1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 TargetIRAnalysis getTargetIRAnalysis() const { 122 if (TM) 123 return TM->getTargetIRAnalysis(); 124 125 return TargetIRAnalysis(); 126 } 127 128 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 129 130 /// Generates the TargetMachine. 131 /// Leaves TM unchanged if it is unable to create the target machine. 132 /// Some of our clang tests specify triples which are not built 133 /// into clang. This is okay because these tests check the generated 134 /// IR, and they require DataLayout which depends on the triple. 135 /// In this case, we allow this method to fail and not report an error. 136 /// When MustCreateTM is used, we print an error if we are unable to load 137 /// the requested target. 138 void CreateTargetMachine(bool MustCreateTM); 139 140 /// Add passes necessary to emit assembly or LLVM IR. 141 /// 142 /// \return True on success. 143 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 144 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 145 146 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 147 std::error_code EC; 148 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 149 llvm::sys::fs::OF_None); 150 if (EC) { 151 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 152 F.reset(); 153 } 154 return F; 155 } 156 157 void 158 RunOptimizationPipeline(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> &OS, 160 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 161 void RunCodegenPipeline(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> &OS, 163 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 164 165 public: 166 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 167 const HeaderSearchOptions &HeaderSearchOpts, 168 const CodeGenOptions &CGOpts, 169 const clang::TargetOptions &TOpts, 170 const LangOptions &LOpts, Module *M) 171 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 172 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 173 CodeGenerationTime("codegen", "Code Generation Time") {} 174 175 ~EmitAssemblyHelper() { 176 if (CodeGenOpts.DisableFree) 177 BuryPointer(std::move(TM)); 178 } 179 180 std::unique_ptr<TargetMachine> TM; 181 182 // Emit output using the legacy pass manager for the optimization pipeline. 183 // This will be removed soon when using the legacy pass manager for the 184 // optimization pipeline is no longer supported. 185 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 186 std::unique_ptr<raw_pwrite_stream> OS); 187 188 // Emit output using the new pass manager for the optimization pipeline. This 189 // is the default. 190 void EmitAssembly(BackendAction Action, 191 std::unique_ptr<raw_pwrite_stream> OS); 192 }; 193 194 // We need this wrapper to access LangOpts and CGOpts from extension functions 195 // that we add to the PassManagerBuilder. 196 class PassManagerBuilderWrapper : public PassManagerBuilder { 197 public: 198 PassManagerBuilderWrapper(const Triple &TargetTriple, 199 const CodeGenOptions &CGOpts, 200 const LangOptions &LangOpts) 201 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 202 const Triple &getTargetTriple() const { return TargetTriple; } 203 const CodeGenOptions &getCGOpts() const { return CGOpts; } 204 const LangOptions &getLangOpts() const { return LangOpts; } 205 206 private: 207 const Triple &TargetTriple; 208 const CodeGenOptions &CGOpts; 209 const LangOptions &LangOpts; 210 }; 211 } 212 213 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 214 if (Builder.OptLevel > 0) 215 PM.add(createObjCARCAPElimPass()); 216 } 217 218 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 219 if (Builder.OptLevel > 0) 220 PM.add(createObjCARCExpandPass()); 221 } 222 223 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 224 if (Builder.OptLevel > 0) 225 PM.add(createObjCARCOptPass()); 226 } 227 228 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 229 legacy::PassManagerBase &PM) { 230 PM.add(createAddDiscriminatorsPass()); 231 } 232 233 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createBoundsCheckingLegacyPass()); 236 } 237 238 static SanitizerCoverageOptions 239 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 240 SanitizerCoverageOptions Opts; 241 Opts.CoverageType = 242 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 243 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 244 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 245 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 246 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 247 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 248 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 249 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 250 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 251 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 252 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 253 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 254 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 255 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 256 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 257 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 258 return Opts; 259 } 260 261 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 const PassManagerBuilderWrapper &BuilderWrapper = 264 static_cast<const PassManagerBuilderWrapper &>(Builder); 265 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 266 auto Opts = getSancovOptsFromCGOpts(CGOpts); 267 PM.add(createModuleSanitizerCoverageLegacyPassPass( 268 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 269 CGOpts.SanitizeCoverageIgnorelistFiles)); 270 } 271 272 // Check if ASan should use GC-friendly instrumentation for globals. 273 // First of all, there is no point if -fdata-sections is off (expect for MachO, 274 // where this is not a factor). Also, on ELF this feature requires an assembler 275 // extension that only works with -integrated-as at the moment. 276 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 277 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 278 return false; 279 switch (T.getObjectFormat()) { 280 case Triple::MachO: 281 case Triple::COFF: 282 return true; 283 case Triple::ELF: 284 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 285 case Triple::GOFF: 286 llvm::report_fatal_error("ASan not implemented for GOFF"); 287 case Triple::XCOFF: 288 llvm::report_fatal_error("ASan not implemented for XCOFF."); 289 case Triple::Wasm: 290 case Triple::UnknownObjectFormat: 291 break; 292 } 293 return false; 294 } 295 296 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 297 legacy::PassManagerBase &PM) { 298 PM.add(createMemProfilerFunctionPass()); 299 PM.add(createModuleMemProfilerLegacyPassPass()); 300 } 301 302 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 const PassManagerBuilderWrapper &BuilderWrapper = 305 static_cast<const PassManagerBuilderWrapper&>(Builder); 306 const Triple &T = BuilderWrapper.getTargetTriple(); 307 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 308 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 309 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 310 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 311 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 312 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 313 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 314 CGOpts.getSanitizeAddressUseAfterReturn(); 315 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 316 UseAfterScope, UseAfterReturn)); 317 PM.add(createModuleAddressSanitizerLegacyPassPass( 318 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 319 DestructorKind)); 320 } 321 322 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 PM.add(createAddressSanitizerFunctionPass( 325 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 326 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 327 PM.add(createModuleAddressSanitizerLegacyPassPass( 328 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 329 /*UseOdrIndicator*/ false)); 330 } 331 332 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 const PassManagerBuilderWrapper &BuilderWrapper = 335 static_cast<const PassManagerBuilderWrapper &>(Builder); 336 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 337 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 338 PM.add(createHWAddressSanitizerLegacyPassPass( 339 /*CompileKernel*/ false, Recover, 340 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 341 } 342 343 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 const PassManagerBuilderWrapper &BuilderWrapper = 346 static_cast<const PassManagerBuilderWrapper &>(Builder); 347 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 348 PM.add(createHWAddressSanitizerLegacyPassPass( 349 /*CompileKernel*/ true, /*Recover*/ true, 350 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 351 } 352 353 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 354 legacy::PassManagerBase &PM, 355 bool CompileKernel) { 356 const PassManagerBuilderWrapper &BuilderWrapper = 357 static_cast<const PassManagerBuilderWrapper&>(Builder); 358 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 359 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 360 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 361 PM.add(createMemorySanitizerLegacyPassPass( 362 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 363 CGOpts.SanitizeMemoryParamRetval != 0})); 364 365 // MemorySanitizer inserts complex instrumentation that mostly follows 366 // the logic of the original code, but operates on "shadow" values. 367 // It can benefit from re-running some general purpose optimization passes. 368 if (Builder.OptLevel > 0) { 369 PM.add(createEarlyCSEPass()); 370 PM.add(createReassociatePass()); 371 PM.add(createLICMPass()); 372 PM.add(createGVNPass()); 373 PM.add(createInstructionCombiningPass()); 374 PM.add(createDeadStoreEliminationPass()); 375 } 376 } 377 378 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 379 legacy::PassManagerBase &PM) { 380 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 381 } 382 383 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 384 legacy::PassManagerBase &PM) { 385 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 386 } 387 388 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 389 legacy::PassManagerBase &PM) { 390 PM.add(createThreadSanitizerLegacyPassPass()); 391 } 392 393 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 394 legacy::PassManagerBase &PM) { 395 const PassManagerBuilderWrapper &BuilderWrapper = 396 static_cast<const PassManagerBuilderWrapper&>(Builder); 397 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 398 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 399 } 400 401 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 402 legacy::PassManagerBase &PM) { 403 PM.add(createEntryExitInstrumenterPass()); 404 } 405 406 static void 407 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 408 legacy::PassManagerBase &PM) { 409 PM.add(createPostInlineEntryExitInstrumenterPass()); 410 } 411 412 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 413 const CodeGenOptions &CodeGenOpts) { 414 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 415 416 switch (CodeGenOpts.getVecLib()) { 417 case CodeGenOptions::Accelerate: 418 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 419 break; 420 case CodeGenOptions::LIBMVEC: 421 switch(TargetTriple.getArch()) { 422 default: 423 break; 424 case llvm::Triple::x86_64: 425 TLII->addVectorizableFunctionsFromVecLib 426 (TargetLibraryInfoImpl::LIBMVEC_X86); 427 break; 428 } 429 break; 430 case CodeGenOptions::MASSV: 431 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 432 break; 433 case CodeGenOptions::SVML: 434 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 435 break; 436 case CodeGenOptions::Darwin_libsystem_m: 437 TLII->addVectorizableFunctionsFromVecLib( 438 TargetLibraryInfoImpl::DarwinLibSystemM); 439 break; 440 default: 441 break; 442 } 443 return TLII; 444 } 445 446 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 447 legacy::PassManager *MPM) { 448 llvm::SymbolRewriter::RewriteDescriptorList DL; 449 450 llvm::SymbolRewriter::RewriteMapParser MapParser; 451 for (const auto &MapFile : Opts.RewriteMapFiles) 452 MapParser.parse(MapFile, &DL); 453 454 MPM->add(createRewriteSymbolsPass(DL)); 455 } 456 457 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 458 switch (CodeGenOpts.OptimizationLevel) { 459 default: 460 llvm_unreachable("Invalid optimization level!"); 461 case 0: 462 return CodeGenOpt::None; 463 case 1: 464 return CodeGenOpt::Less; 465 case 2: 466 return CodeGenOpt::Default; // O2/Os/Oz 467 case 3: 468 return CodeGenOpt::Aggressive; 469 } 470 } 471 472 static Optional<llvm::CodeModel::Model> 473 getCodeModel(const CodeGenOptions &CodeGenOpts) { 474 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 475 .Case("tiny", llvm::CodeModel::Tiny) 476 .Case("small", llvm::CodeModel::Small) 477 .Case("kernel", llvm::CodeModel::Kernel) 478 .Case("medium", llvm::CodeModel::Medium) 479 .Case("large", llvm::CodeModel::Large) 480 .Case("default", ~1u) 481 .Default(~0u); 482 assert(CodeModel != ~0u && "invalid code model!"); 483 if (CodeModel == ~1u) 484 return None; 485 return static_cast<llvm::CodeModel::Model>(CodeModel); 486 } 487 488 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 489 if (Action == Backend_EmitObj) 490 return CGFT_ObjectFile; 491 else if (Action == Backend_EmitMCNull) 492 return CGFT_Null; 493 else { 494 assert(Action == Backend_EmitAssembly && "Invalid action!"); 495 return CGFT_AssemblyFile; 496 } 497 } 498 499 static bool actionRequiresCodeGen(BackendAction Action) { 500 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 501 Action != Backend_EmitLL; 502 } 503 504 static bool initTargetOptions(DiagnosticsEngine &Diags, 505 llvm::TargetOptions &Options, 506 const CodeGenOptions &CodeGenOpts, 507 const clang::TargetOptions &TargetOpts, 508 const LangOptions &LangOpts, 509 const HeaderSearchOptions &HSOpts) { 510 switch (LangOpts.getThreadModel()) { 511 case LangOptions::ThreadModelKind::POSIX: 512 Options.ThreadModel = llvm::ThreadModel::POSIX; 513 break; 514 case LangOptions::ThreadModelKind::Single: 515 Options.ThreadModel = llvm::ThreadModel::Single; 516 break; 517 } 518 519 // Set float ABI type. 520 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 521 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 522 "Invalid Floating Point ABI!"); 523 Options.FloatABIType = 524 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 525 .Case("soft", llvm::FloatABI::Soft) 526 .Case("softfp", llvm::FloatABI::Soft) 527 .Case("hard", llvm::FloatABI::Hard) 528 .Default(llvm::FloatABI::Default); 529 530 // Set FP fusion mode. 531 switch (LangOpts.getDefaultFPContractMode()) { 532 case LangOptions::FPM_Off: 533 // Preserve any contraction performed by the front-end. (Strict performs 534 // splitting of the muladd intrinsic in the backend.) 535 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 536 break; 537 case LangOptions::FPM_On: 538 case LangOptions::FPM_FastHonorPragmas: 539 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 540 break; 541 case LangOptions::FPM_Fast: 542 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 543 break; 544 } 545 546 Options.BinutilsVersion = 547 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 548 Options.UseInitArray = CodeGenOpts.UseInitArray; 549 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 550 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 551 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 552 553 // Set EABI version. 554 Options.EABIVersion = TargetOpts.EABIVersion; 555 556 if (LangOpts.hasSjLjExceptions()) 557 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 558 if (LangOpts.hasSEHExceptions()) 559 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 560 if (LangOpts.hasDWARFExceptions()) 561 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 562 if (LangOpts.hasWasmExceptions()) 563 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 564 565 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 566 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 567 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 568 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 569 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 570 571 Options.BBSections = 572 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 573 .Case("all", llvm::BasicBlockSection::All) 574 .Case("labels", llvm::BasicBlockSection::Labels) 575 .StartsWith("list=", llvm::BasicBlockSection::List) 576 .Case("none", llvm::BasicBlockSection::None) 577 .Default(llvm::BasicBlockSection::None); 578 579 if (Options.BBSections == llvm::BasicBlockSection::List) { 580 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 581 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 582 if (!MBOrErr) { 583 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 584 << MBOrErr.getError().message(); 585 return false; 586 } 587 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 588 } 589 590 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 591 Options.FunctionSections = CodeGenOpts.FunctionSections; 592 Options.DataSections = CodeGenOpts.DataSections; 593 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 594 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 595 Options.UniqueBasicBlockSectionNames = 596 CodeGenOpts.UniqueBasicBlockSectionNames; 597 Options.TLSSize = CodeGenOpts.TLSSize; 598 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 599 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 600 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 601 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 602 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 603 Options.EmitAddrsig = CodeGenOpts.Addrsig; 604 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 605 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 606 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 607 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 608 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 609 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 610 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 611 Options.Hotpatch = CodeGenOpts.HotPatch; 612 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 613 614 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 615 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 616 Options.SwiftAsyncFramePointer = 617 SwiftAsyncFramePointerMode::DeploymentBased; 618 break; 619 620 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 621 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 622 break; 623 624 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 625 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 626 break; 627 } 628 629 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 630 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 631 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 632 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 633 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 634 Options.MCOptions.MCIncrementalLinkerCompatible = 635 CodeGenOpts.IncrementalLinkerCompatible; 636 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 637 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 638 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 639 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 640 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 641 Options.MCOptions.ABIName = TargetOpts.ABI; 642 for (const auto &Entry : HSOpts.UserEntries) 643 if (!Entry.IsFramework && 644 (Entry.Group == frontend::IncludeDirGroup::Quoted || 645 Entry.Group == frontend::IncludeDirGroup::Angled || 646 Entry.Group == frontend::IncludeDirGroup::System)) 647 Options.MCOptions.IASSearchPaths.push_back( 648 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 649 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 650 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 651 652 return true; 653 } 654 655 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 656 const LangOptions &LangOpts) { 657 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 658 return None; 659 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 660 // LLVM's -default-gcov-version flag is set to something invalid. 661 GCOVOptions Options; 662 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 663 Options.EmitData = CodeGenOpts.EmitGcovArcs; 664 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 665 Options.NoRedZone = CodeGenOpts.DisableRedZone; 666 Options.Filter = CodeGenOpts.ProfileFilterFiles; 667 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 668 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 669 return Options; 670 } 671 672 static Optional<InstrProfOptions> 673 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 674 const LangOptions &LangOpts) { 675 if (!CodeGenOpts.hasProfileClangInstr()) 676 return None; 677 InstrProfOptions Options; 678 Options.NoRedZone = CodeGenOpts.DisableRedZone; 679 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 680 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 681 return Options; 682 } 683 684 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 685 legacy::FunctionPassManager &FPM) { 686 // Handle disabling of all LLVM passes, where we want to preserve the 687 // internal module before any optimization. 688 if (CodeGenOpts.DisableLLVMPasses) 689 return; 690 691 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 692 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 693 // are inserted before PMBuilder ones - they'd get the default-constructed 694 // TLI with an unknown target otherwise. 695 Triple TargetTriple(TheModule->getTargetTriple()); 696 std::unique_ptr<TargetLibraryInfoImpl> TLII( 697 createTLII(TargetTriple, CodeGenOpts)); 698 699 // If we reached here with a non-empty index file name, then the index file 700 // was empty and we are not performing ThinLTO backend compilation (used in 701 // testing in a distributed build environment). Drop any the type test 702 // assume sequences inserted for whole program vtables so that codegen doesn't 703 // complain. 704 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 705 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 706 /*ImportSummary=*/nullptr, 707 /*DropTypeTests=*/true)); 708 709 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 710 711 // At O0 and O1 we only run the always inliner which is more efficient. At 712 // higher optimization levels we run the normal inliner. 713 if (CodeGenOpts.OptimizationLevel <= 1) { 714 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 715 !CodeGenOpts.DisableLifetimeMarkers) || 716 LangOpts.Coroutines); 717 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 718 } else { 719 // We do not want to inline hot callsites for SamplePGO module-summary build 720 // because profile annotation will happen again in ThinLTO backend, and we 721 // want the IR of the hot path to match the profile. 722 PMBuilder.Inliner = createFunctionInliningPass( 723 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 724 (!CodeGenOpts.SampleProfileFile.empty() && 725 CodeGenOpts.PrepareForThinLTO)); 726 } 727 728 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 729 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 730 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 731 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 732 // Only enable CGProfilePass when using integrated assembler, since 733 // non-integrated assemblers don't recognize .cgprofile section. 734 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 735 736 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 737 // Loop interleaving in the loop vectorizer has historically been set to be 738 // enabled when loop unrolling is enabled. 739 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 740 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 741 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 742 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 743 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 744 745 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 746 747 if (TM) 748 TM->adjustPassManager(PMBuilder); 749 750 if (CodeGenOpts.DebugInfoForProfiling || 751 !CodeGenOpts.SampleProfileFile.empty()) 752 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 753 addAddDiscriminatorsPass); 754 755 // In ObjC ARC mode, add the main ARC optimization passes. 756 if (LangOpts.ObjCAutoRefCount) { 757 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 758 addObjCARCExpandPass); 759 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 760 addObjCARCAPElimPass); 761 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 762 addObjCARCOptPass); 763 } 764 765 if (LangOpts.Coroutines) 766 addCoroutinePassesToExtensionPoints(PMBuilder); 767 768 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 769 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 770 addMemProfilerPasses); 771 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 772 addMemProfilerPasses); 773 } 774 775 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 776 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 777 addBoundsCheckingPass); 778 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 779 addBoundsCheckingPass); 780 } 781 782 if (CodeGenOpts.hasSanitizeCoverage()) { 783 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 784 addSanitizerCoveragePass); 785 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 786 addSanitizerCoveragePass); 787 } 788 789 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 790 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 791 addAddressSanitizerPasses); 792 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 793 addAddressSanitizerPasses); 794 } 795 796 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 797 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 798 addKernelAddressSanitizerPasses); 799 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 800 addKernelAddressSanitizerPasses); 801 } 802 803 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 804 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 805 addHWAddressSanitizerPasses); 806 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 807 addHWAddressSanitizerPasses); 808 } 809 810 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 811 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 812 addKernelHWAddressSanitizerPasses); 813 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 814 addKernelHWAddressSanitizerPasses); 815 } 816 817 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 818 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 819 addMemorySanitizerPass); 820 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 821 addMemorySanitizerPass); 822 } 823 824 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 825 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 826 addKernelMemorySanitizerPass); 827 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 828 addKernelMemorySanitizerPass); 829 } 830 831 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 832 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 833 addThreadSanitizerPass); 834 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 835 addThreadSanitizerPass); 836 } 837 838 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 839 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 840 addDataFlowSanitizerPass); 841 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 842 addDataFlowSanitizerPass); 843 } 844 845 if (CodeGenOpts.InstrumentFunctions || 846 CodeGenOpts.InstrumentFunctionEntryBare || 847 CodeGenOpts.InstrumentFunctionsAfterInlining || 848 CodeGenOpts.InstrumentForProfiling) { 849 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 850 addEntryExitInstrumentationPass); 851 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 852 addEntryExitInstrumentationPass); 853 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 854 addPostInlineEntryExitInstrumentationPass); 855 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 856 addPostInlineEntryExitInstrumentationPass); 857 } 858 859 // Set up the per-function pass manager. 860 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 861 if (CodeGenOpts.VerifyModule) 862 FPM.add(createVerifierPass()); 863 864 // Set up the per-module pass manager. 865 if (!CodeGenOpts.RewriteMapFiles.empty()) 866 addSymbolRewriterPass(CodeGenOpts, &MPM); 867 868 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 869 MPM.add(createGCOVProfilerPass(*Options)); 870 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 871 MPM.add(createStripSymbolsPass(true)); 872 } 873 874 if (Optional<InstrProfOptions> Options = 875 getInstrProfOptions(CodeGenOpts, LangOpts)) 876 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 877 878 bool hasIRInstr = false; 879 if (CodeGenOpts.hasProfileIRInstr()) { 880 PMBuilder.EnablePGOInstrGen = true; 881 hasIRInstr = true; 882 } 883 if (CodeGenOpts.hasProfileCSIRInstr()) { 884 assert(!CodeGenOpts.hasProfileCSIRUse() && 885 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 886 "same time"); 887 assert(!hasIRInstr && 888 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 889 "same time"); 890 PMBuilder.EnablePGOCSInstrGen = true; 891 hasIRInstr = true; 892 } 893 if (hasIRInstr) { 894 if (!CodeGenOpts.InstrProfileOutput.empty()) 895 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 896 else 897 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 898 } 899 if (CodeGenOpts.hasProfileIRUse()) { 900 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 901 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 902 } 903 904 if (!CodeGenOpts.SampleProfileFile.empty()) 905 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 906 907 PMBuilder.populateFunctionPassManager(FPM); 908 PMBuilder.populateModulePassManager(MPM); 909 } 910 911 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 912 SmallVector<const char *, 16> BackendArgs; 913 BackendArgs.push_back("clang"); // Fake program name. 914 if (!CodeGenOpts.DebugPass.empty()) { 915 BackendArgs.push_back("-debug-pass"); 916 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 917 } 918 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 919 BackendArgs.push_back("-limit-float-precision"); 920 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 921 } 922 // Check for the default "clang" invocation that won't set any cl::opt values. 923 // Skip trying to parse the command line invocation to avoid the issues 924 // described below. 925 if (BackendArgs.size() == 1) 926 return; 927 BackendArgs.push_back(nullptr); 928 // FIXME: The command line parser below is not thread-safe and shares a global 929 // state, so this call might crash or overwrite the options of another Clang 930 // instance in the same process. 931 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 932 BackendArgs.data()); 933 } 934 935 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 936 // Create the TargetMachine for generating code. 937 std::string Error; 938 std::string Triple = TheModule->getTargetTriple(); 939 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 940 if (!TheTarget) { 941 if (MustCreateTM) 942 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 943 return; 944 } 945 946 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 947 std::string FeaturesStr = 948 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 949 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 950 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 951 952 llvm::TargetOptions Options; 953 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 954 HSOpts)) 955 return; 956 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 957 Options, RM, CM, OptLevel)); 958 } 959 960 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 961 BackendAction Action, 962 raw_pwrite_stream &OS, 963 raw_pwrite_stream *DwoOS) { 964 // Add LibraryInfo. 965 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 966 std::unique_ptr<TargetLibraryInfoImpl> TLII( 967 createTLII(TargetTriple, CodeGenOpts)); 968 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 969 970 // Normal mode, emit a .s or .o file by running the code generator. Note, 971 // this also adds codegenerator level optimization passes. 972 CodeGenFileType CGFT = getCodeGenFileType(Action); 973 974 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 975 // "codegen" passes so that it isn't run multiple times when there is 976 // inlining happening. 977 if (CodeGenOpts.OptimizationLevel > 0) 978 CodeGenPasses.add(createObjCARCContractPass()); 979 980 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 981 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 982 Diags.Report(diag::err_fe_unable_to_interface_with_target); 983 return false; 984 } 985 986 return true; 987 } 988 989 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 990 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 991 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 992 993 setCommandLineOpts(CodeGenOpts); 994 995 bool UsesCodeGen = actionRequiresCodeGen(Action); 996 CreateTargetMachine(UsesCodeGen); 997 998 if (UsesCodeGen && !TM) 999 return; 1000 if (TM) 1001 TheModule->setDataLayout(TM->createDataLayout()); 1002 1003 DebugifyCustomPassManager PerModulePasses; 1004 DebugInfoPerPassMap DIPreservationMap; 1005 if (CodeGenOpts.EnableDIPreservationVerify) { 1006 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1007 PerModulePasses.setDIPreservationMap(DIPreservationMap); 1008 1009 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1010 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1011 CodeGenOpts.DIBugsReportFilePath); 1012 } 1013 PerModulePasses.add( 1014 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1015 1016 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1017 PerFunctionPasses.add( 1018 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1019 1020 CreatePasses(PerModulePasses, PerFunctionPasses); 1021 1022 // Add a verifier pass if requested. We don't have to do this if the action 1023 // requires code generation because there will already be a verifier pass in 1024 // the code-generation pipeline. 1025 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1026 PerModulePasses.add(createVerifierPass()); 1027 1028 legacy::PassManager CodeGenPasses; 1029 CodeGenPasses.add( 1030 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1031 1032 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1033 1034 switch (Action) { 1035 case Backend_EmitNothing: 1036 break; 1037 1038 case Backend_EmitBC: 1039 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1040 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1041 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1042 if (!ThinLinkOS) 1043 return; 1044 } 1045 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1046 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1047 CodeGenOpts.EnableSplitLTOUnit); 1048 PerModulePasses.add(createWriteThinLTOBitcodePass( 1049 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1050 } else { 1051 // Emit a module summary by default for Regular LTO except for ld64 1052 // targets 1053 bool EmitLTOSummary = 1054 (CodeGenOpts.PrepareForLTO && 1055 !CodeGenOpts.DisableLLVMPasses && 1056 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1057 llvm::Triple::Apple); 1058 if (EmitLTOSummary) { 1059 if (!TheModule->getModuleFlag("ThinLTO")) 1060 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1061 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1062 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1063 uint32_t(1)); 1064 } 1065 1066 PerModulePasses.add(createBitcodeWriterPass( 1067 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1068 } 1069 break; 1070 1071 case Backend_EmitLL: 1072 PerModulePasses.add( 1073 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1074 break; 1075 1076 default: 1077 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1078 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1079 if (!DwoOS) 1080 return; 1081 } 1082 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1083 DwoOS ? &DwoOS->os() : nullptr)) 1084 return; 1085 } 1086 1087 // Before executing passes, print the final values of the LLVM options. 1088 cl::PrintOptionValues(); 1089 1090 // Run passes. For now we do all passes at once, but eventually we 1091 // would like to have the option of streaming code generation. 1092 1093 { 1094 PrettyStackTraceString CrashInfo("Per-function optimization"); 1095 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1096 1097 PerFunctionPasses.doInitialization(); 1098 for (Function &F : *TheModule) 1099 if (!F.isDeclaration()) 1100 PerFunctionPasses.run(F); 1101 PerFunctionPasses.doFinalization(); 1102 } 1103 1104 { 1105 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1106 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1107 PerModulePasses.run(*TheModule); 1108 } 1109 1110 { 1111 PrettyStackTraceString CrashInfo("Code generation"); 1112 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1113 CodeGenPasses.run(*TheModule); 1114 } 1115 1116 if (ThinLinkOS) 1117 ThinLinkOS->keep(); 1118 if (DwoOS) 1119 DwoOS->keep(); 1120 } 1121 1122 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1123 switch (Opts.OptimizationLevel) { 1124 default: 1125 llvm_unreachable("Invalid optimization level!"); 1126 1127 case 0: 1128 return OptimizationLevel::O0; 1129 1130 case 1: 1131 return OptimizationLevel::O1; 1132 1133 case 2: 1134 switch (Opts.OptimizeSize) { 1135 default: 1136 llvm_unreachable("Invalid optimization level for size!"); 1137 1138 case 0: 1139 return OptimizationLevel::O2; 1140 1141 case 1: 1142 return OptimizationLevel::Os; 1143 1144 case 2: 1145 return OptimizationLevel::Oz; 1146 } 1147 1148 case 3: 1149 return OptimizationLevel::O3; 1150 } 1151 } 1152 1153 static void addSanitizers(const Triple &TargetTriple, 1154 const CodeGenOptions &CodeGenOpts, 1155 const LangOptions &LangOpts, PassBuilder &PB) { 1156 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1157 OptimizationLevel Level) { 1158 if (CodeGenOpts.hasSanitizeCoverage()) { 1159 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1160 MPM.addPass(ModuleSanitizerCoveragePass( 1161 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1162 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1163 } 1164 1165 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1166 if (LangOpts.Sanitize.has(Mask)) { 1167 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1168 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1169 1170 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1171 CodeGenOpts.SanitizeMemoryParamRetval); 1172 MPM.addPass(ModuleMemorySanitizerPass(options)); 1173 FunctionPassManager FPM; 1174 FPM.addPass(MemorySanitizerPass(options)); 1175 if (Level != OptimizationLevel::O0) { 1176 // MemorySanitizer inserts complex instrumentation that mostly 1177 // follows the logic of the original code, but operates on 1178 // "shadow" values. It can benefit from re-running some 1179 // general purpose optimization passes. 1180 FPM.addPass(EarlyCSEPass()); 1181 // TODO: Consider add more passes like in 1182 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1183 // difference on size. It's not clear if the rest is still 1184 // usefull. InstCombinePass breakes 1185 // compiler-rt/test/msan/select_origin.cpp. 1186 } 1187 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1188 } 1189 }; 1190 MSanPass(SanitizerKind::Memory, false); 1191 MSanPass(SanitizerKind::KernelMemory, true); 1192 1193 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1194 MPM.addPass(ModuleThreadSanitizerPass()); 1195 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1196 } 1197 1198 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1199 if (LangOpts.Sanitize.has(Mask)) { 1200 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1201 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1202 llvm::AsanDtorKind DestructorKind = 1203 CodeGenOpts.getSanitizeAddressDtor(); 1204 AddressSanitizerOptions Opts; 1205 Opts.CompileKernel = CompileKernel; 1206 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1207 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1208 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1209 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1210 MPM.addPass(ModuleAddressSanitizerPass( 1211 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1212 } 1213 }; 1214 ASanPass(SanitizerKind::Address, false); 1215 ASanPass(SanitizerKind::KernelAddress, true); 1216 1217 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1218 if (LangOpts.Sanitize.has(Mask)) { 1219 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1220 MPM.addPass(HWAddressSanitizerPass( 1221 {CompileKernel, Recover, 1222 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1223 } 1224 }; 1225 HWASanPass(SanitizerKind::HWAddress, false); 1226 HWASanPass(SanitizerKind::KernelHWAddress, true); 1227 1228 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1229 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1230 } 1231 }); 1232 } 1233 1234 void EmitAssemblyHelper::RunOptimizationPipeline( 1235 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1236 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1237 Optional<PGOOptions> PGOOpt; 1238 1239 if (CodeGenOpts.hasProfileIRInstr()) 1240 // -fprofile-generate. 1241 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1242 ? getDefaultProfileGenName() 1243 : CodeGenOpts.InstrProfileOutput, 1244 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1245 CodeGenOpts.DebugInfoForProfiling); 1246 else if (CodeGenOpts.hasProfileIRUse()) { 1247 // -fprofile-use. 1248 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1249 : PGOOptions::NoCSAction; 1250 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1251 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1252 CSAction, CodeGenOpts.DebugInfoForProfiling); 1253 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1254 // -fprofile-sample-use 1255 PGOOpt = PGOOptions( 1256 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1257 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1258 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1259 else if (CodeGenOpts.PseudoProbeForProfiling) 1260 // -fpseudo-probe-for-profiling 1261 PGOOpt = 1262 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1263 CodeGenOpts.DebugInfoForProfiling, true); 1264 else if (CodeGenOpts.DebugInfoForProfiling) 1265 // -fdebug-info-for-profiling 1266 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1267 PGOOptions::NoCSAction, true); 1268 1269 // Check to see if we want to generate a CS profile. 1270 if (CodeGenOpts.hasProfileCSIRInstr()) { 1271 assert(!CodeGenOpts.hasProfileCSIRUse() && 1272 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1273 "the same time"); 1274 if (PGOOpt.hasValue()) { 1275 assert(PGOOpt->Action != PGOOptions::IRInstr && 1276 PGOOpt->Action != PGOOptions::SampleUse && 1277 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1278 " pass"); 1279 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1280 ? getDefaultProfileGenName() 1281 : CodeGenOpts.InstrProfileOutput; 1282 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1283 } else 1284 PGOOpt = PGOOptions("", 1285 CodeGenOpts.InstrProfileOutput.empty() 1286 ? getDefaultProfileGenName() 1287 : CodeGenOpts.InstrProfileOutput, 1288 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1289 CodeGenOpts.DebugInfoForProfiling); 1290 } 1291 if (TM) 1292 TM->setPGOOption(PGOOpt); 1293 1294 PipelineTuningOptions PTO; 1295 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1296 // For historical reasons, loop interleaving is set to mirror setting for loop 1297 // unrolling. 1298 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1299 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1300 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1301 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1302 // Only enable CGProfilePass when using integrated assembler, since 1303 // non-integrated assemblers don't recognize .cgprofile section. 1304 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1305 1306 LoopAnalysisManager LAM; 1307 FunctionAnalysisManager FAM; 1308 CGSCCAnalysisManager CGAM; 1309 ModuleAnalysisManager MAM; 1310 1311 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1312 PassInstrumentationCallbacks PIC; 1313 PrintPassOptions PrintPassOpts; 1314 PrintPassOpts.Indent = DebugPassStructure; 1315 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1316 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1317 DebugPassStructure, 1318 /*VerifyEach*/ false, PrintPassOpts); 1319 SI.registerCallbacks(PIC, &FAM); 1320 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1321 1322 // Attempt to load pass plugins and register their callbacks with PB. 1323 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1324 auto PassPlugin = PassPlugin::Load(PluginFN); 1325 if (PassPlugin) { 1326 PassPlugin->registerPassBuilderCallbacks(PB); 1327 } else { 1328 Diags.Report(diag::err_fe_unable_to_load_plugin) 1329 << PluginFN << toString(PassPlugin.takeError()); 1330 } 1331 } 1332 #define HANDLE_EXTENSION(Ext) \ 1333 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1334 #include "llvm/Support/Extension.def" 1335 1336 // Register the target library analysis directly and give it a customized 1337 // preset TLI. 1338 Triple TargetTriple(TheModule->getTargetTriple()); 1339 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1340 createTLII(TargetTriple, CodeGenOpts)); 1341 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1342 1343 // Register all the basic analyses with the managers. 1344 PB.registerModuleAnalyses(MAM); 1345 PB.registerCGSCCAnalyses(CGAM); 1346 PB.registerFunctionAnalyses(FAM); 1347 PB.registerLoopAnalyses(LAM); 1348 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1349 1350 ModulePassManager MPM; 1351 1352 if (!CodeGenOpts.DisableLLVMPasses) { 1353 // Map our optimization levels into one of the distinct levels used to 1354 // configure the pipeline. 1355 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1356 1357 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1358 bool IsLTO = CodeGenOpts.PrepareForLTO; 1359 1360 if (LangOpts.ObjCAutoRefCount) { 1361 PB.registerPipelineStartEPCallback( 1362 [](ModulePassManager &MPM, OptimizationLevel Level) { 1363 if (Level != OptimizationLevel::O0) 1364 MPM.addPass( 1365 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1366 }); 1367 PB.registerPipelineEarlySimplificationEPCallback( 1368 [](ModulePassManager &MPM, OptimizationLevel Level) { 1369 if (Level != OptimizationLevel::O0) 1370 MPM.addPass(ObjCARCAPElimPass()); 1371 }); 1372 PB.registerScalarOptimizerLateEPCallback( 1373 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1374 if (Level != OptimizationLevel::O0) 1375 FPM.addPass(ObjCARCOptPass()); 1376 }); 1377 } 1378 1379 // If we reached here with a non-empty index file name, then the index 1380 // file was empty and we are not performing ThinLTO backend compilation 1381 // (used in testing in a distributed build environment). 1382 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1383 // If so drop any the type test assume sequences inserted for whole program 1384 // vtables so that codegen doesn't complain. 1385 if (IsThinLTOPostLink) 1386 PB.registerPipelineStartEPCallback( 1387 [](ModulePassManager &MPM, OptimizationLevel Level) { 1388 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1389 /*ImportSummary=*/nullptr, 1390 /*DropTypeTests=*/true)); 1391 }); 1392 1393 if (CodeGenOpts.InstrumentFunctions || 1394 CodeGenOpts.InstrumentFunctionEntryBare || 1395 CodeGenOpts.InstrumentFunctionsAfterInlining || 1396 CodeGenOpts.InstrumentForProfiling) { 1397 PB.registerPipelineStartEPCallback( 1398 [](ModulePassManager &MPM, OptimizationLevel Level) { 1399 MPM.addPass(createModuleToFunctionPassAdaptor( 1400 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1401 }); 1402 PB.registerOptimizerLastEPCallback( 1403 [](ModulePassManager &MPM, OptimizationLevel Level) { 1404 MPM.addPass(createModuleToFunctionPassAdaptor( 1405 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1406 }); 1407 } 1408 1409 // Register callbacks to schedule sanitizer passes at the appropriate part 1410 // of the pipeline. 1411 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1412 PB.registerScalarOptimizerLateEPCallback( 1413 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1414 FPM.addPass(BoundsCheckingPass()); 1415 }); 1416 1417 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1418 // done on PreLink stage. 1419 if (!IsThinLTOPostLink) 1420 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1421 1422 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1423 PB.registerPipelineStartEPCallback( 1424 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1425 MPM.addPass(GCOVProfilerPass(*Options)); 1426 }); 1427 if (Optional<InstrProfOptions> Options = 1428 getInstrProfOptions(CodeGenOpts, LangOpts)) 1429 PB.registerPipelineStartEPCallback( 1430 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1431 MPM.addPass(InstrProfiling(*Options, false)); 1432 }); 1433 1434 if (CodeGenOpts.OptimizationLevel == 0) { 1435 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1436 } else if (IsThinLTO) { 1437 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1438 } else if (IsLTO) { 1439 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1440 } else { 1441 MPM = PB.buildPerModuleDefaultPipeline(Level); 1442 } 1443 1444 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1445 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1446 MPM.addPass(ModuleMemProfilerPass()); 1447 } 1448 } 1449 1450 // Add a verifier pass if requested. We don't have to do this if the action 1451 // requires code generation because there will already be a verifier pass in 1452 // the code-generation pipeline. 1453 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1454 MPM.addPass(VerifierPass()); 1455 1456 switch (Action) { 1457 case Backend_EmitBC: 1458 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1459 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1460 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1461 if (!ThinLinkOS) 1462 return; 1463 } 1464 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1465 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1466 CodeGenOpts.EnableSplitLTOUnit); 1467 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1468 : nullptr)); 1469 } else { 1470 // Emit a module summary by default for Regular LTO except for ld64 1471 // targets 1472 bool EmitLTOSummary = 1473 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1474 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1475 llvm::Triple::Apple); 1476 if (EmitLTOSummary) { 1477 if (!TheModule->getModuleFlag("ThinLTO")) 1478 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1479 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1480 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1481 uint32_t(1)); 1482 } 1483 MPM.addPass( 1484 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1485 } 1486 break; 1487 1488 case Backend_EmitLL: 1489 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1490 break; 1491 1492 default: 1493 break; 1494 } 1495 1496 // Now that we have all of the passes ready, run them. 1497 { 1498 PrettyStackTraceString CrashInfo("Optimizer"); 1499 llvm::TimeTraceScope TimeScope("Optimizer"); 1500 MPM.run(*TheModule, MAM); 1501 } 1502 } 1503 1504 void EmitAssemblyHelper::RunCodegenPipeline( 1505 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1506 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1507 // We still use the legacy PM to run the codegen pipeline since the new PM 1508 // does not work with the codegen pipeline. 1509 // FIXME: make the new PM work with the codegen pipeline. 1510 legacy::PassManager CodeGenPasses; 1511 1512 // Append any output we need to the pass manager. 1513 switch (Action) { 1514 case Backend_EmitAssembly: 1515 case Backend_EmitMCNull: 1516 case Backend_EmitObj: 1517 CodeGenPasses.add( 1518 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1519 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1520 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1521 if (!DwoOS) 1522 return; 1523 } 1524 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1525 DwoOS ? &DwoOS->os() : nullptr)) 1526 // FIXME: Should we handle this error differently? 1527 return; 1528 break; 1529 default: 1530 return; 1531 } 1532 1533 { 1534 PrettyStackTraceString CrashInfo("Code generation"); 1535 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1536 CodeGenPasses.run(*TheModule); 1537 } 1538 } 1539 1540 /// A clean version of `EmitAssembly` that uses the new pass manager. 1541 /// 1542 /// Not all features are currently supported in this system, but where 1543 /// necessary it falls back to the legacy pass manager to at least provide 1544 /// basic functionality. 1545 /// 1546 /// This API is planned to have its functionality finished and then to replace 1547 /// `EmitAssembly` at some point in the future when the default switches. 1548 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1549 std::unique_ptr<raw_pwrite_stream> OS) { 1550 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1551 setCommandLineOpts(CodeGenOpts); 1552 1553 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1554 CreateTargetMachine(RequiresCodeGen); 1555 1556 if (RequiresCodeGen && !TM) 1557 return; 1558 if (TM) 1559 TheModule->setDataLayout(TM->createDataLayout()); 1560 1561 // Before executing passes, print the final values of the LLVM options. 1562 cl::PrintOptionValues(); 1563 1564 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1565 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1566 RunCodegenPipeline(Action, OS, DwoOS); 1567 1568 if (ThinLinkOS) 1569 ThinLinkOS->keep(); 1570 if (DwoOS) 1571 DwoOS->keep(); 1572 } 1573 1574 static void runThinLTOBackend( 1575 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1576 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1577 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1578 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1579 std::string ProfileRemapping, BackendAction Action) { 1580 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1581 ModuleToDefinedGVSummaries; 1582 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1583 1584 setCommandLineOpts(CGOpts); 1585 1586 // We can simply import the values mentioned in the combined index, since 1587 // we should only invoke this using the individual indexes written out 1588 // via a WriteIndexesThinBackend. 1589 FunctionImporter::ImportMapTy ImportList; 1590 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1591 return; 1592 1593 auto AddStream = [&](size_t Task) { 1594 return std::make_unique<CachedFileStream>(std::move(OS), 1595 CGOpts.ObjectFilenameForDebug); 1596 }; 1597 lto::Config Conf; 1598 if (CGOpts.SaveTempsFilePrefix != "") { 1599 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1600 /* UseInputModulePath */ false)) { 1601 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1602 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1603 << '\n'; 1604 }); 1605 } 1606 } 1607 Conf.CPU = TOpts.CPU; 1608 Conf.CodeModel = getCodeModel(CGOpts); 1609 Conf.MAttrs = TOpts.Features; 1610 Conf.RelocModel = CGOpts.RelocationModel; 1611 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1612 Conf.OptLevel = CGOpts.OptimizationLevel; 1613 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1614 Conf.SampleProfile = std::move(SampleProfile); 1615 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1616 // For historical reasons, loop interleaving is set to mirror setting for loop 1617 // unrolling. 1618 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1619 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1620 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1621 // Only enable CGProfilePass when using integrated assembler, since 1622 // non-integrated assemblers don't recognize .cgprofile section. 1623 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1624 1625 // Context sensitive profile. 1626 if (CGOpts.hasProfileCSIRInstr()) { 1627 Conf.RunCSIRInstr = true; 1628 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1629 } else if (CGOpts.hasProfileCSIRUse()) { 1630 Conf.RunCSIRInstr = false; 1631 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1632 } 1633 1634 Conf.ProfileRemapping = std::move(ProfileRemapping); 1635 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1636 Conf.DebugPassManager = CGOpts.DebugPassManager; 1637 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1638 Conf.RemarksFilename = CGOpts.OptRecordFile; 1639 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1640 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1641 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1642 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1643 switch (Action) { 1644 case Backend_EmitNothing: 1645 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1646 return false; 1647 }; 1648 break; 1649 case Backend_EmitLL: 1650 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1651 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1652 return false; 1653 }; 1654 break; 1655 case Backend_EmitBC: 1656 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1657 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1658 return false; 1659 }; 1660 break; 1661 default: 1662 Conf.CGFileType = getCodeGenFileType(Action); 1663 break; 1664 } 1665 if (Error E = 1666 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1667 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1668 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1669 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1670 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1671 }); 1672 } 1673 } 1674 1675 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1676 const HeaderSearchOptions &HeaderOpts, 1677 const CodeGenOptions &CGOpts, 1678 const clang::TargetOptions &TOpts, 1679 const LangOptions &LOpts, 1680 StringRef TDesc, Module *M, 1681 BackendAction Action, 1682 std::unique_ptr<raw_pwrite_stream> OS) { 1683 1684 llvm::TimeTraceScope TimeScope("Backend"); 1685 1686 std::unique_ptr<llvm::Module> EmptyModule; 1687 if (!CGOpts.ThinLTOIndexFile.empty()) { 1688 // If we are performing a ThinLTO importing compile, load the function index 1689 // into memory and pass it into runThinLTOBackend, which will run the 1690 // function importer and invoke LTO passes. 1691 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1692 if (Error E = llvm::getModuleSummaryIndexForFile( 1693 CGOpts.ThinLTOIndexFile, 1694 /*IgnoreEmptyThinLTOIndexFile*/ true) 1695 .moveInto(CombinedIndex)) { 1696 logAllUnhandledErrors(std::move(E), errs(), 1697 "Error loading index file '" + 1698 CGOpts.ThinLTOIndexFile + "': "); 1699 return; 1700 } 1701 1702 // A null CombinedIndex means we should skip ThinLTO compilation 1703 // (LLVM will optionally ignore empty index files, returning null instead 1704 // of an error). 1705 if (CombinedIndex) { 1706 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1707 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1708 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1709 CGOpts.ProfileRemappingFile, Action); 1710 return; 1711 } 1712 // Distributed indexing detected that nothing from the module is needed 1713 // for the final linking. So we can skip the compilation. We sill need to 1714 // output an empty object file to make sure that a linker does not fail 1715 // trying to read it. Also for some features, like CFI, we must skip 1716 // the compilation as CombinedIndex does not contain all required 1717 // information. 1718 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1719 EmptyModule->setTargetTriple(M->getTargetTriple()); 1720 M = EmptyModule.get(); 1721 } 1722 } 1723 1724 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1725 1726 if (CGOpts.LegacyPassManager) 1727 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1728 else 1729 AsmHelper.EmitAssembly(Action, std::move(OS)); 1730 1731 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1732 // DataLayout. 1733 if (AsmHelper.TM) { 1734 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1735 if (DLDesc != TDesc) { 1736 unsigned DiagID = Diags.getCustomDiagID( 1737 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1738 "expected target description '%1'"); 1739 Diags.Report(DiagID) << DLDesc << TDesc; 1740 } 1741 } 1742 } 1743 1744 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1745 // __LLVM,__bitcode section. 1746 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1747 llvm::MemoryBufferRef Buf) { 1748 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1749 return; 1750 llvm::embedBitcodeInModule( 1751 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1752 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1753 CGOpts.CmdArgs); 1754 } 1755 1756 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1757 DiagnosticsEngine &Diags) { 1758 if (CGOpts.OffloadObjects.empty()) 1759 return; 1760 1761 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1762 if (OffloadObject.count(',') != 1) { 1763 Diags.Report(Diags.getCustomDiagID( 1764 DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'")) 1765 << OffloadObject; 1766 return; 1767 } 1768 auto FilenameAndSection = OffloadObject.split(','); 1769 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1770 llvm::MemoryBuffer::getFileOrSTDIN(std::get<0>(FilenameAndSection)); 1771 if (std::error_code EC = ObjectOrErr.getError()) { 1772 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1773 "could not open '%0' for embedding"); 1774 Diags.Report(DiagID) << std::get<0>(FilenameAndSection); 1775 return; 1776 } 1777 1778 SmallString<128> SectionName( 1779 {".llvm.offloading.", std::get<1>(FilenameAndSection)}); 1780 llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName); 1781 } 1782 } 1783