1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 89 #include "llvm/Transforms/Utils/SymbolRewriter.h" 90 #include <memory> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> DebugInfoCorrelate; 100 } 101 102 namespace { 103 104 // Default filename used for profile generation. 105 std::string getDefaultProfileGenName() { 106 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 107 } 108 109 class EmitAssemblyHelper { 110 DiagnosticsEngine &Diags; 111 const HeaderSearchOptions &HSOpts; 112 const CodeGenOptions &CodeGenOpts; 113 const clang::TargetOptions &TargetOpts; 114 const LangOptions &LangOpts; 115 Module *TheModule; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 TargetIRAnalysis getTargetIRAnalysis() const { 122 if (TM) 123 return TM->getTargetIRAnalysis(); 124 125 return TargetIRAnalysis(); 126 } 127 128 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 129 130 /// Generates the TargetMachine. 131 /// Leaves TM unchanged if it is unable to create the target machine. 132 /// Some of our clang tests specify triples which are not built 133 /// into clang. This is okay because these tests check the generated 134 /// IR, and they require DataLayout which depends on the triple. 135 /// In this case, we allow this method to fail and not report an error. 136 /// When MustCreateTM is used, we print an error if we are unable to load 137 /// the requested target. 138 void CreateTargetMachine(bool MustCreateTM); 139 140 /// Add passes necessary to emit assembly or LLVM IR. 141 /// 142 /// \return True on success. 143 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 144 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 145 146 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 147 std::error_code EC; 148 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 149 llvm::sys::fs::OF_None); 150 if (EC) { 151 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 152 F.reset(); 153 } 154 return F; 155 } 156 157 void 158 RunOptimizationPipeline(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> &OS, 160 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 161 void RunCodegenPipeline(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> &OS, 163 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 164 165 public: 166 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 167 const HeaderSearchOptions &HeaderSearchOpts, 168 const CodeGenOptions &CGOpts, 169 const clang::TargetOptions &TOpts, 170 const LangOptions &LOpts, Module *M) 171 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 172 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 173 CodeGenerationTime("codegen", "Code Generation Time") {} 174 175 ~EmitAssemblyHelper() { 176 if (CodeGenOpts.DisableFree) 177 BuryPointer(std::move(TM)); 178 } 179 180 std::unique_ptr<TargetMachine> TM; 181 182 // Emit output using the legacy pass manager for the optimization pipeline. 183 // This will be removed soon when using the legacy pass manager for the 184 // optimization pipeline is no longer supported. 185 void EmitAssemblyWithLegacyPassManager(BackendAction Action, 186 std::unique_ptr<raw_pwrite_stream> OS); 187 188 // Emit output using the new pass manager for the optimization pipeline. This 189 // is the default. 190 void EmitAssembly(BackendAction Action, 191 std::unique_ptr<raw_pwrite_stream> OS); 192 }; 193 194 // We need this wrapper to access LangOpts and CGOpts from extension functions 195 // that we add to the PassManagerBuilder. 196 class PassManagerBuilderWrapper : public PassManagerBuilder { 197 public: 198 PassManagerBuilderWrapper(const Triple &TargetTriple, 199 const CodeGenOptions &CGOpts, 200 const LangOptions &LangOpts) 201 : TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {} 202 const Triple &getTargetTriple() const { return TargetTriple; } 203 const CodeGenOptions &getCGOpts() const { return CGOpts; } 204 const LangOptions &getLangOpts() const { return LangOpts; } 205 206 private: 207 const Triple &TargetTriple; 208 const CodeGenOptions &CGOpts; 209 const LangOptions &LangOpts; 210 }; 211 } 212 213 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 214 if (Builder.OptLevel > 0) 215 PM.add(createObjCARCAPElimPass()); 216 } 217 218 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 219 if (Builder.OptLevel > 0) 220 PM.add(createObjCARCExpandPass()); 221 } 222 223 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 224 if (Builder.OptLevel > 0) 225 PM.add(createObjCARCOptPass()); 226 } 227 228 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 229 legacy::PassManagerBase &PM) { 230 PM.add(createAddDiscriminatorsPass()); 231 } 232 233 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createBoundsCheckingLegacyPass()); 236 } 237 238 static SanitizerCoverageOptions 239 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 240 SanitizerCoverageOptions Opts; 241 Opts.CoverageType = 242 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 243 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 244 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 245 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 246 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 247 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 248 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 249 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 250 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 251 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 252 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 253 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 254 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 255 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 256 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 257 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 258 return Opts; 259 } 260 261 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 262 legacy::PassManagerBase &PM) { 263 const PassManagerBuilderWrapper &BuilderWrapper = 264 static_cast<const PassManagerBuilderWrapper &>(Builder); 265 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 266 auto Opts = getSancovOptsFromCGOpts(CGOpts); 267 PM.add(createModuleSanitizerCoverageLegacyPassPass( 268 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 269 CGOpts.SanitizeCoverageIgnorelistFiles)); 270 } 271 272 // Check if ASan should use GC-friendly instrumentation for globals. 273 // First of all, there is no point if -fdata-sections is off (expect for MachO, 274 // where this is not a factor). Also, on ELF this feature requires an assembler 275 // extension that only works with -integrated-as at the moment. 276 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 277 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 278 return false; 279 switch (T.getObjectFormat()) { 280 case Triple::MachO: 281 case Triple::COFF: 282 return true; 283 case Triple::ELF: 284 return !CGOpts.DisableIntegratedAS; 285 case Triple::GOFF: 286 llvm::report_fatal_error("ASan not implemented for GOFF"); 287 case Triple::XCOFF: 288 llvm::report_fatal_error("ASan not implemented for XCOFF."); 289 case Triple::Wasm: 290 case Triple::UnknownObjectFormat: 291 break; 292 } 293 return false; 294 } 295 296 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 297 legacy::PassManagerBase &PM) { 298 PM.add(createMemProfilerFunctionPass()); 299 PM.add(createModuleMemProfilerLegacyPassPass()); 300 } 301 302 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 const PassManagerBuilderWrapper &BuilderWrapper = 305 static_cast<const PassManagerBuilderWrapper&>(Builder); 306 const Triple &T = BuilderWrapper.getTargetTriple(); 307 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 308 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 309 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 310 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 311 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 312 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 313 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 314 CGOpts.getSanitizeAddressUseAfterReturn(); 315 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 316 UseAfterScope, UseAfterReturn)); 317 PM.add(createModuleAddressSanitizerLegacyPassPass( 318 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 319 DestructorKind)); 320 } 321 322 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 PM.add(createAddressSanitizerFunctionPass( 325 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 326 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 327 PM.add(createModuleAddressSanitizerLegacyPassPass( 328 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 329 /*UseOdrIndicator*/ false)); 330 } 331 332 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 const PassManagerBuilderWrapper &BuilderWrapper = 335 static_cast<const PassManagerBuilderWrapper &>(Builder); 336 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 337 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 338 PM.add(createHWAddressSanitizerLegacyPassPass( 339 /*CompileKernel*/ false, Recover, 340 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 341 } 342 343 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 const PassManagerBuilderWrapper &BuilderWrapper = 346 static_cast<const PassManagerBuilderWrapper &>(Builder); 347 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 348 PM.add(createHWAddressSanitizerLegacyPassPass( 349 /*CompileKernel*/ true, /*Recover*/ true, 350 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 351 } 352 353 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 354 legacy::PassManagerBase &PM, 355 bool CompileKernel) { 356 const PassManagerBuilderWrapper &BuilderWrapper = 357 static_cast<const PassManagerBuilderWrapper&>(Builder); 358 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 359 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 360 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 361 PM.add(createMemorySanitizerLegacyPassPass( 362 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel, 363 CGOpts.SanitizeMemoryParamRetval != 0})); 364 365 // MemorySanitizer inserts complex instrumentation that mostly follows 366 // the logic of the original code, but operates on "shadow" values. 367 // It can benefit from re-running some general purpose optimization passes. 368 if (Builder.OptLevel > 0) { 369 PM.add(createEarlyCSEPass()); 370 PM.add(createReassociatePass()); 371 PM.add(createLICMPass()); 372 PM.add(createGVNPass()); 373 PM.add(createInstructionCombiningPass()); 374 PM.add(createDeadStoreEliminationPass()); 375 } 376 } 377 378 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 379 legacy::PassManagerBase &PM) { 380 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 381 } 382 383 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 384 legacy::PassManagerBase &PM) { 385 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 386 } 387 388 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 389 legacy::PassManagerBase &PM) { 390 PM.add(createThreadSanitizerLegacyPassPass()); 391 } 392 393 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 394 legacy::PassManagerBase &PM) { 395 const PassManagerBuilderWrapper &BuilderWrapper = 396 static_cast<const PassManagerBuilderWrapper&>(Builder); 397 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 398 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 399 } 400 401 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 402 legacy::PassManagerBase &PM) { 403 PM.add(createEntryExitInstrumenterPass()); 404 } 405 406 static void 407 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 408 legacy::PassManagerBase &PM) { 409 PM.add(createPostInlineEntryExitInstrumenterPass()); 410 } 411 412 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 413 const CodeGenOptions &CodeGenOpts) { 414 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 415 416 switch (CodeGenOpts.getVecLib()) { 417 case CodeGenOptions::Accelerate: 418 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 419 break; 420 case CodeGenOptions::LIBMVEC: 421 switch(TargetTriple.getArch()) { 422 default: 423 break; 424 case llvm::Triple::x86_64: 425 TLII->addVectorizableFunctionsFromVecLib 426 (TargetLibraryInfoImpl::LIBMVEC_X86); 427 break; 428 } 429 break; 430 case CodeGenOptions::MASSV: 431 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 432 break; 433 case CodeGenOptions::SVML: 434 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 435 break; 436 case CodeGenOptions::Darwin_libsystem_m: 437 TLII->addVectorizableFunctionsFromVecLib( 438 TargetLibraryInfoImpl::DarwinLibSystemM); 439 break; 440 default: 441 break; 442 } 443 return TLII; 444 } 445 446 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 447 legacy::PassManager *MPM) { 448 llvm::SymbolRewriter::RewriteDescriptorList DL; 449 450 llvm::SymbolRewriter::RewriteMapParser MapParser; 451 for (const auto &MapFile : Opts.RewriteMapFiles) 452 MapParser.parse(MapFile, &DL); 453 454 MPM->add(createRewriteSymbolsPass(DL)); 455 } 456 457 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 458 switch (CodeGenOpts.OptimizationLevel) { 459 default: 460 llvm_unreachable("Invalid optimization level!"); 461 case 0: 462 return CodeGenOpt::None; 463 case 1: 464 return CodeGenOpt::Less; 465 case 2: 466 return CodeGenOpt::Default; // O2/Os/Oz 467 case 3: 468 return CodeGenOpt::Aggressive; 469 } 470 } 471 472 static Optional<llvm::CodeModel::Model> 473 getCodeModel(const CodeGenOptions &CodeGenOpts) { 474 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 475 .Case("tiny", llvm::CodeModel::Tiny) 476 .Case("small", llvm::CodeModel::Small) 477 .Case("kernel", llvm::CodeModel::Kernel) 478 .Case("medium", llvm::CodeModel::Medium) 479 .Case("large", llvm::CodeModel::Large) 480 .Case("default", ~1u) 481 .Default(~0u); 482 assert(CodeModel != ~0u && "invalid code model!"); 483 if (CodeModel == ~1u) 484 return None; 485 return static_cast<llvm::CodeModel::Model>(CodeModel); 486 } 487 488 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 489 if (Action == Backend_EmitObj) 490 return CGFT_ObjectFile; 491 else if (Action == Backend_EmitMCNull) 492 return CGFT_Null; 493 else { 494 assert(Action == Backend_EmitAssembly && "Invalid action!"); 495 return CGFT_AssemblyFile; 496 } 497 } 498 499 static bool actionRequiresCodeGen(BackendAction Action) { 500 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 501 Action != Backend_EmitLL; 502 } 503 504 static bool initTargetOptions(DiagnosticsEngine &Diags, 505 llvm::TargetOptions &Options, 506 const CodeGenOptions &CodeGenOpts, 507 const clang::TargetOptions &TargetOpts, 508 const LangOptions &LangOpts, 509 const HeaderSearchOptions &HSOpts) { 510 switch (LangOpts.getThreadModel()) { 511 case LangOptions::ThreadModelKind::POSIX: 512 Options.ThreadModel = llvm::ThreadModel::POSIX; 513 break; 514 case LangOptions::ThreadModelKind::Single: 515 Options.ThreadModel = llvm::ThreadModel::Single; 516 break; 517 } 518 519 // Set float ABI type. 520 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 521 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 522 "Invalid Floating Point ABI!"); 523 Options.FloatABIType = 524 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 525 .Case("soft", llvm::FloatABI::Soft) 526 .Case("softfp", llvm::FloatABI::Soft) 527 .Case("hard", llvm::FloatABI::Hard) 528 .Default(llvm::FloatABI::Default); 529 530 // Set FP fusion mode. 531 switch (LangOpts.getDefaultFPContractMode()) { 532 case LangOptions::FPM_Off: 533 // Preserve any contraction performed by the front-end. (Strict performs 534 // splitting of the muladd intrinsic in the backend.) 535 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 536 break; 537 case LangOptions::FPM_On: 538 case LangOptions::FPM_FastHonorPragmas: 539 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 540 break; 541 case LangOptions::FPM_Fast: 542 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 543 break; 544 } 545 546 Options.BinutilsVersion = 547 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 548 Options.UseInitArray = CodeGenOpts.UseInitArray; 549 Options.LowerGlobalDtorsViaCxaAtExit = 550 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 551 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 552 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 553 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 554 555 // Set EABI version. 556 Options.EABIVersion = TargetOpts.EABIVersion; 557 558 if (LangOpts.hasSjLjExceptions()) 559 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 560 if (LangOpts.hasSEHExceptions()) 561 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 562 if (LangOpts.hasDWARFExceptions()) 563 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 564 if (LangOpts.hasWasmExceptions()) 565 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 566 567 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 568 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 569 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 570 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 571 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 572 573 Options.BBSections = 574 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 575 .Case("all", llvm::BasicBlockSection::All) 576 .Case("labels", llvm::BasicBlockSection::Labels) 577 .StartsWith("list=", llvm::BasicBlockSection::List) 578 .Case("none", llvm::BasicBlockSection::None) 579 .Default(llvm::BasicBlockSection::None); 580 581 if (Options.BBSections == llvm::BasicBlockSection::List) { 582 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 583 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 584 if (!MBOrErr) { 585 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 586 << MBOrErr.getError().message(); 587 return false; 588 } 589 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 590 } 591 592 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 593 Options.FunctionSections = CodeGenOpts.FunctionSections; 594 Options.DataSections = CodeGenOpts.DataSections; 595 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 596 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 597 Options.UniqueBasicBlockSectionNames = 598 CodeGenOpts.UniqueBasicBlockSectionNames; 599 Options.TLSSize = CodeGenOpts.TLSSize; 600 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 601 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 602 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 603 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 604 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 605 Options.EmitAddrsig = CodeGenOpts.Addrsig; 606 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 607 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 608 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 609 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 610 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 611 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 612 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 613 Options.Hotpatch = CodeGenOpts.HotPatch; 614 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 615 616 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 617 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 618 Options.SwiftAsyncFramePointer = 619 SwiftAsyncFramePointerMode::DeploymentBased; 620 break; 621 622 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 623 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 624 break; 625 626 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 627 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 628 break; 629 } 630 631 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 632 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 633 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 634 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 635 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 636 Options.MCOptions.MCIncrementalLinkerCompatible = 637 CodeGenOpts.IncrementalLinkerCompatible; 638 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 639 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 640 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 641 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 642 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 643 Options.MCOptions.ABIName = TargetOpts.ABI; 644 for (const auto &Entry : HSOpts.UserEntries) 645 if (!Entry.IsFramework && 646 (Entry.Group == frontend::IncludeDirGroup::Quoted || 647 Entry.Group == frontend::IncludeDirGroup::Angled || 648 Entry.Group == frontend::IncludeDirGroup::System)) 649 Options.MCOptions.IASSearchPaths.push_back( 650 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 651 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 652 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 653 654 return true; 655 } 656 657 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 658 const LangOptions &LangOpts) { 659 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 660 return None; 661 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 662 // LLVM's -default-gcov-version flag is set to something invalid. 663 GCOVOptions Options; 664 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 665 Options.EmitData = CodeGenOpts.EmitGcovArcs; 666 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 667 Options.NoRedZone = CodeGenOpts.DisableRedZone; 668 Options.Filter = CodeGenOpts.ProfileFilterFiles; 669 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 670 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 671 return Options; 672 } 673 674 static Optional<InstrProfOptions> 675 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 676 const LangOptions &LangOpts) { 677 if (!CodeGenOpts.hasProfileClangInstr()) 678 return None; 679 InstrProfOptions Options; 680 Options.NoRedZone = CodeGenOpts.DisableRedZone; 681 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 682 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 683 return Options; 684 } 685 686 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 687 legacy::FunctionPassManager &FPM) { 688 // Handle disabling of all LLVM passes, where we want to preserve the 689 // internal module before any optimization. 690 if (CodeGenOpts.DisableLLVMPasses) 691 return; 692 693 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 694 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 695 // are inserted before PMBuilder ones - they'd get the default-constructed 696 // TLI with an unknown target otherwise. 697 Triple TargetTriple(TheModule->getTargetTriple()); 698 std::unique_ptr<TargetLibraryInfoImpl> TLII( 699 createTLII(TargetTriple, CodeGenOpts)); 700 701 // If we reached here with a non-empty index file name, then the index file 702 // was empty and we are not performing ThinLTO backend compilation (used in 703 // testing in a distributed build environment). Drop any the type test 704 // assume sequences inserted for whole program vtables so that codegen doesn't 705 // complain. 706 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 707 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 708 /*ImportSummary=*/nullptr, 709 /*DropTypeTests=*/true)); 710 711 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 712 713 // At O0 and O1 we only run the always inliner which is more efficient. At 714 // higher optimization levels we run the normal inliner. 715 if (CodeGenOpts.OptimizationLevel <= 1) { 716 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 717 !CodeGenOpts.DisableLifetimeMarkers) || 718 LangOpts.Coroutines); 719 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 720 } else { 721 // We do not want to inline hot callsites for SamplePGO module-summary build 722 // because profile annotation will happen again in ThinLTO backend, and we 723 // want the IR of the hot path to match the profile. 724 PMBuilder.Inliner = createFunctionInliningPass( 725 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 726 (!CodeGenOpts.SampleProfileFile.empty() && 727 CodeGenOpts.PrepareForThinLTO)); 728 } 729 730 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 731 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 732 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 733 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 734 // Only enable CGProfilePass when using integrated assembler, since 735 // non-integrated assemblers don't recognize .cgprofile section. 736 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 737 738 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 739 // Loop interleaving in the loop vectorizer has historically been set to be 740 // enabled when loop unrolling is enabled. 741 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 742 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 743 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 744 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 745 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 746 747 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 748 749 if (TM) 750 TM->adjustPassManager(PMBuilder); 751 752 if (CodeGenOpts.DebugInfoForProfiling || 753 !CodeGenOpts.SampleProfileFile.empty()) 754 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 755 addAddDiscriminatorsPass); 756 757 // In ObjC ARC mode, add the main ARC optimization passes. 758 if (LangOpts.ObjCAutoRefCount) { 759 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 760 addObjCARCExpandPass); 761 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 762 addObjCARCAPElimPass); 763 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 764 addObjCARCOptPass); 765 } 766 767 if (LangOpts.Coroutines) 768 addCoroutinePassesToExtensionPoints(PMBuilder); 769 770 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 771 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 772 addMemProfilerPasses); 773 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 774 addMemProfilerPasses); 775 } 776 777 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 778 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 779 addBoundsCheckingPass); 780 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 781 addBoundsCheckingPass); 782 } 783 784 if (CodeGenOpts.hasSanitizeCoverage()) { 785 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 786 addSanitizerCoveragePass); 787 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 788 addSanitizerCoveragePass); 789 } 790 791 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 792 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 793 addAddressSanitizerPasses); 794 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 795 addAddressSanitizerPasses); 796 } 797 798 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 799 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 800 addKernelAddressSanitizerPasses); 801 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 802 addKernelAddressSanitizerPasses); 803 } 804 805 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 806 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 807 addHWAddressSanitizerPasses); 808 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 809 addHWAddressSanitizerPasses); 810 } 811 812 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 813 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 814 addKernelHWAddressSanitizerPasses); 815 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 816 addKernelHWAddressSanitizerPasses); 817 } 818 819 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 820 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 821 addMemorySanitizerPass); 822 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 823 addMemorySanitizerPass); 824 } 825 826 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 827 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 828 addKernelMemorySanitizerPass); 829 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 830 addKernelMemorySanitizerPass); 831 } 832 833 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 834 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 835 addThreadSanitizerPass); 836 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 837 addThreadSanitizerPass); 838 } 839 840 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 841 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 842 addDataFlowSanitizerPass); 843 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 844 addDataFlowSanitizerPass); 845 } 846 847 if (CodeGenOpts.InstrumentFunctions || 848 CodeGenOpts.InstrumentFunctionEntryBare || 849 CodeGenOpts.InstrumentFunctionsAfterInlining || 850 CodeGenOpts.InstrumentForProfiling) { 851 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 852 addEntryExitInstrumentationPass); 853 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 854 addEntryExitInstrumentationPass); 855 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 856 addPostInlineEntryExitInstrumentationPass); 857 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 858 addPostInlineEntryExitInstrumentationPass); 859 } 860 861 // Set up the per-function pass manager. 862 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 863 if (CodeGenOpts.VerifyModule) 864 FPM.add(createVerifierPass()); 865 866 // Set up the per-module pass manager. 867 if (!CodeGenOpts.RewriteMapFiles.empty()) 868 addSymbolRewriterPass(CodeGenOpts, &MPM); 869 870 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 871 MPM.add(createGCOVProfilerPass(*Options)); 872 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 873 MPM.add(createStripSymbolsPass(true)); 874 } 875 876 if (Optional<InstrProfOptions> Options = 877 getInstrProfOptions(CodeGenOpts, LangOpts)) 878 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 879 880 bool hasIRInstr = false; 881 if (CodeGenOpts.hasProfileIRInstr()) { 882 PMBuilder.EnablePGOInstrGen = true; 883 hasIRInstr = true; 884 } 885 if (CodeGenOpts.hasProfileCSIRInstr()) { 886 assert(!CodeGenOpts.hasProfileCSIRUse() && 887 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 888 "same time"); 889 assert(!hasIRInstr && 890 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 891 "same time"); 892 PMBuilder.EnablePGOCSInstrGen = true; 893 hasIRInstr = true; 894 } 895 if (hasIRInstr) { 896 if (!CodeGenOpts.InstrProfileOutput.empty()) 897 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 898 else 899 PMBuilder.PGOInstrGen = getDefaultProfileGenName(); 900 } 901 if (CodeGenOpts.hasProfileIRUse()) { 902 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 903 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 904 } 905 906 if (!CodeGenOpts.SampleProfileFile.empty()) 907 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 908 909 PMBuilder.populateFunctionPassManager(FPM); 910 PMBuilder.populateModulePassManager(MPM); 911 } 912 913 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 914 SmallVector<const char *, 16> BackendArgs; 915 BackendArgs.push_back("clang"); // Fake program name. 916 if (!CodeGenOpts.DebugPass.empty()) { 917 BackendArgs.push_back("-debug-pass"); 918 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 919 } 920 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 921 BackendArgs.push_back("-limit-float-precision"); 922 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 923 } 924 // Check for the default "clang" invocation that won't set any cl::opt values. 925 // Skip trying to parse the command line invocation to avoid the issues 926 // described below. 927 if (BackendArgs.size() == 1) 928 return; 929 BackendArgs.push_back(nullptr); 930 // FIXME: The command line parser below is not thread-safe and shares a global 931 // state, so this call might crash or overwrite the options of another Clang 932 // instance in the same process. 933 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 934 BackendArgs.data()); 935 } 936 937 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 938 // Create the TargetMachine for generating code. 939 std::string Error; 940 std::string Triple = TheModule->getTargetTriple(); 941 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 942 if (!TheTarget) { 943 if (MustCreateTM) 944 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 945 return; 946 } 947 948 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 949 std::string FeaturesStr = 950 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 951 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 952 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 953 954 llvm::TargetOptions Options; 955 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 956 HSOpts)) 957 return; 958 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 959 Options, RM, CM, OptLevel)); 960 } 961 962 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 963 BackendAction Action, 964 raw_pwrite_stream &OS, 965 raw_pwrite_stream *DwoOS) { 966 // Add LibraryInfo. 967 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 968 std::unique_ptr<TargetLibraryInfoImpl> TLII( 969 createTLII(TargetTriple, CodeGenOpts)); 970 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 971 972 // Normal mode, emit a .s or .o file by running the code generator. Note, 973 // this also adds codegenerator level optimization passes. 974 CodeGenFileType CGFT = getCodeGenFileType(Action); 975 976 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 977 // "codegen" passes so that it isn't run multiple times when there is 978 // inlining happening. 979 if (CodeGenOpts.OptimizationLevel > 0) 980 CodeGenPasses.add(createObjCARCContractPass()); 981 982 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 983 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 984 Diags.Report(diag::err_fe_unable_to_interface_with_target); 985 return false; 986 } 987 988 return true; 989 } 990 991 void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager( 992 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 993 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 994 995 setCommandLineOpts(CodeGenOpts); 996 997 bool UsesCodeGen = actionRequiresCodeGen(Action); 998 CreateTargetMachine(UsesCodeGen); 999 1000 if (UsesCodeGen && !TM) 1001 return; 1002 if (TM) 1003 TheModule->setDataLayout(TM->createDataLayout()); 1004 1005 DebugifyCustomPassManager PerModulePasses; 1006 DebugInfoPerPassMap DIPreservationMap; 1007 if (CodeGenOpts.EnableDIPreservationVerify) { 1008 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 1009 PerModulePasses.setDIPreservationMap(DIPreservationMap); 1010 1011 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 1012 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 1013 CodeGenOpts.DIBugsReportFilePath); 1014 } 1015 PerModulePasses.add( 1016 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1017 1018 legacy::FunctionPassManager PerFunctionPasses(TheModule); 1019 PerFunctionPasses.add( 1020 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1021 1022 CreatePasses(PerModulePasses, PerFunctionPasses); 1023 1024 // Add a verifier pass if requested. We don't have to do this if the action 1025 // requires code generation because there will already be a verifier pass in 1026 // the code-generation pipeline. 1027 if (!UsesCodeGen && CodeGenOpts.VerifyModule) 1028 PerModulePasses.add(createVerifierPass()); 1029 1030 legacy::PassManager CodeGenPasses; 1031 CodeGenPasses.add( 1032 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1033 1034 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1035 1036 switch (Action) { 1037 case Backend_EmitNothing: 1038 break; 1039 1040 case Backend_EmitBC: 1041 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1042 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1043 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1044 if (!ThinLinkOS) 1045 return; 1046 } 1047 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1048 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1049 CodeGenOpts.EnableSplitLTOUnit); 1050 PerModulePasses.add(createWriteThinLTOBitcodePass( 1051 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1052 } else { 1053 // Emit a module summary by default for Regular LTO except for ld64 1054 // targets 1055 bool EmitLTOSummary = 1056 (CodeGenOpts.PrepareForLTO && 1057 !CodeGenOpts.DisableLLVMPasses && 1058 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1059 llvm::Triple::Apple); 1060 if (EmitLTOSummary) { 1061 if (!TheModule->getModuleFlag("ThinLTO")) 1062 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1063 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1064 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1065 uint32_t(1)); 1066 } 1067 1068 PerModulePasses.add(createBitcodeWriterPass( 1069 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1070 } 1071 break; 1072 1073 case Backend_EmitLL: 1074 PerModulePasses.add( 1075 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1076 break; 1077 1078 default: 1079 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1080 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1081 if (!DwoOS) 1082 return; 1083 } 1084 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1085 DwoOS ? &DwoOS->os() : nullptr)) 1086 return; 1087 } 1088 1089 // Before executing passes, print the final values of the LLVM options. 1090 cl::PrintOptionValues(); 1091 1092 // Run passes. For now we do all passes at once, but eventually we 1093 // would like to have the option of streaming code generation. 1094 1095 { 1096 PrettyStackTraceString CrashInfo("Per-function optimization"); 1097 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1098 1099 PerFunctionPasses.doInitialization(); 1100 for (Function &F : *TheModule) 1101 if (!F.isDeclaration()) 1102 PerFunctionPasses.run(F); 1103 PerFunctionPasses.doFinalization(); 1104 } 1105 1106 { 1107 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1108 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1109 PerModulePasses.run(*TheModule); 1110 } 1111 1112 { 1113 PrettyStackTraceString CrashInfo("Code generation"); 1114 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1115 CodeGenPasses.run(*TheModule); 1116 } 1117 1118 if (ThinLinkOS) 1119 ThinLinkOS->keep(); 1120 if (DwoOS) 1121 DwoOS->keep(); 1122 } 1123 1124 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1125 switch (Opts.OptimizationLevel) { 1126 default: 1127 llvm_unreachable("Invalid optimization level!"); 1128 1129 case 0: 1130 return OptimizationLevel::O0; 1131 1132 case 1: 1133 return OptimizationLevel::O1; 1134 1135 case 2: 1136 switch (Opts.OptimizeSize) { 1137 default: 1138 llvm_unreachable("Invalid optimization level for size!"); 1139 1140 case 0: 1141 return OptimizationLevel::O2; 1142 1143 case 1: 1144 return OptimizationLevel::Os; 1145 1146 case 2: 1147 return OptimizationLevel::Oz; 1148 } 1149 1150 case 3: 1151 return OptimizationLevel::O3; 1152 } 1153 } 1154 1155 static void addSanitizers(const Triple &TargetTriple, 1156 const CodeGenOptions &CodeGenOpts, 1157 const LangOptions &LangOpts, PassBuilder &PB) { 1158 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1159 OptimizationLevel Level) { 1160 if (CodeGenOpts.hasSanitizeCoverage()) { 1161 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1162 MPM.addPass(ModuleSanitizerCoveragePass( 1163 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1164 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1165 } 1166 1167 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1168 if (LangOpts.Sanitize.has(Mask)) { 1169 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1170 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1171 1172 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 1173 CodeGenOpts.SanitizeMemoryParamRetval); 1174 MPM.addPass(ModuleMemorySanitizerPass(options)); 1175 FunctionPassManager FPM; 1176 FPM.addPass(MemorySanitizerPass(options)); 1177 if (Level != OptimizationLevel::O0) { 1178 // MemorySanitizer inserts complex instrumentation that mostly 1179 // follows the logic of the original code, but operates on 1180 // "shadow" values. It can benefit from re-running some 1181 // general purpose optimization passes. 1182 FPM.addPass(EarlyCSEPass()); 1183 // TODO: Consider add more passes like in 1184 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1185 // difference on size. It's not clear if the rest is still 1186 // usefull. InstCombinePass breakes 1187 // compiler-rt/test/msan/select_origin.cpp. 1188 } 1189 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1190 } 1191 }; 1192 MSanPass(SanitizerKind::Memory, false); 1193 MSanPass(SanitizerKind::KernelMemory, true); 1194 1195 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1196 MPM.addPass(ModuleThreadSanitizerPass()); 1197 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1198 } 1199 1200 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1201 if (LangOpts.Sanitize.has(Mask)) { 1202 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1203 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1204 llvm::AsanDtorKind DestructorKind = 1205 CodeGenOpts.getSanitizeAddressDtor(); 1206 AddressSanitizerOptions Opts; 1207 Opts.CompileKernel = CompileKernel; 1208 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1209 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1210 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1211 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1212 MPM.addPass(ModuleAddressSanitizerPass( 1213 Opts, UseGlobalGC, UseOdrIndicator, DestructorKind)); 1214 } 1215 }; 1216 ASanPass(SanitizerKind::Address, false); 1217 ASanPass(SanitizerKind::KernelAddress, true); 1218 1219 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1220 if (LangOpts.Sanitize.has(Mask)) { 1221 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1222 MPM.addPass(HWAddressSanitizerPass( 1223 {CompileKernel, Recover, 1224 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1225 } 1226 }; 1227 HWASanPass(SanitizerKind::HWAddress, false); 1228 HWASanPass(SanitizerKind::KernelHWAddress, true); 1229 1230 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1231 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1232 } 1233 }); 1234 } 1235 1236 void EmitAssemblyHelper::RunOptimizationPipeline( 1237 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1238 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 1239 Optional<PGOOptions> PGOOpt; 1240 1241 if (CodeGenOpts.hasProfileIRInstr()) 1242 // -fprofile-generate. 1243 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1244 ? getDefaultProfileGenName() 1245 : CodeGenOpts.InstrProfileOutput, 1246 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1247 CodeGenOpts.DebugInfoForProfiling); 1248 else if (CodeGenOpts.hasProfileIRUse()) { 1249 // -fprofile-use. 1250 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1251 : PGOOptions::NoCSAction; 1252 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1253 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1254 CSAction, CodeGenOpts.DebugInfoForProfiling); 1255 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1256 // -fprofile-sample-use 1257 PGOOpt = PGOOptions( 1258 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1259 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1260 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1261 else if (CodeGenOpts.PseudoProbeForProfiling) 1262 // -fpseudo-probe-for-profiling 1263 PGOOpt = 1264 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1265 CodeGenOpts.DebugInfoForProfiling, true); 1266 else if (CodeGenOpts.DebugInfoForProfiling) 1267 // -fdebug-info-for-profiling 1268 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1269 PGOOptions::NoCSAction, true); 1270 1271 // Check to see if we want to generate a CS profile. 1272 if (CodeGenOpts.hasProfileCSIRInstr()) { 1273 assert(!CodeGenOpts.hasProfileCSIRUse() && 1274 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1275 "the same time"); 1276 if (PGOOpt.hasValue()) { 1277 assert(PGOOpt->Action != PGOOptions::IRInstr && 1278 PGOOpt->Action != PGOOptions::SampleUse && 1279 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1280 " pass"); 1281 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1282 ? getDefaultProfileGenName() 1283 : CodeGenOpts.InstrProfileOutput; 1284 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1285 } else 1286 PGOOpt = PGOOptions("", 1287 CodeGenOpts.InstrProfileOutput.empty() 1288 ? getDefaultProfileGenName() 1289 : CodeGenOpts.InstrProfileOutput, 1290 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1291 CodeGenOpts.DebugInfoForProfiling); 1292 } 1293 if (TM) 1294 TM->setPGOOption(PGOOpt); 1295 1296 PipelineTuningOptions PTO; 1297 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1298 // For historical reasons, loop interleaving is set to mirror setting for loop 1299 // unrolling. 1300 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1301 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1302 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1303 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1304 // Only enable CGProfilePass when using integrated assembler, since 1305 // non-integrated assemblers don't recognize .cgprofile section. 1306 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1307 1308 LoopAnalysisManager LAM; 1309 FunctionAnalysisManager FAM; 1310 CGSCCAnalysisManager CGAM; 1311 ModuleAnalysisManager MAM; 1312 1313 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1314 PassInstrumentationCallbacks PIC; 1315 PrintPassOptions PrintPassOpts; 1316 PrintPassOpts.Indent = DebugPassStructure; 1317 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1318 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1319 DebugPassStructure, 1320 /*VerifyEach*/ false, PrintPassOpts); 1321 SI.registerCallbacks(PIC, &FAM); 1322 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1323 1324 // Attempt to load pass plugins and register their callbacks with PB. 1325 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1326 auto PassPlugin = PassPlugin::Load(PluginFN); 1327 if (PassPlugin) { 1328 PassPlugin->registerPassBuilderCallbacks(PB); 1329 } else { 1330 Diags.Report(diag::err_fe_unable_to_load_plugin) 1331 << PluginFN << toString(PassPlugin.takeError()); 1332 } 1333 } 1334 #define HANDLE_EXTENSION(Ext) \ 1335 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1336 #include "llvm/Support/Extension.def" 1337 1338 // Register the target library analysis directly and give it a customized 1339 // preset TLI. 1340 Triple TargetTriple(TheModule->getTargetTriple()); 1341 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1342 createTLII(TargetTriple, CodeGenOpts)); 1343 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1344 1345 // Register all the basic analyses with the managers. 1346 PB.registerModuleAnalyses(MAM); 1347 PB.registerCGSCCAnalyses(CGAM); 1348 PB.registerFunctionAnalyses(FAM); 1349 PB.registerLoopAnalyses(LAM); 1350 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1351 1352 ModulePassManager MPM; 1353 1354 if (!CodeGenOpts.DisableLLVMPasses) { 1355 // Map our optimization levels into one of the distinct levels used to 1356 // configure the pipeline. 1357 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1358 1359 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1360 bool IsLTO = CodeGenOpts.PrepareForLTO; 1361 1362 if (LangOpts.ObjCAutoRefCount) { 1363 PB.registerPipelineStartEPCallback( 1364 [](ModulePassManager &MPM, OptimizationLevel Level) { 1365 if (Level != OptimizationLevel::O0) 1366 MPM.addPass( 1367 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1368 }); 1369 PB.registerPipelineEarlySimplificationEPCallback( 1370 [](ModulePassManager &MPM, OptimizationLevel Level) { 1371 if (Level != OptimizationLevel::O0) 1372 MPM.addPass(ObjCARCAPElimPass()); 1373 }); 1374 PB.registerScalarOptimizerLateEPCallback( 1375 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1376 if (Level != OptimizationLevel::O0) 1377 FPM.addPass(ObjCARCOptPass()); 1378 }); 1379 } 1380 1381 // If we reached here with a non-empty index file name, then the index 1382 // file was empty and we are not performing ThinLTO backend compilation 1383 // (used in testing in a distributed build environment). 1384 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1385 // If so drop any the type test assume sequences inserted for whole program 1386 // vtables so that codegen doesn't complain. 1387 if (IsThinLTOPostLink) 1388 PB.registerPipelineStartEPCallback( 1389 [](ModulePassManager &MPM, OptimizationLevel Level) { 1390 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1391 /*ImportSummary=*/nullptr, 1392 /*DropTypeTests=*/true)); 1393 }); 1394 1395 if (CodeGenOpts.InstrumentFunctions || 1396 CodeGenOpts.InstrumentFunctionEntryBare || 1397 CodeGenOpts.InstrumentFunctionsAfterInlining || 1398 CodeGenOpts.InstrumentForProfiling) { 1399 PB.registerPipelineStartEPCallback( 1400 [](ModulePassManager &MPM, OptimizationLevel Level) { 1401 MPM.addPass(createModuleToFunctionPassAdaptor( 1402 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1403 }); 1404 PB.registerOptimizerLastEPCallback( 1405 [](ModulePassManager &MPM, OptimizationLevel Level) { 1406 MPM.addPass(createModuleToFunctionPassAdaptor( 1407 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1408 }); 1409 } 1410 1411 // Register callbacks to schedule sanitizer passes at the appropriate part 1412 // of the pipeline. 1413 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1414 PB.registerScalarOptimizerLateEPCallback( 1415 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1416 FPM.addPass(BoundsCheckingPass()); 1417 }); 1418 1419 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1420 // done on PreLink stage. 1421 if (!IsThinLTOPostLink) 1422 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1423 1424 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1425 PB.registerPipelineStartEPCallback( 1426 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1427 MPM.addPass(GCOVProfilerPass(*Options)); 1428 }); 1429 if (Optional<InstrProfOptions> Options = 1430 getInstrProfOptions(CodeGenOpts, LangOpts)) 1431 PB.registerPipelineStartEPCallback( 1432 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1433 MPM.addPass(InstrProfiling(*Options, false)); 1434 }); 1435 1436 if (CodeGenOpts.OptimizationLevel == 0) { 1437 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1438 } else if (IsThinLTO) { 1439 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1440 } else if (IsLTO) { 1441 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1442 } else { 1443 MPM = PB.buildPerModuleDefaultPipeline(Level); 1444 } 1445 1446 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1447 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1448 MPM.addPass(ModuleMemProfilerPass()); 1449 } 1450 } 1451 1452 // Add a verifier pass if requested. We don't have to do this if the action 1453 // requires code generation because there will already be a verifier pass in 1454 // the code-generation pipeline. 1455 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1456 MPM.addPass(VerifierPass()); 1457 1458 switch (Action) { 1459 case Backend_EmitBC: 1460 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1461 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1462 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1463 if (!ThinLinkOS) 1464 return; 1465 } 1466 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1467 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1468 CodeGenOpts.EnableSplitLTOUnit); 1469 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1470 : nullptr)); 1471 } else { 1472 // Emit a module summary by default for Regular LTO except for ld64 1473 // targets 1474 bool EmitLTOSummary = 1475 (CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 1476 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1477 llvm::Triple::Apple); 1478 if (EmitLTOSummary) { 1479 if (!TheModule->getModuleFlag("ThinLTO")) 1480 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1481 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1482 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1483 uint32_t(1)); 1484 } 1485 MPM.addPass( 1486 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1487 } 1488 break; 1489 1490 case Backend_EmitLL: 1491 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1492 break; 1493 1494 default: 1495 break; 1496 } 1497 1498 // Now that we have all of the passes ready, run them. 1499 { 1500 PrettyStackTraceString CrashInfo("Optimizer"); 1501 llvm::TimeTraceScope TimeScope("Optimizer"); 1502 MPM.run(*TheModule, MAM); 1503 } 1504 } 1505 1506 void EmitAssemblyHelper::RunCodegenPipeline( 1507 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1508 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1509 // We still use the legacy PM to run the codegen pipeline since the new PM 1510 // does not work with the codegen pipeline. 1511 // FIXME: make the new PM work with the codegen pipeline. 1512 legacy::PassManager CodeGenPasses; 1513 1514 // Append any output we need to the pass manager. 1515 switch (Action) { 1516 case Backend_EmitAssembly: 1517 case Backend_EmitMCNull: 1518 case Backend_EmitObj: 1519 CodeGenPasses.add( 1520 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1521 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1522 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1523 if (!DwoOS) 1524 return; 1525 } 1526 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1527 DwoOS ? &DwoOS->os() : nullptr)) 1528 // FIXME: Should we handle this error differently? 1529 return; 1530 break; 1531 default: 1532 return; 1533 } 1534 1535 { 1536 PrettyStackTraceString CrashInfo("Code generation"); 1537 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1538 CodeGenPasses.run(*TheModule); 1539 } 1540 } 1541 1542 /// A clean version of `EmitAssembly` that uses the new pass manager. 1543 /// 1544 /// Not all features are currently supported in this system, but where 1545 /// necessary it falls back to the legacy pass manager to at least provide 1546 /// basic functionality. 1547 /// 1548 /// This API is planned to have its functionality finished and then to replace 1549 /// `EmitAssembly` at some point in the future when the default switches. 1550 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1551 std::unique_ptr<raw_pwrite_stream> OS) { 1552 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1553 setCommandLineOpts(CodeGenOpts); 1554 1555 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1556 CreateTargetMachine(RequiresCodeGen); 1557 1558 if (RequiresCodeGen && !TM) 1559 return; 1560 if (TM) 1561 TheModule->setDataLayout(TM->createDataLayout()); 1562 1563 // Before executing passes, print the final values of the LLVM options. 1564 cl::PrintOptionValues(); 1565 1566 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1567 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1568 RunCodegenPipeline(Action, OS, DwoOS); 1569 1570 if (ThinLinkOS) 1571 ThinLinkOS->keep(); 1572 if (DwoOS) 1573 DwoOS->keep(); 1574 } 1575 1576 static void runThinLTOBackend( 1577 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1578 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1579 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1580 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1581 std::string ProfileRemapping, BackendAction Action) { 1582 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1583 ModuleToDefinedGVSummaries; 1584 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1585 1586 setCommandLineOpts(CGOpts); 1587 1588 // We can simply import the values mentioned in the combined index, since 1589 // we should only invoke this using the individual indexes written out 1590 // via a WriteIndexesThinBackend. 1591 FunctionImporter::ImportMapTy ImportList; 1592 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1593 return; 1594 1595 auto AddStream = [&](size_t Task) { 1596 return std::make_unique<CachedFileStream>(std::move(OS), 1597 CGOpts.ObjectFilenameForDebug); 1598 }; 1599 lto::Config Conf; 1600 if (CGOpts.SaveTempsFilePrefix != "") { 1601 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1602 /* UseInputModulePath */ false)) { 1603 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1604 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1605 << '\n'; 1606 }); 1607 } 1608 } 1609 Conf.CPU = TOpts.CPU; 1610 Conf.CodeModel = getCodeModel(CGOpts); 1611 Conf.MAttrs = TOpts.Features; 1612 Conf.RelocModel = CGOpts.RelocationModel; 1613 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1614 Conf.OptLevel = CGOpts.OptimizationLevel; 1615 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1616 Conf.SampleProfile = std::move(SampleProfile); 1617 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1618 // For historical reasons, loop interleaving is set to mirror setting for loop 1619 // unrolling. 1620 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1621 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1622 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1623 // Only enable CGProfilePass when using integrated assembler, since 1624 // non-integrated assemblers don't recognize .cgprofile section. 1625 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1626 1627 // Context sensitive profile. 1628 if (CGOpts.hasProfileCSIRInstr()) { 1629 Conf.RunCSIRInstr = true; 1630 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1631 } else if (CGOpts.hasProfileCSIRUse()) { 1632 Conf.RunCSIRInstr = false; 1633 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1634 } 1635 1636 Conf.ProfileRemapping = std::move(ProfileRemapping); 1637 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1638 Conf.DebugPassManager = CGOpts.DebugPassManager; 1639 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1640 Conf.RemarksFilename = CGOpts.OptRecordFile; 1641 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1642 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1643 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1644 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1645 switch (Action) { 1646 case Backend_EmitNothing: 1647 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1648 return false; 1649 }; 1650 break; 1651 case Backend_EmitLL: 1652 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1653 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1654 return false; 1655 }; 1656 break; 1657 case Backend_EmitBC: 1658 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1659 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1660 return false; 1661 }; 1662 break; 1663 default: 1664 Conf.CGFileType = getCodeGenFileType(Action); 1665 break; 1666 } 1667 if (Error E = 1668 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1669 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1670 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1671 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1672 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1673 }); 1674 } 1675 } 1676 1677 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1678 const HeaderSearchOptions &HeaderOpts, 1679 const CodeGenOptions &CGOpts, 1680 const clang::TargetOptions &TOpts, 1681 const LangOptions &LOpts, 1682 StringRef TDesc, Module *M, 1683 BackendAction Action, 1684 std::unique_ptr<raw_pwrite_stream> OS) { 1685 1686 llvm::TimeTraceScope TimeScope("Backend"); 1687 1688 std::unique_ptr<llvm::Module> EmptyModule; 1689 if (!CGOpts.ThinLTOIndexFile.empty()) { 1690 // If we are performing a ThinLTO importing compile, load the function index 1691 // into memory and pass it into runThinLTOBackend, which will run the 1692 // function importer and invoke LTO passes. 1693 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1694 if (Error E = llvm::getModuleSummaryIndexForFile( 1695 CGOpts.ThinLTOIndexFile, 1696 /*IgnoreEmptyThinLTOIndexFile*/ true) 1697 .moveInto(CombinedIndex)) { 1698 logAllUnhandledErrors(std::move(E), errs(), 1699 "Error loading index file '" + 1700 CGOpts.ThinLTOIndexFile + "': "); 1701 return; 1702 } 1703 1704 // A null CombinedIndex means we should skip ThinLTO compilation 1705 // (LLVM will optionally ignore empty index files, returning null instead 1706 // of an error). 1707 if (CombinedIndex) { 1708 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1709 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1710 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1711 CGOpts.ProfileRemappingFile, Action); 1712 return; 1713 } 1714 // Distributed indexing detected that nothing from the module is needed 1715 // for the final linking. So we can skip the compilation. We sill need to 1716 // output an empty object file to make sure that a linker does not fail 1717 // trying to read it. Also for some features, like CFI, we must skip 1718 // the compilation as CombinedIndex does not contain all required 1719 // information. 1720 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1721 EmptyModule->setTargetTriple(M->getTargetTriple()); 1722 M = EmptyModule.get(); 1723 } 1724 } 1725 1726 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1727 1728 if (CGOpts.LegacyPassManager) 1729 AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS)); 1730 else 1731 AsmHelper.EmitAssembly(Action, std::move(OS)); 1732 1733 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1734 // DataLayout. 1735 if (AsmHelper.TM) { 1736 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1737 if (DLDesc != TDesc) { 1738 unsigned DiagID = Diags.getCustomDiagID( 1739 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1740 "expected target description '%1'"); 1741 Diags.Report(DiagID) << DLDesc << TDesc; 1742 } 1743 } 1744 } 1745 1746 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1747 // __LLVM,__bitcode section. 1748 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1749 llvm::MemoryBufferRef Buf) { 1750 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1751 return; 1752 llvm::embedBitcodeInModule( 1753 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1754 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1755 CGOpts.CmdArgs); 1756 } 1757 1758 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1759 DiagnosticsEngine &Diags) { 1760 if (CGOpts.OffloadObjects.empty()) 1761 return; 1762 1763 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1764 if (OffloadObject.count(',') != 1) 1765 Diags.Report(Diags.getCustomDiagID( 1766 DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'")) 1767 << OffloadObject; 1768 auto FilenameAndSection = OffloadObject.split(','); 1769 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1770 llvm::MemoryBuffer::getFileOrSTDIN(FilenameAndSection.first); 1771 if (std::error_code EC = ObjectOrErr.getError()) { 1772 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1773 "could not open '%0' for embedding"); 1774 Diags.Report(DiagID) << FilenameAndSection.first; 1775 return; 1776 } 1777 1778 SmallString<128> SectionName( 1779 {".llvm.offloading.", FilenameAndSection.second}); 1780 llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName); 1781 } 1782 } 1783