1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 78 #include "llvm/Transforms/Utils.h" 79 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 80 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 81 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 82 #include "llvm/Transforms/Utils/SymbolRewriter.h" 83 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 84 #include <memory> 85 using namespace clang; 86 using namespace llvm; 87 88 #define HANDLE_EXTENSION(Ext) \ 89 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 90 #include "llvm/Support/Extension.def" 91 92 namespace { 93 94 // Default filename used for profile generation. 95 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 96 97 class EmitAssemblyHelper { 98 DiagnosticsEngine &Diags; 99 const HeaderSearchOptions &HSOpts; 100 const CodeGenOptions &CodeGenOpts; 101 const clang::TargetOptions &TargetOpts; 102 const LangOptions &LangOpts; 103 Module *TheModule; 104 105 Timer CodeGenerationTime; 106 107 std::unique_ptr<raw_pwrite_stream> OS; 108 109 TargetIRAnalysis getTargetIRAnalysis() const { 110 if (TM) 111 return TM->getTargetIRAnalysis(); 112 113 return TargetIRAnalysis(); 114 } 115 116 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 117 118 /// Generates the TargetMachine. 119 /// Leaves TM unchanged if it is unable to create the target machine. 120 /// Some of our clang tests specify triples which are not built 121 /// into clang. This is okay because these tests check the generated 122 /// IR, and they require DataLayout which depends on the triple. 123 /// In this case, we allow this method to fail and not report an error. 124 /// When MustCreateTM is used, we print an error if we are unable to load 125 /// the requested target. 126 void CreateTargetMachine(bool MustCreateTM); 127 128 /// Add passes necessary to emit assembly or LLVM IR. 129 /// 130 /// \return True on success. 131 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 132 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 133 134 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 135 std::error_code EC; 136 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 137 llvm::sys::fs::OF_None); 138 if (EC) { 139 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 140 F.reset(); 141 } 142 return F; 143 } 144 145 public: 146 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 147 const HeaderSearchOptions &HeaderSearchOpts, 148 const CodeGenOptions &CGOpts, 149 const clang::TargetOptions &TOpts, 150 const LangOptions &LOpts, Module *M) 151 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 152 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 153 CodeGenerationTime("codegen", "Code Generation Time") {} 154 155 ~EmitAssemblyHelper() { 156 if (CodeGenOpts.DisableFree) 157 BuryPointer(std::move(TM)); 158 } 159 160 std::unique_ptr<TargetMachine> TM; 161 162 void EmitAssembly(BackendAction Action, 163 std::unique_ptr<raw_pwrite_stream> OS); 164 165 void EmitAssemblyWithNewPassManager(BackendAction Action, 166 std::unique_ptr<raw_pwrite_stream> OS); 167 }; 168 169 // We need this wrapper to access LangOpts and CGOpts from extension functions 170 // that we add to the PassManagerBuilder. 171 class PassManagerBuilderWrapper : public PassManagerBuilder { 172 public: 173 PassManagerBuilderWrapper(const Triple &TargetTriple, 174 const CodeGenOptions &CGOpts, 175 const LangOptions &LangOpts) 176 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 177 LangOpts(LangOpts) {} 178 const Triple &getTargetTriple() const { return TargetTriple; } 179 const CodeGenOptions &getCGOpts() const { return CGOpts; } 180 const LangOptions &getLangOpts() const { return LangOpts; } 181 182 private: 183 const Triple &TargetTriple; 184 const CodeGenOptions &CGOpts; 185 const LangOptions &LangOpts; 186 }; 187 } 188 189 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 190 if (Builder.OptLevel > 0) 191 PM.add(createObjCARCAPElimPass()); 192 } 193 194 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCExpandPass()); 197 } 198 199 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCOptPass()); 202 } 203 204 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 205 legacy::PassManagerBase &PM) { 206 PM.add(createAddDiscriminatorsPass()); 207 } 208 209 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createBoundsCheckingLegacyPass()); 212 } 213 214 static SanitizerCoverageOptions 215 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 216 SanitizerCoverageOptions Opts; 217 Opts.CoverageType = 218 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 219 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 220 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 221 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 222 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 223 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 224 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 225 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 226 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 227 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 228 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 229 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 230 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 231 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 232 return Opts; 233 } 234 235 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper &>(Builder); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 auto Opts = getSancovOptsFromCGOpts(CGOpts); 241 PM.add(createModuleSanitizerCoverageLegacyPassPass( 242 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 243 CGOpts.SanitizeCoverageBlocklistFiles)); 244 } 245 246 // Check if ASan should use GC-friendly instrumentation for globals. 247 // First of all, there is no point if -fdata-sections is off (expect for MachO, 248 // where this is not a factor). Also, on ELF this feature requires an assembler 249 // extension that only works with -integrated-as at the moment. 250 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 251 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 252 return false; 253 switch (T.getObjectFormat()) { 254 case Triple::MachO: 255 case Triple::COFF: 256 return true; 257 case Triple::ELF: 258 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 259 case Triple::GOFF: 260 llvm::report_fatal_error("ASan not implemented for GOFF"); 261 case Triple::XCOFF: 262 llvm::report_fatal_error("ASan not implemented for XCOFF."); 263 case Triple::Wasm: 264 case Triple::UnknownObjectFormat: 265 break; 266 } 267 return false; 268 } 269 270 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 271 legacy::PassManagerBase &PM) { 272 const PassManagerBuilderWrapper &BuilderWrapper = 273 static_cast<const PassManagerBuilderWrapper&>(Builder); 274 const Triple &T = BuilderWrapper.getTargetTriple(); 275 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 276 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 277 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 278 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 279 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 280 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 281 UseAfterScope)); 282 PM.add(createModuleAddressSanitizerLegacyPassPass( 283 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 284 } 285 286 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createAddressSanitizerFunctionPass( 289 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 290 PM.add(createModuleAddressSanitizerLegacyPassPass( 291 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 292 /*UseOdrIndicator*/ false)); 293 } 294 295 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 const PassManagerBuilderWrapper &BuilderWrapper = 298 static_cast<const PassManagerBuilderWrapper &>(Builder); 299 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 300 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 301 PM.add( 302 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 303 } 304 305 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 306 legacy::PassManagerBase &PM) { 307 PM.add(createHWAddressSanitizerLegacyPassPass( 308 /*CompileKernel*/ true, /*Recover*/ true)); 309 } 310 311 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 312 legacy::PassManagerBase &PM, 313 bool CompileKernel) { 314 const PassManagerBuilderWrapper &BuilderWrapper = 315 static_cast<const PassManagerBuilderWrapper&>(Builder); 316 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 317 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 318 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 319 PM.add(createMemorySanitizerLegacyPassPass( 320 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 321 322 // MemorySanitizer inserts complex instrumentation that mostly follows 323 // the logic of the original code, but operates on "shadow" values. 324 // It can benefit from re-running some general purpose optimization passes. 325 if (Builder.OptLevel > 0) { 326 PM.add(createEarlyCSEPass()); 327 PM.add(createReassociatePass()); 328 PM.add(createLICMPass()); 329 PM.add(createGVNPass()); 330 PM.add(createInstructionCombiningPass()); 331 PM.add(createDeadStoreEliminationPass()); 332 } 333 } 334 335 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 336 legacy::PassManagerBase &PM) { 337 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 338 } 339 340 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 341 legacy::PassManagerBase &PM) { 342 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 343 } 344 345 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 346 legacy::PassManagerBase &PM) { 347 PM.add(createThreadSanitizerLegacyPassPass()); 348 } 349 350 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 351 legacy::PassManagerBase &PM) { 352 const PassManagerBuilderWrapper &BuilderWrapper = 353 static_cast<const PassManagerBuilderWrapper&>(Builder); 354 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 355 PM.add( 356 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 357 } 358 359 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 360 const CodeGenOptions &CodeGenOpts) { 361 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 362 363 switch (CodeGenOpts.getVecLib()) { 364 case CodeGenOptions::Accelerate: 365 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 366 break; 367 case CodeGenOptions::MASSV: 368 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 369 break; 370 case CodeGenOptions::SVML: 371 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 372 break; 373 default: 374 break; 375 } 376 return TLII; 377 } 378 379 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 380 legacy::PassManager *MPM) { 381 llvm::SymbolRewriter::RewriteDescriptorList DL; 382 383 llvm::SymbolRewriter::RewriteMapParser MapParser; 384 for (const auto &MapFile : Opts.RewriteMapFiles) 385 MapParser.parse(MapFile, &DL); 386 387 MPM->add(createRewriteSymbolsPass(DL)); 388 } 389 390 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 391 switch (CodeGenOpts.OptimizationLevel) { 392 default: 393 llvm_unreachable("Invalid optimization level!"); 394 case 0: 395 return CodeGenOpt::None; 396 case 1: 397 return CodeGenOpt::Less; 398 case 2: 399 return CodeGenOpt::Default; // O2/Os/Oz 400 case 3: 401 return CodeGenOpt::Aggressive; 402 } 403 } 404 405 static Optional<llvm::CodeModel::Model> 406 getCodeModel(const CodeGenOptions &CodeGenOpts) { 407 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 408 .Case("tiny", llvm::CodeModel::Tiny) 409 .Case("small", llvm::CodeModel::Small) 410 .Case("kernel", llvm::CodeModel::Kernel) 411 .Case("medium", llvm::CodeModel::Medium) 412 .Case("large", llvm::CodeModel::Large) 413 .Case("default", ~1u) 414 .Default(~0u); 415 assert(CodeModel != ~0u && "invalid code model!"); 416 if (CodeModel == ~1u) 417 return None; 418 return static_cast<llvm::CodeModel::Model>(CodeModel); 419 } 420 421 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 422 if (Action == Backend_EmitObj) 423 return CGFT_ObjectFile; 424 else if (Action == Backend_EmitMCNull) 425 return CGFT_Null; 426 else { 427 assert(Action == Backend_EmitAssembly && "Invalid action!"); 428 return CGFT_AssemblyFile; 429 } 430 } 431 432 static void initTargetOptions(DiagnosticsEngine &Diags, 433 llvm::TargetOptions &Options, 434 const CodeGenOptions &CodeGenOpts, 435 const clang::TargetOptions &TargetOpts, 436 const LangOptions &LangOpts, 437 const HeaderSearchOptions &HSOpts) { 438 Options.ThreadModel = 439 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 440 .Case("posix", llvm::ThreadModel::POSIX) 441 .Case("single", llvm::ThreadModel::Single); 442 443 // Set float ABI type. 444 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 445 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 446 "Invalid Floating Point ABI!"); 447 Options.FloatABIType = 448 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 449 .Case("soft", llvm::FloatABI::Soft) 450 .Case("softfp", llvm::FloatABI::Soft) 451 .Case("hard", llvm::FloatABI::Hard) 452 .Default(llvm::FloatABI::Default); 453 454 // Set FP fusion mode. 455 switch (LangOpts.getDefaultFPContractMode()) { 456 case LangOptions::FPM_Off: 457 // Preserve any contraction performed by the front-end. (Strict performs 458 // splitting of the muladd intrinsic in the backend.) 459 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 460 break; 461 case LangOptions::FPM_On: 462 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 463 break; 464 case LangOptions::FPM_Fast: 465 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 466 break; 467 } 468 469 Options.UseInitArray = CodeGenOpts.UseInitArray; 470 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 471 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 472 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 473 474 // Set EABI version. 475 Options.EABIVersion = TargetOpts.EABIVersion; 476 477 if (LangOpts.SjLjExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 479 if (LangOpts.SEHExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 481 if (LangOpts.DWARFExceptions) 482 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 483 if (LangOpts.WasmExceptions) 484 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 485 486 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 487 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 488 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 489 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 490 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 491 492 Options.BBSections = 493 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 494 .Case("all", llvm::BasicBlockSection::All) 495 .Case("labels", llvm::BasicBlockSection::Labels) 496 .StartsWith("list=", llvm::BasicBlockSection::List) 497 .Case("none", llvm::BasicBlockSection::None) 498 .Default(llvm::BasicBlockSection::None); 499 500 if (Options.BBSections == llvm::BasicBlockSection::List) { 501 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 502 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 503 if (!MBOrErr) 504 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 505 << MBOrErr.getError().message(); 506 else 507 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 508 } 509 510 Options.FunctionSections = CodeGenOpts.FunctionSections; 511 Options.DataSections = CodeGenOpts.DataSections; 512 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 513 Options.UniqueBasicBlockSectionNames = 514 CodeGenOpts.UniqueBasicBlockSectionNames; 515 Options.TLSSize = CodeGenOpts.TLSSize; 516 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 517 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 518 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 519 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 520 Options.EmitAddrsig = CodeGenOpts.Addrsig; 521 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 522 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 523 Options.ValueTrackingVariableLocations = 524 CodeGenOpts.ValueTrackingVariableLocations; 525 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 526 527 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 528 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 529 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 530 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 531 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 532 Options.MCOptions.MCIncrementalLinkerCompatible = 533 CodeGenOpts.IncrementalLinkerCompatible; 534 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 535 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 536 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 537 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 538 Options.MCOptions.ABIName = TargetOpts.ABI; 539 for (const auto &Entry : HSOpts.UserEntries) 540 if (!Entry.IsFramework && 541 (Entry.Group == frontend::IncludeDirGroup::Quoted || 542 Entry.Group == frontend::IncludeDirGroup::Angled || 543 Entry.Group == frontend::IncludeDirGroup::System)) 544 Options.MCOptions.IASSearchPaths.push_back( 545 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 546 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 547 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 548 } 549 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 550 if (CodeGenOpts.DisableGCov) 551 return None; 552 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 553 return None; 554 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 555 // LLVM's -default-gcov-version flag is set to something invalid. 556 GCOVOptions Options; 557 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 558 Options.EmitData = CodeGenOpts.EmitGcovArcs; 559 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 560 Options.NoRedZone = CodeGenOpts.DisableRedZone; 561 Options.Filter = CodeGenOpts.ProfileFilterFiles; 562 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 563 return Options; 564 } 565 566 static Optional<InstrProfOptions> 567 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 568 const LangOptions &LangOpts) { 569 if (!CodeGenOpts.hasProfileClangInstr()) 570 return None; 571 InstrProfOptions Options; 572 Options.NoRedZone = CodeGenOpts.DisableRedZone; 573 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 574 575 // TODO: Surface the option to emit atomic profile counter increments at 576 // the driver level. 577 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 578 return Options; 579 } 580 581 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 582 legacy::FunctionPassManager &FPM) { 583 // Handle disabling of all LLVM passes, where we want to preserve the 584 // internal module before any optimization. 585 if (CodeGenOpts.DisableLLVMPasses) 586 return; 587 588 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 589 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 590 // are inserted before PMBuilder ones - they'd get the default-constructed 591 // TLI with an unknown target otherwise. 592 Triple TargetTriple(TheModule->getTargetTriple()); 593 std::unique_ptr<TargetLibraryInfoImpl> TLII( 594 createTLII(TargetTriple, CodeGenOpts)); 595 596 // If we reached here with a non-empty index file name, then the index file 597 // was empty and we are not performing ThinLTO backend compilation (used in 598 // testing in a distributed build environment). Drop any the type test 599 // assume sequences inserted for whole program vtables so that codegen doesn't 600 // complain. 601 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 602 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 603 /*ImportSummary=*/nullptr, 604 /*DropTypeTests=*/true)); 605 606 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 607 608 // At O0 and O1 we only run the always inliner which is more efficient. At 609 // higher optimization levels we run the normal inliner. 610 if (CodeGenOpts.OptimizationLevel <= 1) { 611 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 612 !CodeGenOpts.DisableLifetimeMarkers) || 613 LangOpts.Coroutines); 614 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 615 } else { 616 // We do not want to inline hot callsites for SamplePGO module-summary build 617 // because profile annotation will happen again in ThinLTO backend, and we 618 // want the IR of the hot path to match the profile. 619 PMBuilder.Inliner = createFunctionInliningPass( 620 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 621 (!CodeGenOpts.SampleProfileFile.empty() && 622 CodeGenOpts.PrepareForThinLTO)); 623 } 624 625 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 626 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 627 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 628 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 629 // Only enable CGProfilePass when using integrated assembler, since 630 // non-integrated assemblers don't recognize .cgprofile section. 631 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 632 633 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 634 // Loop interleaving in the loop vectorizer has historically been set to be 635 // enabled when loop unrolling is enabled. 636 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 637 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 638 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 639 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 640 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 641 642 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 643 644 if (TM) 645 TM->adjustPassManager(PMBuilder); 646 647 if (CodeGenOpts.DebugInfoForProfiling || 648 !CodeGenOpts.SampleProfileFile.empty()) 649 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 650 addAddDiscriminatorsPass); 651 652 // In ObjC ARC mode, add the main ARC optimization passes. 653 if (LangOpts.ObjCAutoRefCount) { 654 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 655 addObjCARCExpandPass); 656 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 657 addObjCARCAPElimPass); 658 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 659 addObjCARCOptPass); 660 } 661 662 if (LangOpts.Coroutines) 663 addCoroutinePassesToExtensionPoints(PMBuilder); 664 665 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 667 addBoundsCheckingPass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addBoundsCheckingPass); 670 } 671 672 if (CodeGenOpts.SanitizeCoverageType || 673 CodeGenOpts.SanitizeCoverageIndirectCalls || 674 CodeGenOpts.SanitizeCoverageTraceCmp) { 675 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 676 addSanitizerCoveragePass); 677 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 678 addSanitizerCoveragePass); 679 } 680 681 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 682 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 683 addAddressSanitizerPasses); 684 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 685 addAddressSanitizerPasses); 686 } 687 688 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 689 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 690 addKernelAddressSanitizerPasses); 691 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 692 addKernelAddressSanitizerPasses); 693 } 694 695 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 696 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 697 addHWAddressSanitizerPasses); 698 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 699 addHWAddressSanitizerPasses); 700 } 701 702 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 703 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 704 addKernelHWAddressSanitizerPasses); 705 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 706 addKernelHWAddressSanitizerPasses); 707 } 708 709 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 710 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 711 addMemorySanitizerPass); 712 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 713 addMemorySanitizerPass); 714 } 715 716 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 717 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 718 addKernelMemorySanitizerPass); 719 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 720 addKernelMemorySanitizerPass); 721 } 722 723 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 724 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 725 addThreadSanitizerPass); 726 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 727 addThreadSanitizerPass); 728 } 729 730 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 731 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 732 addDataFlowSanitizerPass); 733 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 734 addDataFlowSanitizerPass); 735 } 736 737 // Set up the per-function pass manager. 738 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 739 if (CodeGenOpts.VerifyModule) 740 FPM.add(createVerifierPass()); 741 742 // Set up the per-module pass manager. 743 if (!CodeGenOpts.RewriteMapFiles.empty()) 744 addSymbolRewriterPass(CodeGenOpts, &MPM); 745 746 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 747 // with unique names. 748 if (CodeGenOpts.UniqueInternalLinkageNames) { 749 MPM.add(createUniqueInternalLinkageNamesPass()); 750 } 751 752 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 753 MPM.add(createGCOVProfilerPass(*Options)); 754 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 755 MPM.add(createStripSymbolsPass(true)); 756 } 757 758 if (Optional<InstrProfOptions> Options = 759 getInstrProfOptions(CodeGenOpts, LangOpts)) 760 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 761 762 bool hasIRInstr = false; 763 if (CodeGenOpts.hasProfileIRInstr()) { 764 PMBuilder.EnablePGOInstrGen = true; 765 hasIRInstr = true; 766 } 767 if (CodeGenOpts.hasProfileCSIRInstr()) { 768 assert(!CodeGenOpts.hasProfileCSIRUse() && 769 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 770 "same time"); 771 assert(!hasIRInstr && 772 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 773 "same time"); 774 PMBuilder.EnablePGOCSInstrGen = true; 775 hasIRInstr = true; 776 } 777 if (hasIRInstr) { 778 if (!CodeGenOpts.InstrProfileOutput.empty()) 779 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 780 else 781 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 782 } 783 if (CodeGenOpts.hasProfileIRUse()) { 784 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 785 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 786 } 787 788 if (!CodeGenOpts.SampleProfileFile.empty()) 789 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 790 791 PMBuilder.populateFunctionPassManager(FPM); 792 PMBuilder.populateModulePassManager(MPM); 793 } 794 795 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 796 SmallVector<const char *, 16> BackendArgs; 797 BackendArgs.push_back("clang"); // Fake program name. 798 if (!CodeGenOpts.DebugPass.empty()) { 799 BackendArgs.push_back("-debug-pass"); 800 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 801 } 802 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 803 BackendArgs.push_back("-limit-float-precision"); 804 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 805 } 806 BackendArgs.push_back(nullptr); 807 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 808 BackendArgs.data()); 809 } 810 811 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 812 // Create the TargetMachine for generating code. 813 std::string Error; 814 std::string Triple = TheModule->getTargetTriple(); 815 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 816 if (!TheTarget) { 817 if (MustCreateTM) 818 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 819 return; 820 } 821 822 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 823 std::string FeaturesStr = 824 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 825 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 826 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 827 828 llvm::TargetOptions Options; 829 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 830 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 831 Options, RM, CM, OptLevel)); 832 } 833 834 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 835 BackendAction Action, 836 raw_pwrite_stream &OS, 837 raw_pwrite_stream *DwoOS) { 838 // Add LibraryInfo. 839 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 840 std::unique_ptr<TargetLibraryInfoImpl> TLII( 841 createTLII(TargetTriple, CodeGenOpts)); 842 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 843 844 // Normal mode, emit a .s or .o file by running the code generator. Note, 845 // this also adds codegenerator level optimization passes. 846 CodeGenFileType CGFT = getCodeGenFileType(Action); 847 848 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 849 // "codegen" passes so that it isn't run multiple times when there is 850 // inlining happening. 851 if (CodeGenOpts.OptimizationLevel > 0) 852 CodeGenPasses.add(createObjCARCContractPass()); 853 854 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 855 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 856 Diags.Report(diag::err_fe_unable_to_interface_with_target); 857 return false; 858 } 859 860 return true; 861 } 862 863 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 864 std::unique_ptr<raw_pwrite_stream> OS) { 865 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 866 867 setCommandLineOpts(CodeGenOpts); 868 869 bool UsesCodeGen = (Action != Backend_EmitNothing && 870 Action != Backend_EmitBC && 871 Action != Backend_EmitLL); 872 CreateTargetMachine(UsesCodeGen); 873 874 if (UsesCodeGen && !TM) 875 return; 876 if (TM) 877 TheModule->setDataLayout(TM->createDataLayout()); 878 879 legacy::PassManager PerModulePasses; 880 PerModulePasses.add( 881 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 882 883 legacy::FunctionPassManager PerFunctionPasses(TheModule); 884 PerFunctionPasses.add( 885 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 886 887 CreatePasses(PerModulePasses, PerFunctionPasses); 888 889 legacy::PassManager CodeGenPasses; 890 CodeGenPasses.add( 891 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 892 893 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 894 895 switch (Action) { 896 case Backend_EmitNothing: 897 break; 898 899 case Backend_EmitBC: 900 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 901 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 902 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 903 if (!ThinLinkOS) 904 return; 905 } 906 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 907 CodeGenOpts.EnableSplitLTOUnit); 908 PerModulePasses.add(createWriteThinLTOBitcodePass( 909 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 910 } else { 911 // Emit a module summary by default for Regular LTO except for ld64 912 // targets 913 bool EmitLTOSummary = 914 (CodeGenOpts.PrepareForLTO && 915 !CodeGenOpts.DisableLLVMPasses && 916 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 917 llvm::Triple::Apple); 918 if (EmitLTOSummary) { 919 if (!TheModule->getModuleFlag("ThinLTO")) 920 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 921 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 922 uint32_t(1)); 923 } 924 925 PerModulePasses.add(createBitcodeWriterPass( 926 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 927 } 928 break; 929 930 case Backend_EmitLL: 931 PerModulePasses.add( 932 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 933 break; 934 935 default: 936 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 937 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 938 if (!DwoOS) 939 return; 940 } 941 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 942 DwoOS ? &DwoOS->os() : nullptr)) 943 return; 944 } 945 946 // Before executing passes, print the final values of the LLVM options. 947 cl::PrintOptionValues(); 948 949 // Run passes. For now we do all passes at once, but eventually we 950 // would like to have the option of streaming code generation. 951 952 { 953 PrettyStackTraceString CrashInfo("Per-function optimization"); 954 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 955 956 PerFunctionPasses.doInitialization(); 957 for (Function &F : *TheModule) 958 if (!F.isDeclaration()) 959 PerFunctionPasses.run(F); 960 PerFunctionPasses.doFinalization(); 961 } 962 963 { 964 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 965 llvm::TimeTraceScope TimeScope("PerModulePasses"); 966 PerModulePasses.run(*TheModule); 967 } 968 969 { 970 PrettyStackTraceString CrashInfo("Code generation"); 971 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 972 CodeGenPasses.run(*TheModule); 973 } 974 975 if (ThinLinkOS) 976 ThinLinkOS->keep(); 977 if (DwoOS) 978 DwoOS->keep(); 979 } 980 981 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 982 switch (Opts.OptimizationLevel) { 983 default: 984 llvm_unreachable("Invalid optimization level!"); 985 986 case 1: 987 return PassBuilder::OptimizationLevel::O1; 988 989 case 2: 990 switch (Opts.OptimizeSize) { 991 default: 992 llvm_unreachable("Invalid optimization level for size!"); 993 994 case 0: 995 return PassBuilder::OptimizationLevel::O2; 996 997 case 1: 998 return PassBuilder::OptimizationLevel::Os; 999 1000 case 2: 1001 return PassBuilder::OptimizationLevel::Oz; 1002 } 1003 1004 case 3: 1005 return PassBuilder::OptimizationLevel::O3; 1006 } 1007 } 1008 1009 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1010 const LangOptions &LangOpts, 1011 const CodeGenOptions &CodeGenOpts) { 1012 if (!LangOpts.Coroutines) 1013 return; 1014 1015 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1016 1017 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1018 CGPM.addPass(CoroSplitPass()); 1019 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1020 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1021 1022 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1023 } 1024 1025 static void addSanitizersAtO0(ModulePassManager &MPM, 1026 const Triple &TargetTriple, 1027 const LangOptions &LangOpts, 1028 const CodeGenOptions &CodeGenOpts) { 1029 if (CodeGenOpts.SanitizeCoverageType || 1030 CodeGenOpts.SanitizeCoverageIndirectCalls || 1031 CodeGenOpts.SanitizeCoverageTraceCmp) { 1032 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1033 MPM.addPass(ModuleSanitizerCoveragePass( 1034 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1035 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1036 } 1037 1038 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1039 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1040 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1041 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1042 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1043 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1044 MPM.addPass( 1045 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1046 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1047 }; 1048 1049 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1050 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1051 } 1052 1053 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1054 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1055 } 1056 1057 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1058 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1059 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1060 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1061 MPM.addPass(createModuleToFunctionPassAdaptor( 1062 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1063 } 1064 1065 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1066 MPM.addPass(createModuleToFunctionPassAdaptor( 1067 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1068 } 1069 1070 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1071 MPM.addPass(ThreadSanitizerPass()); 1072 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1073 } 1074 } 1075 1076 /// A clean version of `EmitAssembly` that uses the new pass manager. 1077 /// 1078 /// Not all features are currently supported in this system, but where 1079 /// necessary it falls back to the legacy pass manager to at least provide 1080 /// basic functionality. 1081 /// 1082 /// This API is planned to have its functionality finished and then to replace 1083 /// `EmitAssembly` at some point in the future when the default switches. 1084 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1085 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1086 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1087 setCommandLineOpts(CodeGenOpts); 1088 1089 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1090 Action != Backend_EmitBC && 1091 Action != Backend_EmitLL); 1092 CreateTargetMachine(RequiresCodeGen); 1093 1094 if (RequiresCodeGen && !TM) 1095 return; 1096 if (TM) 1097 TheModule->setDataLayout(TM->createDataLayout()); 1098 1099 Optional<PGOOptions> PGOOpt; 1100 1101 if (CodeGenOpts.hasProfileIRInstr()) 1102 // -fprofile-generate. 1103 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1104 ? std::string(DefaultProfileGenName) 1105 : CodeGenOpts.InstrProfileOutput, 1106 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1107 CodeGenOpts.DebugInfoForProfiling); 1108 else if (CodeGenOpts.hasProfileIRUse()) { 1109 // -fprofile-use. 1110 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1111 : PGOOptions::NoCSAction; 1112 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1113 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1114 CSAction, CodeGenOpts.DebugInfoForProfiling); 1115 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1116 // -fprofile-sample-use 1117 PGOOpt = 1118 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1119 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1120 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1121 else if (CodeGenOpts.DebugInfoForProfiling) 1122 // -fdebug-info-for-profiling 1123 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1124 PGOOptions::NoCSAction, true); 1125 1126 // Check to see if we want to generate a CS profile. 1127 if (CodeGenOpts.hasProfileCSIRInstr()) { 1128 assert(!CodeGenOpts.hasProfileCSIRUse() && 1129 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1130 "the same time"); 1131 if (PGOOpt.hasValue()) { 1132 assert(PGOOpt->Action != PGOOptions::IRInstr && 1133 PGOOpt->Action != PGOOptions::SampleUse && 1134 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1135 " pass"); 1136 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1137 ? std::string(DefaultProfileGenName) 1138 : CodeGenOpts.InstrProfileOutput; 1139 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1140 } else 1141 PGOOpt = PGOOptions("", 1142 CodeGenOpts.InstrProfileOutput.empty() 1143 ? std::string(DefaultProfileGenName) 1144 : CodeGenOpts.InstrProfileOutput, 1145 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1146 CodeGenOpts.DebugInfoForProfiling); 1147 } 1148 1149 PipelineTuningOptions PTO; 1150 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1151 // For historical reasons, loop interleaving is set to mirror setting for loop 1152 // unrolling. 1153 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1154 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1155 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1156 // Only enable CGProfilePass when using integrated assembler, since 1157 // non-integrated assemblers don't recognize .cgprofile section. 1158 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1159 PTO.Coroutines = LangOpts.Coroutines; 1160 1161 PassInstrumentationCallbacks PIC; 1162 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1163 SI.registerCallbacks(PIC); 1164 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1165 1166 // Attempt to load pass plugins and register their callbacks with PB. 1167 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1168 auto PassPlugin = PassPlugin::Load(PluginFN); 1169 if (PassPlugin) { 1170 PassPlugin->registerPassBuilderCallbacks(PB); 1171 } else { 1172 Diags.Report(diag::err_fe_unable_to_load_plugin) 1173 << PluginFN << toString(PassPlugin.takeError()); 1174 } 1175 } 1176 #define HANDLE_EXTENSION(Ext) \ 1177 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1178 #include "llvm/Support/Extension.def" 1179 1180 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1181 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1182 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1183 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1184 1185 // Register the AA manager first so that our version is the one used. 1186 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1187 1188 // Register the target library analysis directly and give it a customized 1189 // preset TLI. 1190 Triple TargetTriple(TheModule->getTargetTriple()); 1191 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1192 createTLII(TargetTriple, CodeGenOpts)); 1193 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1194 1195 // Register all the basic analyses with the managers. 1196 PB.registerModuleAnalyses(MAM); 1197 PB.registerCGSCCAnalyses(CGAM); 1198 PB.registerFunctionAnalyses(FAM); 1199 PB.registerLoopAnalyses(LAM); 1200 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1201 1202 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1203 1204 if (!CodeGenOpts.DisableLLVMPasses) { 1205 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1206 bool IsLTO = CodeGenOpts.PrepareForLTO; 1207 1208 if (CodeGenOpts.OptimizationLevel == 0) { 1209 // If we reached here with a non-empty index file name, then the index 1210 // file was empty and we are not performing ThinLTO backend compilation 1211 // (used in testing in a distributed build environment). Drop any the type 1212 // test assume sequences inserted for whole program vtables so that 1213 // codegen doesn't complain. 1214 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1215 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1216 /*ImportSummary=*/nullptr, 1217 /*DropTypeTests=*/true)); 1218 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1219 MPM.addPass(GCOVProfilerPass(*Options)); 1220 if (Optional<InstrProfOptions> Options = 1221 getInstrProfOptions(CodeGenOpts, LangOpts)) 1222 MPM.addPass(InstrProfiling(*Options, false)); 1223 1224 // Build a minimal pipeline based on the semantics required by Clang, 1225 // which is just that always inlining occurs. Further, disable generating 1226 // lifetime intrinsics to avoid enabling further optimizations during 1227 // code generation. 1228 // However, we need to insert lifetime intrinsics to avoid invalid access 1229 // caused by multithreaded coroutines. 1230 MPM.addPass( 1231 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1232 1233 // At -O0, we can still do PGO. Add all the requested passes for 1234 // instrumentation PGO, if requested. 1235 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1236 PGOOpt->Action == PGOOptions::IRUse)) 1237 PB.addPGOInstrPassesForO0( 1238 MPM, CodeGenOpts.DebugPassManager, 1239 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1240 /* IsCS */ false, PGOOpt->ProfileFile, 1241 PGOOpt->ProfileRemappingFile); 1242 1243 // At -O0 we directly run necessary sanitizer passes. 1244 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1245 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1246 1247 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1248 // symbols with unique names. 1249 if (CodeGenOpts.UniqueInternalLinkageNames) { 1250 MPM.addPass(UniqueInternalLinkageNamesPass()); 1251 } 1252 1253 // Lastly, add semantically necessary passes for LTO. 1254 if (IsLTO || IsThinLTO) { 1255 MPM.addPass(CanonicalizeAliasesPass()); 1256 MPM.addPass(NameAnonGlobalPass()); 1257 } 1258 } else { 1259 // Map our optimization levels into one of the distinct levels used to 1260 // configure the pipeline. 1261 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1262 1263 // If we reached here with a non-empty index file name, then the index 1264 // file was empty and we are not performing ThinLTO backend compilation 1265 // (used in testing in a distributed build environment). Drop any the type 1266 // test assume sequences inserted for whole program vtables so that 1267 // codegen doesn't complain. 1268 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1269 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1270 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1271 /*ImportSummary=*/nullptr, 1272 /*DropTypeTests=*/true)); 1273 }); 1274 1275 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1276 MPM.addPass(createModuleToFunctionPassAdaptor( 1277 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1278 }); 1279 1280 // Register callbacks to schedule sanitizer passes at the appropriate part of 1281 // the pipeline. 1282 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1283 PB.registerScalarOptimizerLateEPCallback( 1284 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1285 FPM.addPass(BoundsCheckingPass()); 1286 }); 1287 1288 if (CodeGenOpts.SanitizeCoverageType || 1289 CodeGenOpts.SanitizeCoverageIndirectCalls || 1290 CodeGenOpts.SanitizeCoverageTraceCmp) { 1291 PB.registerOptimizerLastEPCallback( 1292 [this](ModulePassManager &MPM, 1293 PassBuilder::OptimizationLevel Level) { 1294 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1295 MPM.addPass(ModuleSanitizerCoveragePass( 1296 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1297 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1298 }); 1299 } 1300 1301 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1302 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1303 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1304 PB.registerOptimizerLastEPCallback( 1305 [TrackOrigins, Recover](ModulePassManager &MPM, 1306 PassBuilder::OptimizationLevel Level) { 1307 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1308 MPM.addPass(createModuleToFunctionPassAdaptor( 1309 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1310 }); 1311 } 1312 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1313 PB.registerOptimizerLastEPCallback( 1314 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1315 MPM.addPass(ThreadSanitizerPass()); 1316 MPM.addPass( 1317 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1318 }); 1319 } 1320 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1321 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1322 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1323 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1324 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1325 PB.registerOptimizerLastEPCallback( 1326 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1327 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1328 MPM.addPass( 1329 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1330 MPM.addPass(ModuleAddressSanitizerPass( 1331 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1332 UseOdrIndicator)); 1333 MPM.addPass( 1334 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1335 /*CompileKernel=*/false, Recover, UseAfterScope))); 1336 }); 1337 } 1338 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1339 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1340 MPM.addPass(GCOVProfilerPass(*Options)); 1341 }); 1342 if (Optional<InstrProfOptions> Options = 1343 getInstrProfOptions(CodeGenOpts, LangOpts)) 1344 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1345 MPM.addPass(InstrProfiling(*Options, false)); 1346 }); 1347 1348 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1349 // symbols with unique names. 1350 if (CodeGenOpts.UniqueInternalLinkageNames) { 1351 MPM.addPass(UniqueInternalLinkageNamesPass()); 1352 } 1353 1354 if (IsThinLTO) { 1355 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1356 Level, CodeGenOpts.DebugPassManager); 1357 MPM.addPass(CanonicalizeAliasesPass()); 1358 MPM.addPass(NameAnonGlobalPass()); 1359 } else if (IsLTO) { 1360 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1361 CodeGenOpts.DebugPassManager); 1362 MPM.addPass(CanonicalizeAliasesPass()); 1363 MPM.addPass(NameAnonGlobalPass()); 1364 } else { 1365 MPM = PB.buildPerModuleDefaultPipeline(Level, 1366 CodeGenOpts.DebugPassManager); 1367 } 1368 } 1369 1370 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1371 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1372 MPM.addPass(HWAddressSanitizerPass( 1373 /*CompileKernel=*/false, Recover)); 1374 } 1375 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1376 MPM.addPass(HWAddressSanitizerPass( 1377 /*CompileKernel=*/true, /*Recover=*/true)); 1378 } 1379 1380 if (CodeGenOpts.OptimizationLevel == 0) { 1381 // FIXME: the backends do not handle matrix intrinsics currently. Make 1382 // sure they are also lowered in O0. A lightweight version of the pass 1383 // should run in the backend pipeline on demand. 1384 if (LangOpts.MatrixTypes) 1385 MPM.addPass( 1386 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1387 1388 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1389 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1390 } 1391 } 1392 1393 // FIXME: We still use the legacy pass manager to do code generation. We 1394 // create that pass manager here and use it as needed below. 1395 legacy::PassManager CodeGenPasses; 1396 bool NeedCodeGen = false; 1397 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1398 1399 // Append any output we need to the pass manager. 1400 switch (Action) { 1401 case Backend_EmitNothing: 1402 break; 1403 1404 case Backend_EmitBC: 1405 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1406 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1407 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1408 if (!ThinLinkOS) 1409 return; 1410 } 1411 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1412 CodeGenOpts.EnableSplitLTOUnit); 1413 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1414 : nullptr)); 1415 } else { 1416 // Emit a module summary by default for Regular LTO except for ld64 1417 // targets 1418 bool EmitLTOSummary = 1419 (CodeGenOpts.PrepareForLTO && 1420 !CodeGenOpts.DisableLLVMPasses && 1421 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1422 llvm::Triple::Apple); 1423 if (EmitLTOSummary) { 1424 if (!TheModule->getModuleFlag("ThinLTO")) 1425 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1426 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1427 uint32_t(1)); 1428 } 1429 MPM.addPass( 1430 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1431 } 1432 break; 1433 1434 case Backend_EmitLL: 1435 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1436 break; 1437 1438 case Backend_EmitAssembly: 1439 case Backend_EmitMCNull: 1440 case Backend_EmitObj: 1441 NeedCodeGen = true; 1442 CodeGenPasses.add( 1443 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1444 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1445 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1446 if (!DwoOS) 1447 return; 1448 } 1449 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1450 DwoOS ? &DwoOS->os() : nullptr)) 1451 // FIXME: Should we handle this error differently? 1452 return; 1453 break; 1454 } 1455 1456 // Before executing passes, print the final values of the LLVM options. 1457 cl::PrintOptionValues(); 1458 1459 // Now that we have all of the passes ready, run them. 1460 { 1461 PrettyStackTraceString CrashInfo("Optimizer"); 1462 MPM.run(*TheModule, MAM); 1463 } 1464 1465 // Now if needed, run the legacy PM for codegen. 1466 if (NeedCodeGen) { 1467 PrettyStackTraceString CrashInfo("Code generation"); 1468 CodeGenPasses.run(*TheModule); 1469 } 1470 1471 if (ThinLinkOS) 1472 ThinLinkOS->keep(); 1473 if (DwoOS) 1474 DwoOS->keep(); 1475 } 1476 1477 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1478 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1479 if (!BMsOrErr) 1480 return BMsOrErr.takeError(); 1481 1482 // The bitcode file may contain multiple modules, we want the one that is 1483 // marked as being the ThinLTO module. 1484 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1485 return *Bm; 1486 1487 return make_error<StringError>("Could not find module summary", 1488 inconvertibleErrorCode()); 1489 } 1490 1491 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1492 for (BitcodeModule &BM : BMs) { 1493 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1494 if (LTOInfo && LTOInfo->IsThinLTO) 1495 return &BM; 1496 } 1497 return nullptr; 1498 } 1499 1500 static void runThinLTOBackend( 1501 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1502 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1503 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1504 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1505 std::string ProfileRemapping, BackendAction Action) { 1506 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1507 ModuleToDefinedGVSummaries; 1508 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1509 1510 setCommandLineOpts(CGOpts); 1511 1512 // We can simply import the values mentioned in the combined index, since 1513 // we should only invoke this using the individual indexes written out 1514 // via a WriteIndexesThinBackend. 1515 FunctionImporter::ImportMapTy ImportList; 1516 for (auto &GlobalList : *CombinedIndex) { 1517 // Ignore entries for undefined references. 1518 if (GlobalList.second.SummaryList.empty()) 1519 continue; 1520 1521 auto GUID = GlobalList.first; 1522 for (auto &Summary : GlobalList.second.SummaryList) { 1523 // Skip the summaries for the importing module. These are included to 1524 // e.g. record required linkage changes. 1525 if (Summary->modulePath() == M->getModuleIdentifier()) 1526 continue; 1527 // Add an entry to provoke importing by thinBackend. 1528 ImportList[Summary->modulePath()].insert(GUID); 1529 } 1530 } 1531 1532 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1533 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1534 1535 for (auto &I : ImportList) { 1536 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1537 llvm::MemoryBuffer::getFile(I.first()); 1538 if (!MBOrErr) { 1539 errs() << "Error loading imported file '" << I.first() 1540 << "': " << MBOrErr.getError().message() << "\n"; 1541 return; 1542 } 1543 1544 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1545 if (!BMOrErr) { 1546 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1547 errs() << "Error loading imported file '" << I.first() 1548 << "': " << EIB.message() << '\n'; 1549 }); 1550 return; 1551 } 1552 ModuleMap.insert({I.first(), *BMOrErr}); 1553 1554 OwnedImports.push_back(std::move(*MBOrErr)); 1555 } 1556 auto AddStream = [&](size_t Task) { 1557 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1558 }; 1559 lto::Config Conf; 1560 if (CGOpts.SaveTempsFilePrefix != "") { 1561 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1562 /* UseInputModulePath */ false)) { 1563 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1564 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1565 << '\n'; 1566 }); 1567 } 1568 } 1569 Conf.CPU = TOpts.CPU; 1570 Conf.CodeModel = getCodeModel(CGOpts); 1571 Conf.MAttrs = TOpts.Features; 1572 Conf.RelocModel = CGOpts.RelocationModel; 1573 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1574 Conf.OptLevel = CGOpts.OptimizationLevel; 1575 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1576 Conf.SampleProfile = std::move(SampleProfile); 1577 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1578 // For historical reasons, loop interleaving is set to mirror setting for loop 1579 // unrolling. 1580 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1581 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1582 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1583 // Only enable CGProfilePass when using integrated assembler, since 1584 // non-integrated assemblers don't recognize .cgprofile section. 1585 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1586 1587 // Context sensitive profile. 1588 if (CGOpts.hasProfileCSIRInstr()) { 1589 Conf.RunCSIRInstr = true; 1590 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1591 } else if (CGOpts.hasProfileCSIRUse()) { 1592 Conf.RunCSIRInstr = false; 1593 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1594 } 1595 1596 Conf.ProfileRemapping = std::move(ProfileRemapping); 1597 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1598 Conf.DebugPassManager = CGOpts.DebugPassManager; 1599 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1600 Conf.RemarksFilename = CGOpts.OptRecordFile; 1601 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1602 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1603 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1604 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1605 switch (Action) { 1606 case Backend_EmitNothing: 1607 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1608 return false; 1609 }; 1610 break; 1611 case Backend_EmitLL: 1612 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1613 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1614 return false; 1615 }; 1616 break; 1617 case Backend_EmitBC: 1618 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1619 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1620 return false; 1621 }; 1622 break; 1623 default: 1624 Conf.CGFileType = getCodeGenFileType(Action); 1625 break; 1626 } 1627 if (Error E = thinBackend( 1628 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1629 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1630 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1631 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1632 }); 1633 } 1634 } 1635 1636 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1637 const HeaderSearchOptions &HeaderOpts, 1638 const CodeGenOptions &CGOpts, 1639 const clang::TargetOptions &TOpts, 1640 const LangOptions &LOpts, 1641 const llvm::DataLayout &TDesc, Module *M, 1642 BackendAction Action, 1643 std::unique_ptr<raw_pwrite_stream> OS) { 1644 1645 llvm::TimeTraceScope TimeScope("Backend"); 1646 1647 std::unique_ptr<llvm::Module> EmptyModule; 1648 if (!CGOpts.ThinLTOIndexFile.empty()) { 1649 // If we are performing a ThinLTO importing compile, load the function index 1650 // into memory and pass it into runThinLTOBackend, which will run the 1651 // function importer and invoke LTO passes. 1652 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1653 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1654 /*IgnoreEmptyThinLTOIndexFile*/true); 1655 if (!IndexOrErr) { 1656 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1657 "Error loading index file '" + 1658 CGOpts.ThinLTOIndexFile + "': "); 1659 return; 1660 } 1661 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1662 // A null CombinedIndex means we should skip ThinLTO compilation 1663 // (LLVM will optionally ignore empty index files, returning null instead 1664 // of an error). 1665 if (CombinedIndex) { 1666 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1667 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1668 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1669 CGOpts.ProfileRemappingFile, Action); 1670 return; 1671 } 1672 // Distributed indexing detected that nothing from the module is needed 1673 // for the final linking. So we can skip the compilation. We sill need to 1674 // output an empty object file to make sure that a linker does not fail 1675 // trying to read it. Also for some features, like CFI, we must skip 1676 // the compilation as CombinedIndex does not contain all required 1677 // information. 1678 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1679 EmptyModule->setTargetTriple(M->getTargetTriple()); 1680 M = EmptyModule.get(); 1681 } 1682 } 1683 1684 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1685 1686 if (CGOpts.ExperimentalNewPassManager) 1687 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1688 else 1689 AsmHelper.EmitAssembly(Action, std::move(OS)); 1690 1691 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1692 // DataLayout. 1693 if (AsmHelper.TM) { 1694 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1695 if (DLDesc != TDesc.getStringRepresentation()) { 1696 unsigned DiagID = Diags.getCustomDiagID( 1697 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1698 "expected target description '%1'"); 1699 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1700 } 1701 } 1702 } 1703 1704 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1705 // __LLVM,__bitcode section. 1706 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1707 llvm::MemoryBufferRef Buf) { 1708 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1709 return; 1710 llvm::EmbedBitcodeInModule( 1711 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1712 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1713 &CGOpts.CmdArgs); 1714 } 1715