ~0u && "invalid code model!"); 474 if (CodeModel == ~1u) 475 return None; 476 return static_cast<llvm::CodeModel::Model>(CodeModel); 477 } 478 479 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 480 if (Action == Backend_EmitObj) 481 return CGFT_ObjectFile; 482 else if (Action == Backend_EmitMCNull) 483 return CGFT_Null; 484 else { 485 assert(Action == Backend_EmitAssembly && "Invalid action!"); 486 return CGFT_AssemblyFile; 487 } 488 } 489 490 static bool initTargetOptions(DiagnosticsEngine &Diags, 491 llvm::TargetOptions &Options, 492 const CodeGenOptions &CodeGenOpts, 493 const clang::TargetOptions &TargetOpts, 494 const LangOptions &LangOpts, 495 const HeaderSearchOptions &HSOpts) { 496 switch (LangOpts.getThreadModel()) { 497 case LangOptions::ThreadModelKind::POSIX: 498 Options.ThreadModel = llvm::ThreadModel::POSIX; 499 break; 500 case LangOptions::ThreadModelKind::Single: 501 Options.ThreadModel = llvm::ThreadModel::Single; 502 break; 503 } 504 505 // Set float ABI type. 506 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 507 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 508 "Invalid Floating Point ABI!"); 509 Options.FloatABIType = 510 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 511 .Case("soft", llvm::FloatABI::Soft) 512 .Case("softfp", llvm::FloatABI::Soft) 513 .Case("hard", llvm::FloatABI::Hard) 514 .Default(llvm::FloatABI::Default); 515 516 // Set FP fusion mode. 517 switch (LangOpts.getDefaultFPContractMode()) { 518 case LangOptions::FPM_Off: 519 // Preserve any contraction performed by the front-end. (Strict performs 520 // splitting of the muladd intrinsic in the backend.) 521 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 522 break; 523 case LangOptions::FPM_On: 524 case LangOptions::FPM_FastHonorPragmas: 525 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 526 break; 527 case LangOptions::FPM_Fast: 528 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 529 break; 530 } 531 532 Options.BinutilsVersion = 533 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 534 Options.UseInitArray = CodeGenOpts.UseInitArray; 535 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 536 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 537 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 538 539 // Set EABI version. 540 Options.EABIVersion = TargetOpts.EABIVersion; 541 542 if (LangOpts.hasSjLjExceptions()) 543 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 544 if (LangOpts.hasSEHExceptions()) 545 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 546 if (LangOpts.hasDWARFExceptions()) 547 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 548 if (LangOpts.hasWasmExceptions()) 549 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 550 551 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 552 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 553 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 554 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 555 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 556 557 Options.BBSections = 558 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 559 .Case("all", llvm::BasicBlockSection::All) 560 .Case("labels", llvm::BasicBlockSection::Labels) 561 .StartsWith("list=", llvm::BasicBlockSection::List) 562 .Case("none", llvm::BasicBlockSection::None) 563 .Default(llvm::BasicBlockSection::None); 564 565 if (Options.BBSections == llvm::BasicBlockSection::List) { 566 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 567 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 568 if (!MBOrErr) { 569 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 570 << MBOrErr.getError().message(); 571 return false; 572 } 573 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 574 } 575 576 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 577 Options.FunctionSections = CodeGenOpts.FunctionSections; 578 Options.DataSections = CodeGenOpts.DataSections; 579 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 580 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 581 Options.UniqueBasicBlockSectionNames = 582 CodeGenOpts.UniqueBasicBlockSectionNames; 583 Options.TLSSize = CodeGenOpts.TLSSize; 584 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 585 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 586 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 587 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 588 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 589 Options.EmitAddrsig = CodeGenOpts.Addrsig; 590 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 591 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 592 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 593 Options.ValueTrackingVariableLocations = 594 CodeGenOpts.ValueTrackingVariableLocations; 595 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 596 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 597 598 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 599 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 600 Options.SwiftAsyncFramePointer = 601 SwiftAsyncFramePointerMode::DeploymentBased; 602 break; 603 604 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 605 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 606 break; 607 608 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 609 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 610 break; 611 } 612 613 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 614 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 615 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 616 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 617 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 618 Options.MCOptions.MCIncrementalLinkerCompatible = 619 CodeGenOpts.IncrementalLinkerCompatible; 620 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 621 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 622 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 623 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 624 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 625 Options.MCOptions.ABIName = TargetOpts.ABI; 626 for (const auto &Entry : HSOpts.UserEntries) 627 if (!Entry.IsFramework && 628 (Entry.Group == frontend::IncludeDirGroup::Quoted || 629 Entry.Group == frontend::IncludeDirGroup::Angled || 630 Entry.Group == frontend::IncludeDirGroup::System)) 631 Options.MCOptions.IASSearchPaths.push_back( 632 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 633 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 634 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 635 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 636 637 return true; 638 } 639 640 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 641 const LangOptions &LangOpts) { 642 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 643 return None; 644 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 645 // LLVM's -default-gcov-version flag is set to something invalid. 646 GCOVOptions Options; 647 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 648 Options.EmitData = CodeGenOpts.EmitGcovArcs; 649 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 650 Options.NoRedZone = CodeGenOpts.DisableRedZone; 651 Options.Filter = CodeGenOpts.ProfileFilterFiles; 652 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 653 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 654 return Options; 655 } 656 657 static Optional<InstrProfOptions> 658 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 659 const LangOptions &LangOpts) { 660 if (!CodeGenOpts.hasProfileClangInstr()) 661 return None; 662 InstrProfOptions Options; 663 Options.NoRedZone = CodeGenOpts.DisableRedZone; 664 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 665 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 666 return Options; 667 } 668 669 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 670 legacy::FunctionPassManager &FPM) { 671 // Handle disabling of all LLVM passes, where we want to preserve the 672 // internal module before any optimization. 673 if (CodeGenOpts.DisableLLVMPasses) 674 return; 675 676 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 677 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 678 // are inserted before PMBuilder ones - they'd get the default-constructed 679 // TLI with an unknown target otherwise. 680 Triple TargetTriple(TheModule->getTargetTriple()); 681 std::unique_ptr<TargetLibraryInfoImpl> TLII( 682 createTLII(TargetTriple, CodeGenOpts)); 683 684 // If we reached here with a non-empty index file name, then the index file 685 // was empty and we are not performing ThinLTO backend compilation (used in 686 // testing in a distributed build environment). Drop any the type test 687 // assume sequences inserted for whole program vtables so that codegen doesn't 688 // complain. 689 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 690 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 691 /*ImportSummary=*/nullptr, 692 /*DropTypeTests=*/true)); 693 694 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 695 696 // At O0 and O1 we only run the always inliner which is more efficient. At 697 // higher optimization levels we run the normal inliner. 698 if (CodeGenOpts.OptimizationLevel <= 1) { 699 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 700 !CodeGenOpts.DisableLifetimeMarkers) || 701 LangOpts.Coroutines); 702 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 703 } else { 704 // We do not want to inline hot callsites for SamplePGO module-summary build 705 // because profile annotation will happen again in ThinLTO backend, and we 706 // want the IR of the hot path to match the profile. 707 PMBuilder.Inliner = createFunctionInliningPass( 708 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 709 (!CodeGenOpts.SampleProfileFile.empty() && 710 CodeGenOpts.PrepareForThinLTO)); 711 } 712 713 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 714 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 715 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 716 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 717 // Only enable CGProfilePass when using integrated assembler, since 718 // non-integrated assemblers don't recognize .cgprofile section. 719 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 720 721 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 722 // Loop interleaving in the loop vectorizer has historically been set to be 723 // enabled when loop unrolling is enabled. 724 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 725 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 726 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 727 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 728 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 729 730 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 731 732 if (TM) 733 TM->adjustPassManager(PMBuilder); 734 735 if (CodeGenOpts.DebugInfoForProfiling || 736 !CodeGenOpts.SampleProfileFile.empty()) 737 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 738 addAddDiscriminatorsPass); 739 740 // In ObjC ARC mode, add the main ARC optimization passes. 741 if (LangOpts.ObjCAutoRefCount) { 742 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 743 addObjCARCExpandPass); 744 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 745 addObjCARCAPElimPass); 746 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 747 addObjCARCOptPass); 748 } 749 750 if (LangOpts.Coroutines) 751 addCoroutinePassesToExtensionPoints(PMBuilder); 752 753 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 754 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 755 addMemProfilerPasses); 756 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 757 addMemProfilerPasses); 758 } 759 760 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 761 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 762 addBoundsCheckingPass); 763 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 764 addBoundsCheckingPass); 765 } 766 767 if (CodeGenOpts.hasSanitizeCoverage()) { 768 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 769 addSanitizerCoveragePass); 770 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 771 addSanitizerCoveragePass); 772 } 773 774 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 775 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 776 addAddressSanitizerPasses); 777 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 778 addAddressSanitizerPasses); 779 } 780 781 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 782 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 783 addKernelAddressSanitizerPasses); 784 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 785 addKernelAddressSanitizerPasses); 786 } 787 788 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 789 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 790 addHWAddressSanitizerPasses); 791 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 792 addHWAddressSanitizerPasses); 793 } 794 795 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 796 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 797 addKernelHWAddressSanitizerPasses); 798 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 799 addKernelHWAddressSanitizerPasses); 800 } 801 802 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 803 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 804 addMemorySanitizerPass); 805 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 806 addMemorySanitizerPass); 807 } 808 809 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 810 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 811 addKernelMemorySanitizerPass); 812 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 813 addKernelMemorySanitizerPass); 814 } 815 816 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 817 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 818 addThreadSanitizerPass); 819 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 820 addThreadSanitizerPass); 821 } 822 823 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 824 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 825 addDataFlowSanitizerPass); 826 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 827 addDataFlowSanitizerPass); 828 } 829 830 if (CodeGenOpts.InstrumentFunctions || 831 CodeGenOpts.InstrumentFunctionEntryBare || 832 CodeGenOpts.InstrumentFunctionsAfterInlining || 833 CodeGenOpts.InstrumentForProfiling) { 834 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 835 addEntryExitInstrumentationPass); 836 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 837 addEntryExitInstrumentationPass); 838 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 839 addPostInlineEntryExitInstrumentationPass); 840 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 841 addPostInlineEntryExitInstrumentationPass); 842 } 843 844 // Set up the per-function pass manager. 845 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 846 if (CodeGenOpts.VerifyModule) 847 FPM.add(createVerifierPass()); 848 849 // Set up the per-module pass manager. 850 if (!CodeGenOpts.RewriteMapFiles.empty()) 851 addSymbolRewriterPass(CodeGenOpts, &MPM); 852 853 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 854 MPM.add(createGCOVProfilerPass(*Options)); 855 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 856 MPM.add(createStripSymbolsPass(true)); 857 } 858 859 if (Optional<InstrProfOptions> Options = 860 getInstrProfOptions(CodeGenOpts, LangOpts)) 861 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 862 863 bool hasIRInstr = false; 864 if (CodeGenOpts.hasProfileIRInstr()) { 865 PMBuilder.EnablePGOInstrGen = true; 866 hasIRInstr = true; 867 } 868 if (CodeGenOpts.hasProfileCSIRInstr()) { 869 assert(!CodeGenOpts.hasProfileCSIRUse() && 870 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 871 "same time"); 872 assert(!hasIRInstr && 873 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 874 "same time"); 875 PMBuilder.EnablePGOCSInstrGen = true; 876 hasIRInstr = true; 877 } 878 if (hasIRInstr) { 879 if (!CodeGenOpts.InstrProfileOutput.empty()) 880 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 881 else 882 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 883 } 884 if (CodeGenOpts.hasProfileIRUse()) { 885 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 886 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 887 } 888 889 if (!CodeGenOpts.SampleProfileFile.empty()) 890 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 891 892 PMBuilder.populateFunctionPassManager(FPM); 893 PMBuilder.populateModulePassManager(MPM); 894 } 895 896 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 897 SmallVector<const char *, 16> BackendArgs; 898 BackendArgs.push_back("clang"); // Fake program name. 899 if (!CodeGenOpts.DebugPass.empty()) { 900 BackendArgs.push_back("-debug-pass"); 901 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 902 } 903 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 904 BackendArgs.push_back("-limit-float-precision"); 905 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 906 } 907 // Check for the default "clang" invocation that won't set any cl::opt values. 908 // Skip trying to parse the command line invocation to avoid the issues 909 // described below. 910 if (BackendArgs.size() == 1) 911 return; 912 BackendArgs.push_back(nullptr); 913 // FIXME: The command line parser below is not thread-safe and shares a global 914 // state, so this call might crash or overwrite the options of another Clang 915 // instance in the same process. 916 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 917 BackendArgs.data()); 918 } 919 920 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 921 // Create the TargetMachine for generating code. 922 std::string Error; 923 std::string Triple = TheModule->getTargetTriple(); 924 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 925 if (!TheTarget) { 926 if (MustCreateTM) 927 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 928 return; 929 } 930 931 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 932 std::string FeaturesStr = 933 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 934 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 935 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 936 937 llvm::TargetOptions Options; 938 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 939 HSOpts)) 940 return; 941 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 942 Options, RM, CM, OptLevel)); 943 } 944 945 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 946 BackendAction Action, 947 raw_pwrite_stream &OS, 948 raw_pwrite_stream *DwoOS) { 949 // Add LibraryInfo. 950 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 951 std::unique_ptr<TargetLibraryInfoImpl> TLII( 952 createTLII(TargetTriple, CodeGenOpts)); 953 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 954 955 // Normal mode, emit a .s or .o file by running the code generator. Note, 956 // this also adds codegenerator level optimization passes. 957 CodeGenFileType CGFT = getCodeGenFileType(Action); 958 959 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 960 // "codegen" passes so that it isn't run multiple times when there is 961 // inlining happening. 962 if (CodeGenOpts.OptimizationLevel > 0) 963 CodeGenPasses.add(createObjCARCContractPass()); 964 965 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 966 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 967 Diags.Report(diag::err_fe_unable_to_interface_with_target); 968 return false; 969 } 970 971 return true; 972 } 973 974 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 975 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 976 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 977 978 setCommandLineOpts(CodeGenOpts); 979 980 bool UsesCodeGen = (Action != Backend_EmitNothing && 981 Action != Backend_EmitBC && 982 Action != Backend_EmitLL); 983 CreateTargetMachine(UsesCodeGen); 984 985 if (UsesCodeGen && !TM) 986 return; 987 if (TM) 988 TheModule->setDataLayout(TM->createDataLayout()); 989 990 DebugifyCustomPassManager PerModulePasses; 991 DebugInfoPerPassMap DIPreservationMap; 992 if (CodeGenOpts.EnableDIPreservationVerify) { 993 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 994 PerModulePasses.setDIPreservationMap(DIPreservationMap); 995 996 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 997 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 998 CodeGenOpts.DIBugsReportFilePath); 999 } 1000 PerModulePasses.add( 1001 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1002 1003 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1004 PerFunctionPasses.add( 1005 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1006 1007 CreatePasses(PerModulePasses, PerFunctionPasses); 1008 1009 legacy::PassManager CodeGenPasses; 1010 CodeGenPasses.add( 1011 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1012 1013 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1014 1015 switch (Action) { 1016 case Backend_EmitNothing: 1017 break; 1018 1019 case Backend_EmitBC: 1020 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1021 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1022 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1023 if (!ThinLinkOS) 1024 return; 1025 } 1026 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1027 CodeGenOpts.EnableSplitLTOUnit); 1028 PerModulePasses.add(createWriteThinLTOBitcodePass( 1029 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1030 } else { 1031 // Emit a module summary by default for Regular LTO except for ld64 1032 // targets 1033 bool EmitLTOSummary = 1034 (CodeGenOpts.PrepareForLTO && 1035 !CodeGenOpts.DisableLLVMPasses && 1036 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1037 llvm::Triple::Apple); 1038 if (EmitLTOSummary) { 1039 if (!TheModule->getModuleFlag("ThinLTO")) 1040 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1041 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1042 uint32_t(1)); 1043 } 1044 1045 PerModulePasses.add(createBitcodeWriterPass( 1046 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1047 } 1048 break; 1049 1050 case Backend_EmitLL: 1051 PerModulePasses.add( 1052 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1053 break; 1054 1055 default: 1056 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1057 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1058 if (!DwoOS) 1059 return; 1060 } 1061 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1062 DwoOS ? &DwoOS->os() : nullptr)) 1063 return; 1064 } 1065 1066 // Before executing passes, print the final values of the LLVM options. 1067 cl::PrintOptionValues(); 1068 1069 // Run passes. For now we do all passes at once, but eventually we 1070 // would like to have the option of streaming code generation. 1071 1072 { 1073 PrettyStackTraceString CrashInfo("Per-function optimization"); 1074 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1075 1076 PerFunctionPasses.doInitialization(); 1077 for (Function &F : *TheModule) 1078 if (!F.isDeclaration()) 1079 PerFunctionPasses.run(F); 1080 PerFunctionPasses.doFinalization(); 1081 } 1082 1083 { 1084 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1085 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1086 PerModulePasses.run(*TheModule); 1087 } 1088 1089 { 1090 PrettyStackTraceString CrashInfo("Code generation"); 1091 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1092 CodeGenPasses.run(*TheModule); 1093 } 1094 1095 if (ThinLinkOS) 1096 ThinLinkOS->keep(); 1097 if (DwoOS) 1098 DwoOS->keep(); 1099 } 1100 1101 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1102 switch (Opts.OptimizationLevel) { 1103 default: 1104 llvm_unreachable("Invalid optimization level!"); 1105 1106 case 0: 1107 return OptimizationLevel::O0; 1108 1109 case 1: 1110 return OptimizationLevel::O1; 1111 1112 case 2: 1113 switch (Opts.OptimizeSize) { 1114 default: 1115 llvm_unreachable("Invalid optimization level for size!"); 1116 1117 case 0: 1118 return OptimizationLevel::O2; 1119 1120 case 1: 1121 return OptimizationLevel::Os; 1122 1123 case 2: 1124 return OptimizationLevel::Oz; 1125 } 1126 1127 case 3: 1128 return OptimizationLevel::O3; 1129 } 1130 } 1131 1132 static void addSanitizers(const Triple &TargetTriple, 1133 const CodeGenOptions &CodeGenOpts, 1134 const LangOptions &LangOpts, PassBuilder &PB) { 1135 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1136 OptimizationLevel Level) { 1137 if (CodeGenOpts.hasSanitizeCoverage()) { 1138 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1139 MPM.addPass(ModuleSanitizerCoveragePass( 1140 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1141 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1142 } 1143 1144 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1145 if (LangOpts.Sanitize.has(Mask)) { 1146 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1147 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1148 1149 MPM.addPass( 1150 ModuleMemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1151 FunctionPassManager FPM; 1152 FPM.addPass( 1153 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1154 if (Level != OptimizationLevel::O0) { 1155 // MemorySanitizer inserts complex instrumentation that mostly 1156 // follows the logic of the original code, but operates on 1157 // "shadow" values. It can benefit from re-running some 1158 // general purpose optimization passes. 1159 FPM.addPass(EarlyCSEPass()); 1160 // TODO: Consider add more passes like in 1161 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1162 // difference on size. It's not clear if the rest is still 1163 // usefull. InstCombinePass breakes 1164 // compiler-rt/test/msan/select_origin.cpp. 1165 } 1166 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1167 } 1168 }; 1169 MSanPass(SanitizerKind::Memory, false); 1170 MSanPass(SanitizerKind::KernelMemory, true); 1171 1172 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1173 MPM.addPass(ModuleThreadSanitizerPass()); 1174 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1175 } 1176 1177 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1178 if (LangOpts.Sanitize.has(Mask)) { 1179 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1180 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1181 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1182 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1183 llvm::AsanDtorKind DestructorKind = 1184 CodeGenOpts.getSanitizeAddressDtor(); 1185 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 1186 CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1187 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1188 MPM.addPass(ModuleAddressSanitizerPass( 1189 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1190 DestructorKind)); 1191 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1192 {CompileKernel, Recover, UseAfterScope, UseAfterReturn}))); 1193 } 1194 }; 1195 ASanPass(SanitizerKind::Address, false); 1196 ASanPass(SanitizerKind::KernelAddress, true); 1197 1198 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1199 if (LangOpts.Sanitize.has(Mask)) { 1200 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1201 MPM.addPass(HWAddressSanitizerPass( 1202 {CompileKernel, Recover, 1203 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1204 } 1205 }; 1206 HWASanPass(SanitizerKind::HWAddress, false); 1207 HWASanPass(SanitizerKind::KernelHWAddress, true); 1208 1209 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1210 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1211 } 1212 }); 1213 } 1214 1215 void EmitAssemblyHelper::RunOptimizationPipeline( 1216 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1217 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1218 Optional<PGOOptions> PGOOpt; 1219 1220 if (CodeGenOpts.hasProfileIRInstr()) 1221 // -fprofile-generate. 1222 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1223 ? std::string(DefaultProfileGenName) 1224 : CodeGenOpts.InstrProfileOutput, 1225 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1226 CodeGenOpts.DebugInfoForProfiling); 1227 else if (CodeGenOpts.hasProfileIRUse()) { 1228 // -fprofile-use. 1229 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1230 : PGOOptions::NoCSAction; 1231 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1232 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1233 CSAction, CodeGenOpts.DebugInfoForProfiling); 1234 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1235 // -fprofile-sample-use 1236 PGOOpt = PGOOptions( 1237 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1238 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1239 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1240 else if (CodeGenOpts.PseudoProbeForProfiling) 1241 // -fpseudo-probe-for-profiling 1242 PGOOpt = 1243 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1244 CodeGenOpts.DebugInfoForProfiling, true); 1245 else if (CodeGenOpts.DebugInfoForProfiling) 1246 // -fdebug-info-for-profiling 1247 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1248 PGOOptions::NoCSAction, true); 1249 1250 // Check to see if we want to generate a CS profile. 1251 if (CodeGenOpts.hasProfileCSIRInstr()) { 1252 assert(!CodeGenOpts.hasProfileCSIRUse() && 1253 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1254 "the same time"); 1255 if (PGOOpt.hasValue()) { 1256 assert(PGOOpt->Action != PGOOptions::IRInstr && 1257 PGOOpt->Action != PGOOptions::SampleUse && 1258 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1259 " pass"); 1260 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1261 ? std::string(DefaultProfileGenName) 1262 : CodeGenOpts.InstrProfileOutput; 1263 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1264 } else 1265 PGOOpt = PGOOptions("", 1266 CodeGenOpts.InstrProfileOutput.empty() 1267 ? std::string(DefaultProfileGenName) 1268 : CodeGenOpts.InstrProfileOutput, 1269 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1270 CodeGenOpts.DebugInfoForProfiling); 1271 } 1272 if (TM) 1273 TM->setPGOOption(PGOOpt); 1274 1275 PipelineTuningOptions PTO; 1276 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1277 // For historical reasons, loop interleaving is set to mirror setting for loop 1278 // unrolling. 1279 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1280 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1281 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1282 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1283 // Only enable CGProfilePass when using integrated assembler, since 1284 // non-integrated assemblers don't recognize .cgprofile section. 1285 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1286 1287 LoopAnalysisManager LAM; 1288 FunctionAnalysisManager FAM; 1289 CGSCCAnalysisManager CGAM; 1290 ModuleAnalysisManager MAM; 1291 1292 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1293 PassInstrumentationCallbacks PIC; 1294 PrintPassOptions PrintPassOpts; 1295 PrintPassOpts.Indent = DebugPassStructure; 1296 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1297 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1298 DebugPassStructure, 1299 /*VerifyEach*/ false, PrintPassOpts); 1300 SI.registerCallbacks(PIC, &FAM); 1301 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1302 1303 // Attempt to load pass plugins and register their callbacks with PB. 1304 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1305 auto PassPlugin = PassPlugin::Load(PluginFN); 1306 if (PassPlugin) { 1307 PassPlugin->registerPassBuilderCallbacks(PB); 1308 } else { 1309 Diags.Report(diag::err_fe_unable_to_load_plugin) 1310 << PluginFN << toString(PassPlugin.takeError()); 1311 } 1312 } 1313 #define HANDLE_EXTENSION(Ext) \ 1314 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1315 #include "llvm/Support/Extension.def" 1316 1317 // Register the AA manager first so that our version is the one used. 1318 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1319 1320 // Register the target library analysis directly and give it a customized 1321 // preset TLI. 1322 Triple TargetTriple(TheModule->getTargetTriple()); 1323 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1324 createTLII(TargetTriple, CodeGenOpts)); 1325 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1326 1327 // Register all the basic analyses with the managers. 1328 PB.registerModuleAnalyses(MAM); 1329 PB.registerCGSCCAnalyses(CGAM); 1330 PB.registerFunctionAnalyses(FAM); 1331 PB.registerLoopAnalyses(LAM); 1332 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1333 1334 ModulePassManager MPM; 1335 1336 if (!CodeGenOpts.DisableLLVMPasses) { 1337 // Map our optimization levels into one of the distinct levels used to 1338 // configure the pipeline. 1339 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1340 1341 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1342 bool IsLTO = CodeGenOpts.PrepareForLTO; 1343 1344 if (LangOpts.ObjCAutoRefCount) { 1345 PB.registerPipelineStartEPCallback( 1346 [](ModulePassManager &MPM, OptimizationLevel Level) { 1347 if (Level != OptimizationLevel::O0) 1348 MPM.addPass( 1349 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1350 }); 1351 PB.registerPipelineEarlySimplificationEPCallback( 1352 [](ModulePassManager &MPM, OptimizationLevel Level) { 1353 if (Level != OptimizationLevel::O0) 1354 MPM.addPass(ObjCARCAPElimPass()); 1355 }); 1356 PB.registerScalarOptimizerLateEPCallback( 1357 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1358 if (Level != OptimizationLevel::O0) 1359 FPM.addPass(ObjCARCOptPass()); 1360 }); 1361 } 1362 1363 // If we reached here with a non-empty index file name, then the index 1364 // file was empty and we are not performing ThinLTO backend compilation 1365 // (used in testing in a distributed build environment). 1366 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1367 // If so drop any the type test assume sequences inserted for whole program 1368 // vtables so that codegen doesn't complain. 1369 if (IsThinLTOPostLink) 1370 PB.registerPipelineStartEPCallback( 1371 [](ModulePassManager &MPM, OptimizationLevel Level) { 1372 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1373 /*ImportSummary=*/nullptr, 1374 /*DropTypeTests=*/true)); 1375 }); 1376 1377 if (CodeGenOpts.InstrumentFunctions || 1378 CodeGenOpts.InstrumentFunctionEntryBare || 1379 CodeGenOpts.InstrumentFunctionsAfterInlining || 1380 CodeGenOpts.InstrumentForProfiling) { 1381 PB.registerPipelineStartEPCallback( 1382 [](ModulePassManager &MPM, OptimizationLevel Level) { 1383 MPM.addPass(createModuleToFunctionPassAdaptor( 1384 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1385 }); 1386 PB.registerOptimizerLastEPCallback( 1387 [](ModulePassManager &MPM, OptimizationLevel Level) { 1388 MPM.addPass(createModuleToFunctionPassAdaptor( 1389 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1390 }); 1391 } 1392 1393 // Register callbacks to schedule sanitizer passes at the appropriate part 1394 // of the pipeline. 1395 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1396 PB.registerScalarOptimizerLateEPCallback( 1397 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1398 FPM.addPass(BoundsCheckingPass()); 1399 }); 1400 1401 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1402 // done on PreLink stage. 1403 if (!IsThinLTOPostLink) 1404 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1405 1406 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1407 PB.registerPipelineStartEPCallback( 1408 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1409 MPM.addPass(GCOVProfilerPass(*Options)); 1410 }); 1411 if (Optional<InstrProfOptions> Options = 1412 getInstrProfOptions(CodeGenOpts, LangOpts)) 1413 PB.registerPipelineStartEPCallback( 1414 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1415 MPM.addPass(InstrProfiling(*Options, false)); 1416 }); 1417 1418 if (CodeGenOpts.OptimizationLevel == 0) { 1419 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1420 } else if (IsThinLTO) { 1421 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1422 } else if (IsLTO) { 1423 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1424 } else { 1425 MPM = PB.buildPerModuleDefaultPipeline(Level); 1426 } 1427 1428 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1429 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1430 MPM.addPass(ModuleMemProfilerPass()); 1431 } 1432 } 1433 switch (Action) { 1434 case Backend_EmitBC: 1435 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1436 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1437 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1438 if (!ThinLinkOS) 1439 return; 1440 } 1441 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1442 CodeGenOpts.EnableSplitLTOUnit); 1443 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1444 : nullptr)); 1445 } else { 1446 // Emit a module summary by default for Regular LTO except for ld64 1447 // targets 1448 bool EmitLTOSummary = 1449 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1450 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1451 llvm::Triple::Apple); 1452 if (EmitLTOSummary) { 1453 if (!TheModule->getModuleFlag("ThinLTO")) 1454 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1455 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1456 uint32_t(1)); 1457 } 1458 MPM.addPass( 1459 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1460 } 1461 break; 1462 1463 case Backend_EmitLL: 1464 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1465 break; 1466 1467 default: 1468 break; 1469 } 1470 1471 // Now that we have all of the passes ready, run them. 1472 PrettyStackTraceString CrashInfo("Optimizer"); 1473 MPM.run(*TheModule, MAM); 1474 } 1475 1476 void EmitAssemblyHelper::RunCodegenPipeline( 1477 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1478 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1479 // We still use the legacy PM to run the codegen pipeline since the new PM 1480 // does not work with the codegen pipeline. 1481 // FIXME: make the new PM work with the codegen pipeline. 1482 legacy::PassManager CodeGenPasses; 1483 1484 // Append any output we need to the pass manager. 1485 switch (Action) { 1486 case Backend_EmitAssembly: 1487 case Backend_EmitMCNull: 1488 case Backend_EmitObj: 1489 CodeGenPasses.add( 1490 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1491 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1492 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1493 if (!DwoOS) 1494 return; 1495 } 1496 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1497 DwoOS ? &DwoOS->os() : nullptr)) 1498 // FIXME: Should we handle this error differently? 1499 return; 1500 break; 1501 default: 1502 return; 1503 } 1504 1505 PrettyStackTraceString CrashInfo("Code generation"); 1506 CodeGenPasses.run(*TheModule); 1507 } 1508 1509 /// A clean version of `EmitAssembly` that uses the new pass manager. 1510 /// 1511 /// Not all features are currently supported in this system, but where 1512 /// necessary it falls back to the legacy pass manager to at least provide 1513 /// basic functionality. 1514 /// 1515 /// This API is planned to have its functionality finished and then to replace 1516 /// `EmitAssembly` at some point in the future when the default switches. 1517 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1518 std::unique_ptr<raw_pwrite_stream> OS) { 1519 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1520 setCommandLineOpts(CodeGenOpts); 1521 1522 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1523 Action != Backend_EmitBC && Action != Backend_EmitLL); 1524 CreateTargetMachine(RequiresCodeGen); 1525 1526 if (RequiresCodeGen && !TM) 1527 return; 1528 if (TM) 1529 TheModule->setDataLayout(TM->createDataLayout()); 1530 1531 // Before executing passes, print the final values of the LLVM options. 1532 cl::PrintOptionValues(); 1533 1534 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1535 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1536 RunCodegenPipeline(Action, OS, DwoOS); 1537 1538 if (ThinLinkOS) 1539 ThinLinkOS->keep(); 1540 if (DwoOS) 1541 DwoOS->keep(); 1542 } 1543 1544 static void runThinLTOBackend( 1545 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1546 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1547 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1548 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1549 std::string ProfileRemapping, BackendAction Action) { 1550 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1551 ModuleToDefinedGVSummaries; 1552 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1553 1554 setCommandLineOpts(CGOpts); 1555 1556 // We can simply import the values mentioned in the combined index, since 1557 // we should only invoke this using the individual indexes written out 1558 // via a WriteIndexesThinBackend. 1559 FunctionImporter::ImportMapTy ImportList; 1560 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1561 return; 1562 1563 auto AddStream = [&](size_t Task) { 1564 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1565 }; 1566 lto::Config Conf; 1567 if (CGOpts.SaveTempsFilePrefix != "") { 1568 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1569 /* UseInputModulePath */ false)) { 1570 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1571 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1572 << '\n'; 1573 }); 1574 } 1575 } 1576 Conf.CPU = TOpts.CPU; 1577 Conf.CodeModel = getCodeModel(CGOpts); 1578 Conf.MAttrs = TOpts.Features; 1579 Conf.RelocModel = CGOpts.RelocationModel; 1580 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1581 Conf.OptLevel = CGOpts.OptimizationLevel; 1582 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1583 Conf.SampleProfile = std::move(SampleProfile); 1584 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1585 // For historical reasons, loop interleaving is set to mirror setting for loop 1586 // unrolling. 1587 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1588 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1589 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1590 // Only enable CGProfilePass when using integrated assembler, since 1591 // non-integrated assemblers don't recognize .cgprofile section. 1592 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1593 1594 // Context sensitive profile. 1595 if (CGOpts.hasProfileCSIRInstr()) { 1596 Conf.RunCSIRInstr = true; 1597 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1598 } else if (CGOpts.hasProfileCSIRUse()) { 1599 Conf.RunCSIRInstr = false; 1600 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1601 } 1602 1603 Conf.ProfileRemapping = std::move(ProfileRemapping); 1604 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1605 Conf.DebugPassManager = CGOpts.DebugPassManager; 1606 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1607 Conf.RemarksFilename = CGOpts.OptRecordFile; 1608 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1609 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1610 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1611 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1612 switch (Action) { 1613 case Backend_EmitNothing: 1614 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1615 return false; 1616 }; 1617 break; 1618 case Backend_EmitLL: 1619 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1620 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1621 return false; 1622 }; 1623 break; 1624 case Backend_EmitBC: 1625 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1626 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1627 return false; 1628 }; 1629 break; 1630 default: 1631 Conf.CGFileType = getCodeGenFileType(Action); 1632 break; 1633 } 1634 if (Error E = 1635 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1636 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1637 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1638 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1639 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1640 }); 1641 } 1642 } 1643 1644 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1645 const HeaderSearchOptions &HeaderOpts, 1646 const CodeGenOptions &CGOpts, 1647 const clang::TargetOptions &TOpts, 1648 const LangOptions &LOpts, 1649 StringRef TDesc, Module *M, 1650 BackendAction Action, 1651 std::unique_ptr<raw_pwrite_stream> OS) { 1652 1653 llvm::TimeTraceScope TimeScope("Backend"); 1654 1655 std::unique_ptr<llvm::Module> EmptyModule; 1656 if (!CGOpts.ThinLTOIndexFile.empty()) { 1657 // If we are performing a ThinLTO importing compile, load the function index 1658 // into memory and pass it into runThinLTOBackend, which will run the 1659 // function importer and invoke LTO passes. 1660 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1661 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1662 /*IgnoreEmptyThinLTOIndexFile*/true); 1663 if (!IndexOrErr) { 1664 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1665 "Error loading index file '" + 1666 CGOpts.ThinLTOIndexFile + "': "); 1667 return; 1668 } 1669 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1670 // A null CombinedIndex means we should skip ThinLTO compilation 1671 // (LLVM will optionally ignore empty index files, returning null instead 1672 // of an error). 1673 if (CombinedIndex) { 1674 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1675 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1676 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1677 CGOpts.ProfileRemappingFile, Action); 1678 return; 1679 } 1680 // Distributed indexing detected that nothing from the module is needed 1681 // for the final linking. So we can skip the compilation. We sill need to 1682 // output an empty object file to make sure that a linker does not fail 1683 // trying to read it. Also for some features, like CFI, we must skip 1684 // the compilation as CombinedIndex does not contain all required 1685 // information. 1686 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1687 EmptyModule->setTargetTriple(M->getTargetTriple()); 1688 M = EmptyModule.get(); 1689 } 1690 } 1691 1692 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1693 1694 if (CGOpts.LegacyPassManager) 1695 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1696 else 1697 AsmHelper.EmitAssembly(Action, std::move(OS)); 1698 1699 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1700 // DataLayout. 1701 if (AsmHelper.TM) { 1702 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1703 if (DLDesc != TDesc) { 1704 unsigned DiagID = Diags.getCustomDiagID( 1705 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1706 "expected target description '%1'"); 1707 Diags.Report(DiagID) << DLDesc << TDesc; 1708 } 1709 } 1710 } 1711 1712 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1713 // __LLVM,__bitcode section. 1714 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1715 llvm::MemoryBufferRef Buf) { 1716 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1717 return; 1718 llvm::EmbedBitcodeInModule( 1719 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1720 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1721 CGOpts.CmdArgs); 1722 } 1723