1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/ObjCARC.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/GVN.h" 58 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 59 #include "llvm/Transforms/Utils/SymbolRewriter.h" 60 #include <memory> 61 using namespace clang; 62 using namespace llvm; 63 64 namespace { 65 66 // Default filename used for profile generation. 67 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 68 69 class EmitAssemblyHelper { 70 DiagnosticsEngine &Diags; 71 const HeaderSearchOptions &HSOpts; 72 const CodeGenOptions &CodeGenOpts; 73 const clang::TargetOptions &TargetOpts; 74 const LangOptions &LangOpts; 75 Module *TheModule; 76 77 Timer CodeGenerationTime; 78 79 std::unique_ptr<raw_pwrite_stream> OS; 80 81 TargetIRAnalysis getTargetIRAnalysis() const { 82 if (TM) 83 return TM->getTargetIRAnalysis(); 84 85 return TargetIRAnalysis(); 86 } 87 88 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 89 90 /// Generates the TargetMachine. 91 /// Leaves TM unchanged if it is unable to create the target machine. 92 /// Some of our clang tests specify triples which are not built 93 /// into clang. This is okay because these tests check the generated 94 /// IR, and they require DataLayout which depends on the triple. 95 /// In this case, we allow this method to fail and not report an error. 96 /// When MustCreateTM is used, we print an error if we are unable to load 97 /// the requested target. 98 void CreateTargetMachine(bool MustCreateTM); 99 100 /// Add passes necessary to emit assembly or LLVM IR. 101 /// 102 /// \return True on success. 103 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 104 raw_pwrite_stream &OS); 105 106 public: 107 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 108 const HeaderSearchOptions &HeaderSearchOpts, 109 const CodeGenOptions &CGOpts, 110 const clang::TargetOptions &TOpts, 111 const LangOptions &LOpts, Module *M) 112 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 113 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 114 CodeGenerationTime("codegen", "Code Generation Time") {} 115 116 ~EmitAssemblyHelper() { 117 if (CodeGenOpts.DisableFree) 118 BuryPointer(std::move(TM)); 119 } 120 121 std::unique_ptr<TargetMachine> TM; 122 123 void EmitAssembly(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 126 void EmitAssemblyWithNewPassManager(BackendAction Action, 127 std::unique_ptr<raw_pwrite_stream> OS); 128 }; 129 130 // We need this wrapper to access LangOpts and CGOpts from extension functions 131 // that we add to the PassManagerBuilder. 132 class PassManagerBuilderWrapper : public PassManagerBuilder { 133 public: 134 PassManagerBuilderWrapper(const Triple &TargetTriple, 135 const CodeGenOptions &CGOpts, 136 const LangOptions &LangOpts) 137 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 138 LangOpts(LangOpts) {} 139 const Triple &getTargetTriple() const { return TargetTriple; } 140 const CodeGenOptions &getCGOpts() const { return CGOpts; } 141 const LangOptions &getLangOpts() const { return LangOpts; } 142 143 private: 144 const Triple &TargetTriple; 145 const CodeGenOptions &CGOpts; 146 const LangOptions &LangOpts; 147 }; 148 } 149 150 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 151 if (Builder.OptLevel > 0) 152 PM.add(createObjCARCAPElimPass()); 153 } 154 155 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCExpandPass()); 158 } 159 160 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 161 if (Builder.OptLevel > 0) 162 PM.add(createObjCARCOptPass()); 163 } 164 165 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 166 legacy::PassManagerBase &PM) { 167 PM.add(createAddDiscriminatorsPass()); 168 } 169 170 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 PM.add(createBoundsCheckingLegacyPass()); 173 } 174 175 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 176 legacy::PassManagerBase &PM) { 177 const PassManagerBuilderWrapper &BuilderWrapper = 178 static_cast<const PassManagerBuilderWrapper&>(Builder); 179 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 180 SanitizerCoverageOptions Opts; 181 Opts.CoverageType = 182 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 183 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 184 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 185 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 186 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 187 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 188 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 189 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 190 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 191 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 192 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 193 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 194 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 195 PM.add(createSanitizerCoverageModulePass(Opts)); 196 } 197 198 // Check if ASan should use GC-friendly instrumentation for globals. 199 // First of all, there is no point if -fdata-sections is off (expect for MachO, 200 // where this is not a factor). Also, on ELF this feature requires an assembler 201 // extension that only works with -integrated-as at the moment. 202 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 203 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 204 return false; 205 switch (T.getObjectFormat()) { 206 case Triple::MachO: 207 case Triple::COFF: 208 return true; 209 case Triple::ELF: 210 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 211 default: 212 return false; 213 } 214 } 215 216 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 217 legacy::PassManagerBase &PM) { 218 const PassManagerBuilderWrapper &BuilderWrapper = 219 static_cast<const PassManagerBuilderWrapper&>(Builder); 220 const Triple &T = BuilderWrapper.getTargetTriple(); 221 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 222 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 223 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 224 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 225 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 226 UseAfterScope)); 227 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 228 UseGlobalsGC)); 229 } 230 231 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 PM.add(createAddressSanitizerFunctionPass( 234 /*CompileKernel*/ true, 235 /*Recover*/ true, /*UseAfterScope*/ false)); 236 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 237 /*Recover*/true)); 238 } 239 240 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper&>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 247 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 248 249 // MemorySanitizer inserts complex instrumentation that mostly follows 250 // the logic of the original code, but operates on "shadow" values. 251 // It can benefit from re-running some general purpose optimization passes. 252 if (Builder.OptLevel > 0) { 253 PM.add(createEarlyCSEPass()); 254 PM.add(createReassociatePass()); 255 PM.add(createLICMPass()); 256 PM.add(createGVNPass()); 257 PM.add(createInstructionCombiningPass()); 258 PM.add(createDeadStoreEliminationPass()); 259 } 260 } 261 262 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 PM.add(createThreadSanitizerPass()); 265 } 266 267 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 272 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 273 } 274 275 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM) { 277 const PassManagerBuilderWrapper &BuilderWrapper = 278 static_cast<const PassManagerBuilderWrapper&>(Builder); 279 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 280 EfficiencySanitizerOptions Opts; 281 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 282 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 283 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 284 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 285 PM.add(createEfficiencySanitizerPass(Opts)); 286 } 287 288 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 289 const CodeGenOptions &CodeGenOpts) { 290 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 291 if (!CodeGenOpts.SimplifyLibCalls) 292 TLII->disableAllFunctions(); 293 else { 294 // Disable individual libc/libm calls in TargetLibraryInfo. 295 LibFunc F; 296 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 297 if (TLII->getLibFunc(FuncName, F)) 298 TLII->setUnavailable(F); 299 } 300 301 switch (CodeGenOpts.getVecLib()) { 302 case CodeGenOptions::Accelerate: 303 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 304 break; 305 case CodeGenOptions::SVML: 306 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 307 break; 308 default: 309 break; 310 } 311 return TLII; 312 } 313 314 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 315 legacy::PassManager *MPM) { 316 llvm::SymbolRewriter::RewriteDescriptorList DL; 317 318 llvm::SymbolRewriter::RewriteMapParser MapParser; 319 for (const auto &MapFile : Opts.RewriteMapFiles) 320 MapParser.parse(MapFile, &DL); 321 322 MPM->add(createRewriteSymbolsPass(DL)); 323 } 324 325 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 326 switch (CodeGenOpts.OptimizationLevel) { 327 default: 328 llvm_unreachable("Invalid optimization level!"); 329 case 0: 330 return CodeGenOpt::None; 331 case 1: 332 return CodeGenOpt::Less; 333 case 2: 334 return CodeGenOpt::Default; // O2/Os/Oz 335 case 3: 336 return CodeGenOpt::Aggressive; 337 } 338 } 339 340 static Optional<llvm::CodeModel::Model> 341 getCodeModel(const CodeGenOptions &CodeGenOpts) { 342 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 343 .Case("small", llvm::CodeModel::Small) 344 .Case("kernel", llvm::CodeModel::Kernel) 345 .Case("medium", llvm::CodeModel::Medium) 346 .Case("large", llvm::CodeModel::Large) 347 .Case("default", ~1u) 348 .Default(~0u); 349 assert(CodeModel != ~0u && "invalid code model!"); 350 if (CodeModel == ~1u) 351 return None; 352 return static_cast<llvm::CodeModel::Model>(CodeModel); 353 } 354 355 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 356 // Keep this synced with the equivalent code in 357 // lib/Frontend/CompilerInvocation.cpp 358 llvm::Optional<llvm::Reloc::Model> RM; 359 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 360 .Case("static", llvm::Reloc::Static) 361 .Case("pic", llvm::Reloc::PIC_) 362 .Case("ropi", llvm::Reloc::ROPI) 363 .Case("rwpi", llvm::Reloc::RWPI) 364 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 365 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 366 assert(RM.hasValue() && "invalid PIC model!"); 367 return *RM; 368 } 369 370 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 371 if (Action == Backend_EmitObj) 372 return TargetMachine::CGFT_ObjectFile; 373 else if (Action == Backend_EmitMCNull) 374 return TargetMachine::CGFT_Null; 375 else { 376 assert(Action == Backend_EmitAssembly && "Invalid action!"); 377 return TargetMachine::CGFT_AssemblyFile; 378 } 379 } 380 381 static void initTargetOptions(llvm::TargetOptions &Options, 382 const CodeGenOptions &CodeGenOpts, 383 const clang::TargetOptions &TargetOpts, 384 const LangOptions &LangOpts, 385 const HeaderSearchOptions &HSOpts) { 386 Options.ThreadModel = 387 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 388 .Case("posix", llvm::ThreadModel::POSIX) 389 .Case("single", llvm::ThreadModel::Single); 390 391 // Set float ABI type. 392 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 393 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 394 "Invalid Floating Point ABI!"); 395 Options.FloatABIType = 396 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 397 .Case("soft", llvm::FloatABI::Soft) 398 .Case("softfp", llvm::FloatABI::Soft) 399 .Case("hard", llvm::FloatABI::Hard) 400 .Default(llvm::FloatABI::Default); 401 402 // Set FP fusion mode. 403 switch (LangOpts.getDefaultFPContractMode()) { 404 case LangOptions::FPC_Off: 405 // Preserve any contraction performed by the front-end. (Strict performs 406 // splitting of the muladd instrinsic in the backend.) 407 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 408 break; 409 case LangOptions::FPC_On: 410 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 411 break; 412 case LangOptions::FPC_Fast: 413 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 414 break; 415 } 416 417 Options.UseInitArray = CodeGenOpts.UseInitArray; 418 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 419 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 420 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 421 422 // Set EABI version. 423 Options.EABIVersion = TargetOpts.EABIVersion; 424 425 if (LangOpts.SjLjExceptions) 426 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 427 428 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 429 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 430 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 431 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 432 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 433 Options.FunctionSections = CodeGenOpts.FunctionSections; 434 Options.DataSections = CodeGenOpts.DataSections; 435 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 436 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 437 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 438 439 if (CodeGenOpts.EnableSplitDwarf) 440 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 441 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 442 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 443 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 444 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 445 Options.MCOptions.MCIncrementalLinkerCompatible = 446 CodeGenOpts.IncrementalLinkerCompatible; 447 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 448 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 449 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 450 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 451 Options.MCOptions.ABIName = TargetOpts.ABI; 452 for (const auto &Entry : HSOpts.UserEntries) 453 if (!Entry.IsFramework && 454 (Entry.Group == frontend::IncludeDirGroup::Quoted || 455 Entry.Group == frontend::IncludeDirGroup::Angled || 456 Entry.Group == frontend::IncludeDirGroup::System)) 457 Options.MCOptions.IASSearchPaths.push_back( 458 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 459 } 460 461 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 462 legacy::FunctionPassManager &FPM) { 463 // Handle disabling of all LLVM passes, where we want to preserve the 464 // internal module before any optimization. 465 if (CodeGenOpts.DisableLLVMPasses) 466 return; 467 468 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 469 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 470 // are inserted before PMBuilder ones - they'd get the default-constructed 471 // TLI with an unknown target otherwise. 472 Triple TargetTriple(TheModule->getTargetTriple()); 473 std::unique_ptr<TargetLibraryInfoImpl> TLII( 474 createTLII(TargetTriple, CodeGenOpts)); 475 476 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 477 478 // At O0 and O1 we only run the always inliner which is more efficient. At 479 // higher optimization levels we run the normal inliner. 480 if (CodeGenOpts.OptimizationLevel <= 1) { 481 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 482 !CodeGenOpts.DisableLifetimeMarkers); 483 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 484 } else { 485 // We do not want to inline hot callsites for SamplePGO module-summary build 486 // because profile annotation will happen again in ThinLTO backend, and we 487 // want the IR of the hot path to match the profile. 488 PMBuilder.Inliner = createFunctionInliningPass( 489 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 490 (!CodeGenOpts.SampleProfileFile.empty() && 491 CodeGenOpts.EmitSummaryIndex)); 492 } 493 494 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 495 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 496 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 497 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 498 499 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 500 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 501 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 502 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 503 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 504 505 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 506 507 if (TM) 508 TM->adjustPassManager(PMBuilder); 509 510 if (CodeGenOpts.DebugInfoForProfiling || 511 !CodeGenOpts.SampleProfileFile.empty()) 512 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 513 addAddDiscriminatorsPass); 514 515 // In ObjC ARC mode, add the main ARC optimization passes. 516 if (LangOpts.ObjCAutoRefCount) { 517 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 518 addObjCARCExpandPass); 519 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 520 addObjCARCAPElimPass); 521 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 522 addObjCARCOptPass); 523 } 524 525 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 526 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 527 addBoundsCheckingPass); 528 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 529 addBoundsCheckingPass); 530 } 531 532 if (CodeGenOpts.SanitizeCoverageType || 533 CodeGenOpts.SanitizeCoverageIndirectCalls || 534 CodeGenOpts.SanitizeCoverageTraceCmp) { 535 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 536 addSanitizerCoveragePass); 537 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 538 addSanitizerCoveragePass); 539 } 540 541 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 542 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 543 addAddressSanitizerPasses); 544 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 545 addAddressSanitizerPasses); 546 } 547 548 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 549 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 550 addKernelAddressSanitizerPasses); 551 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 552 addKernelAddressSanitizerPasses); 553 } 554 555 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 556 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 557 addMemorySanitizerPass); 558 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 559 addMemorySanitizerPass); 560 } 561 562 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 563 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 564 addThreadSanitizerPass); 565 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 566 addThreadSanitizerPass); 567 } 568 569 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 570 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 571 addDataFlowSanitizerPass); 572 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 573 addDataFlowSanitizerPass); 574 } 575 576 if (LangOpts.CoroutinesTS) 577 addCoroutinePassesToExtensionPoints(PMBuilder); 578 579 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 580 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 581 addEfficiencySanitizerPass); 582 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 583 addEfficiencySanitizerPass); 584 } 585 586 // Set up the per-function pass manager. 587 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 588 if (CodeGenOpts.VerifyModule) 589 FPM.add(createVerifierPass()); 590 591 // Set up the per-module pass manager. 592 if (!CodeGenOpts.RewriteMapFiles.empty()) 593 addSymbolRewriterPass(CodeGenOpts, &MPM); 594 595 if (!CodeGenOpts.DisableGCov && 596 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 597 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 598 // LLVM's -default-gcov-version flag is set to something invalid. 599 GCOVOptions Options; 600 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 601 Options.EmitData = CodeGenOpts.EmitGcovArcs; 602 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 603 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 604 Options.NoRedZone = CodeGenOpts.DisableRedZone; 605 Options.FunctionNamesInData = 606 !CodeGenOpts.CoverageNoFunctionNamesInData; 607 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 608 MPM.add(createGCOVProfilerPass(Options)); 609 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 610 MPM.add(createStripSymbolsPass(true)); 611 } 612 613 if (CodeGenOpts.hasProfileClangInstr()) { 614 InstrProfOptions Options; 615 Options.NoRedZone = CodeGenOpts.DisableRedZone; 616 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 617 MPM.add(createInstrProfilingLegacyPass(Options)); 618 } 619 if (CodeGenOpts.hasProfileIRInstr()) { 620 PMBuilder.EnablePGOInstrGen = true; 621 if (!CodeGenOpts.InstrProfileOutput.empty()) 622 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 623 else 624 PMBuilder.PGOInstrGen = DefaultProfileGenName; 625 } 626 if (CodeGenOpts.hasProfileIRUse()) 627 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 628 629 if (!CodeGenOpts.SampleProfileFile.empty()) 630 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 631 632 PMBuilder.populateFunctionPassManager(FPM); 633 PMBuilder.populateModulePassManager(MPM); 634 } 635 636 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 637 SmallVector<const char *, 16> BackendArgs; 638 BackendArgs.push_back("clang"); // Fake program name. 639 if (!CodeGenOpts.DebugPass.empty()) { 640 BackendArgs.push_back("-debug-pass"); 641 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 642 } 643 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 644 BackendArgs.push_back("-limit-float-precision"); 645 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 646 } 647 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 648 BackendArgs.push_back(BackendOption.c_str()); 649 BackendArgs.push_back(nullptr); 650 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 651 BackendArgs.data()); 652 } 653 654 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 655 // Create the TargetMachine for generating code. 656 std::string Error; 657 std::string Triple = TheModule->getTargetTriple(); 658 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 659 if (!TheTarget) { 660 if (MustCreateTM) 661 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 662 return; 663 } 664 665 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 666 std::string FeaturesStr = 667 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 668 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 669 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 670 671 llvm::TargetOptions Options; 672 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 673 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 674 Options, RM, CM, OptLevel)); 675 } 676 677 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 678 BackendAction Action, 679 raw_pwrite_stream &OS) { 680 // Add LibraryInfo. 681 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 682 std::unique_ptr<TargetLibraryInfoImpl> TLII( 683 createTLII(TargetTriple, CodeGenOpts)); 684 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 685 686 // Normal mode, emit a .s or .o file by running the code generator. Note, 687 // this also adds codegenerator level optimization passes. 688 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 689 690 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 691 // "codegen" passes so that it isn't run multiple times when there is 692 // inlining happening. 693 if (CodeGenOpts.OptimizationLevel > 0) 694 CodeGenPasses.add(createObjCARCContractPass()); 695 696 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 697 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 698 Diags.Report(diag::err_fe_unable_to_interface_with_target); 699 return false; 700 } 701 702 return true; 703 } 704 705 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 706 std::unique_ptr<raw_pwrite_stream> OS) { 707 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 708 709 setCommandLineOpts(CodeGenOpts); 710 711 bool UsesCodeGen = (Action != Backend_EmitNothing && 712 Action != Backend_EmitBC && 713 Action != Backend_EmitLL); 714 CreateTargetMachine(UsesCodeGen); 715 716 if (UsesCodeGen && !TM) 717 return; 718 if (TM) 719 TheModule->setDataLayout(TM->createDataLayout()); 720 721 legacy::PassManager PerModulePasses; 722 PerModulePasses.add( 723 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 724 725 legacy::FunctionPassManager PerFunctionPasses(TheModule); 726 PerFunctionPasses.add( 727 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 728 729 CreatePasses(PerModulePasses, PerFunctionPasses); 730 731 legacy::PassManager CodeGenPasses; 732 CodeGenPasses.add( 733 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 734 735 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 736 737 switch (Action) { 738 case Backend_EmitNothing: 739 break; 740 741 case Backend_EmitBC: 742 if (CodeGenOpts.EmitSummaryIndex) { 743 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 744 std::error_code EC; 745 ThinLinkOS.reset(new llvm::raw_fd_ostream( 746 CodeGenOpts.ThinLinkBitcodeFile, EC, 747 llvm::sys::fs::F_None)); 748 if (EC) { 749 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 750 << EC.message(); 751 return; 752 } 753 } 754 PerModulePasses.add( 755 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 756 } 757 else 758 PerModulePasses.add( 759 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 760 break; 761 762 case Backend_EmitLL: 763 PerModulePasses.add( 764 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 765 break; 766 767 default: 768 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 769 return; 770 } 771 772 // Before executing passes, print the final values of the LLVM options. 773 cl::PrintOptionValues(); 774 775 // Run passes. For now we do all passes at once, but eventually we 776 // would like to have the option of streaming code generation. 777 778 { 779 PrettyStackTraceString CrashInfo("Per-function optimization"); 780 781 PerFunctionPasses.doInitialization(); 782 for (Function &F : *TheModule) 783 if (!F.isDeclaration()) 784 PerFunctionPasses.run(F); 785 PerFunctionPasses.doFinalization(); 786 } 787 788 { 789 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 790 PerModulePasses.run(*TheModule); 791 } 792 793 { 794 PrettyStackTraceString CrashInfo("Code generation"); 795 CodeGenPasses.run(*TheModule); 796 } 797 } 798 799 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 800 switch (Opts.OptimizationLevel) { 801 default: 802 llvm_unreachable("Invalid optimization level!"); 803 804 case 1: 805 return PassBuilder::O1; 806 807 case 2: 808 switch (Opts.OptimizeSize) { 809 default: 810 llvm_unreachable("Invalide optimization level for size!"); 811 812 case 0: 813 return PassBuilder::O2; 814 815 case 1: 816 return PassBuilder::Os; 817 818 case 2: 819 return PassBuilder::Oz; 820 } 821 822 case 3: 823 return PassBuilder::O3; 824 } 825 } 826 827 /// A clean version of `EmitAssembly` that uses the new pass manager. 828 /// 829 /// Not all features are currently supported in this system, but where 830 /// necessary it falls back to the legacy pass manager to at least provide 831 /// basic functionality. 832 /// 833 /// This API is planned to have its functionality finished and then to replace 834 /// `EmitAssembly` at some point in the future when the default switches. 835 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 836 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 837 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 838 setCommandLineOpts(CodeGenOpts); 839 840 // The new pass manager always makes a target machine available to passes 841 // during construction. 842 CreateTargetMachine(/*MustCreateTM*/ true); 843 if (!TM) 844 // This will already be diagnosed, just bail. 845 return; 846 TheModule->setDataLayout(TM->createDataLayout()); 847 848 Optional<PGOOptions> PGOOpt; 849 850 if (CodeGenOpts.hasProfileIRInstr()) 851 // -fprofile-generate. 852 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 853 ? DefaultProfileGenName 854 : CodeGenOpts.InstrProfileOutput, 855 "", "", true, CodeGenOpts.DebugInfoForProfiling); 856 else if (CodeGenOpts.hasProfileIRUse()) 857 // -fprofile-use. 858 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 859 CodeGenOpts.DebugInfoForProfiling); 860 else if (!CodeGenOpts.SampleProfileFile.empty()) 861 // -fprofile-sample-use 862 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 863 CodeGenOpts.DebugInfoForProfiling); 864 else if (CodeGenOpts.DebugInfoForProfiling) 865 // -fdebug-info-for-profiling 866 PGOOpt = PGOOptions("", "", "", false, true); 867 868 PassBuilder PB(TM.get(), PGOOpt); 869 870 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 871 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 872 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 873 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 874 875 // Register the AA manager first so that our version is the one used. 876 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 877 878 // Register the target library analysis directly and give it a customized 879 // preset TLI. 880 Triple TargetTriple(TheModule->getTargetTriple()); 881 std::unique_ptr<TargetLibraryInfoImpl> TLII( 882 createTLII(TargetTriple, CodeGenOpts)); 883 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 884 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 885 886 // Register all the basic analyses with the managers. 887 PB.registerModuleAnalyses(MAM); 888 PB.registerCGSCCAnalyses(CGAM); 889 PB.registerFunctionAnalyses(FAM); 890 PB.registerLoopAnalyses(LAM); 891 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 892 893 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 894 895 if (!CodeGenOpts.DisableLLVMPasses) { 896 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 897 bool IsLTO = CodeGenOpts.PrepareForLTO; 898 899 if (CodeGenOpts.OptimizationLevel == 0) { 900 // Build a minimal pipeline based on the semantics required by Clang, 901 // which is just that always inlining occurs. 902 MPM.addPass(AlwaysInlinerPass()); 903 904 // At -O0 we directly run necessary sanitizer passes. 905 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 906 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 907 908 // Lastly, add a semantically necessary pass for ThinLTO. 909 if (IsThinLTO) 910 MPM.addPass(NameAnonGlobalPass()); 911 } else { 912 // Map our optimization levels into one of the distinct levels used to 913 // configure the pipeline. 914 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 915 916 // Register callbacks to schedule sanitizer passes at the appropriate part of 917 // the pipeline. 918 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 919 PB.registerScalarOptimizerLateEPCallback( 920 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 921 FPM.addPass(BoundsCheckingPass()); 922 }); 923 924 if (IsThinLTO) { 925 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 926 Level, CodeGenOpts.DebugPassManager); 927 MPM.addPass(NameAnonGlobalPass()); 928 } else if (IsLTO) { 929 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 930 CodeGenOpts.DebugPassManager); 931 } else { 932 MPM = PB.buildPerModuleDefaultPipeline(Level, 933 CodeGenOpts.DebugPassManager); 934 } 935 } 936 } 937 938 // FIXME: We still use the legacy pass manager to do code generation. We 939 // create that pass manager here and use it as needed below. 940 legacy::PassManager CodeGenPasses; 941 bool NeedCodeGen = false; 942 Optional<raw_fd_ostream> ThinLinkOS; 943 944 // Append any output we need to the pass manager. 945 switch (Action) { 946 case Backend_EmitNothing: 947 break; 948 949 case Backend_EmitBC: 950 if (CodeGenOpts.EmitSummaryIndex) { 951 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 952 std::error_code EC; 953 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 954 llvm::sys::fs::F_None); 955 if (EC) { 956 Diags.Report(diag::err_fe_unable_to_open_output) 957 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 958 return; 959 } 960 } 961 MPM.addPass( 962 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 963 } else { 964 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 965 CodeGenOpts.EmitSummaryIndex, 966 CodeGenOpts.EmitSummaryIndex)); 967 } 968 break; 969 970 case Backend_EmitLL: 971 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 972 break; 973 974 case Backend_EmitAssembly: 975 case Backend_EmitMCNull: 976 case Backend_EmitObj: 977 NeedCodeGen = true; 978 CodeGenPasses.add( 979 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 980 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 981 // FIXME: Should we handle this error differently? 982 return; 983 break; 984 } 985 986 // Before executing passes, print the final values of the LLVM options. 987 cl::PrintOptionValues(); 988 989 // Now that we have all of the passes ready, run them. 990 { 991 PrettyStackTraceString CrashInfo("Optimizer"); 992 MPM.run(*TheModule, MAM); 993 } 994 995 // Now if needed, run the legacy PM for codegen. 996 if (NeedCodeGen) { 997 PrettyStackTraceString CrashInfo("Code generation"); 998 CodeGenPasses.run(*TheModule); 999 } 1000 } 1001 1002 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1003 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1004 if (!BMsOrErr) 1005 return BMsOrErr.takeError(); 1006 1007 // The bitcode file may contain multiple modules, we want the one that is 1008 // marked as being the ThinLTO module. 1009 for (BitcodeModule &BM : *BMsOrErr) { 1010 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1011 if (LTOInfo && LTOInfo->IsThinLTO) 1012 return BM; 1013 } 1014 1015 return make_error<StringError>("Could not find module summary", 1016 inconvertibleErrorCode()); 1017 } 1018 1019 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1020 const HeaderSearchOptions &HeaderOpts, 1021 const CodeGenOptions &CGOpts, 1022 const clang::TargetOptions &TOpts, 1023 const LangOptions &LOpts, 1024 std::unique_ptr<raw_pwrite_stream> OS, 1025 std::string SampleProfile, 1026 BackendAction Action) { 1027 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1028 ModuleToDefinedGVSummaries; 1029 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1030 1031 setCommandLineOpts(CGOpts); 1032 1033 // We can simply import the values mentioned in the combined index, since 1034 // we should only invoke this using the individual indexes written out 1035 // via a WriteIndexesThinBackend. 1036 FunctionImporter::ImportMapTy ImportList; 1037 for (auto &GlobalList : *CombinedIndex) { 1038 // Ignore entries for undefined references. 1039 if (GlobalList.second.SummaryList.empty()) 1040 continue; 1041 1042 auto GUID = GlobalList.first; 1043 assert(GlobalList.second.SummaryList.size() == 1 && 1044 "Expected individual combined index to have one summary per GUID"); 1045 auto &Summary = GlobalList.second.SummaryList[0]; 1046 // Skip the summaries for the importing module. These are included to 1047 // e.g. record required linkage changes. 1048 if (Summary->modulePath() == M->getModuleIdentifier()) 1049 continue; 1050 // Doesn't matter what value we plug in to the map, just needs an entry 1051 // to provoke importing by thinBackend. 1052 ImportList[Summary->modulePath()][GUID] = 1; 1053 } 1054 1055 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1056 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1057 1058 for (auto &I : ImportList) { 1059 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1060 llvm::MemoryBuffer::getFile(I.first()); 1061 if (!MBOrErr) { 1062 errs() << "Error loading imported file '" << I.first() 1063 << "': " << MBOrErr.getError().message() << "\n"; 1064 return; 1065 } 1066 1067 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1068 if (!BMOrErr) { 1069 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1070 errs() << "Error loading imported file '" << I.first() 1071 << "': " << EIB.message() << '\n'; 1072 }); 1073 return; 1074 } 1075 ModuleMap.insert({I.first(), *BMOrErr}); 1076 1077 OwnedImports.push_back(std::move(*MBOrErr)); 1078 } 1079 auto AddStream = [&](size_t Task) { 1080 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1081 }; 1082 lto::Config Conf; 1083 Conf.CPU = TOpts.CPU; 1084 Conf.CodeModel = getCodeModel(CGOpts); 1085 Conf.MAttrs = TOpts.Features; 1086 Conf.RelocModel = getRelocModel(CGOpts); 1087 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1088 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1089 Conf.SampleProfile = std::move(SampleProfile); 1090 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1091 Conf.DebugPassManager = CGOpts.DebugPassManager; 1092 switch (Action) { 1093 case Backend_EmitNothing: 1094 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1095 return false; 1096 }; 1097 break; 1098 case Backend_EmitLL: 1099 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1100 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1101 return false; 1102 }; 1103 break; 1104 case Backend_EmitBC: 1105 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1106 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1107 return false; 1108 }; 1109 break; 1110 default: 1111 Conf.CGFileType = getCodeGenFileType(Action); 1112 break; 1113 } 1114 if (Error E = thinBackend( 1115 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1116 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1117 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1118 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1119 }); 1120 } 1121 } 1122 1123 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1124 const HeaderSearchOptions &HeaderOpts, 1125 const CodeGenOptions &CGOpts, 1126 const clang::TargetOptions &TOpts, 1127 const LangOptions &LOpts, 1128 const llvm::DataLayout &TDesc, Module *M, 1129 BackendAction Action, 1130 std::unique_ptr<raw_pwrite_stream> OS) { 1131 if (!CGOpts.ThinLTOIndexFile.empty()) { 1132 // If we are performing a ThinLTO importing compile, load the function index 1133 // into memory and pass it into runThinLTOBackend, which will run the 1134 // function importer and invoke LTO passes. 1135 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1136 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1137 /*IgnoreEmptyThinLTOIndexFile*/true); 1138 if (!IndexOrErr) { 1139 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1140 "Error loading index file '" + 1141 CGOpts.ThinLTOIndexFile + "': "); 1142 return; 1143 } 1144 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1145 // A null CombinedIndex means we should skip ThinLTO compilation 1146 // (LLVM will optionally ignore empty index files, returning null instead 1147 // of an error). 1148 bool DoThinLTOBackend = CombinedIndex != nullptr; 1149 if (DoThinLTOBackend) { 1150 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1151 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1152 return; 1153 } 1154 } 1155 1156 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1157 1158 if (CGOpts.ExperimentalNewPassManager) 1159 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1160 else 1161 AsmHelper.EmitAssembly(Action, std::move(OS)); 1162 1163 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1164 // DataLayout. 1165 if (AsmHelper.TM) { 1166 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1167 if (DLDesc != TDesc.getStringRepresentation()) { 1168 unsigned DiagID = Diags.getCustomDiagID( 1169 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1170 "expected target description '%1'"); 1171 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1172 } 1173 } 1174 } 1175 1176 static const char* getSectionNameForBitcode(const Triple &T) { 1177 switch (T.getObjectFormat()) { 1178 case Triple::MachO: 1179 return "__LLVM,__bitcode"; 1180 case Triple::COFF: 1181 case Triple::ELF: 1182 case Triple::Wasm: 1183 case Triple::UnknownObjectFormat: 1184 return ".llvmbc"; 1185 } 1186 llvm_unreachable("Unimplemented ObjectFormatType"); 1187 } 1188 1189 static const char* getSectionNameForCommandline(const Triple &T) { 1190 switch (T.getObjectFormat()) { 1191 case Triple::MachO: 1192 return "__LLVM,__cmdline"; 1193 case Triple::COFF: 1194 case Triple::ELF: 1195 case Triple::Wasm: 1196 case Triple::UnknownObjectFormat: 1197 return ".llvmcmd"; 1198 } 1199 llvm_unreachable("Unimplemented ObjectFormatType"); 1200 } 1201 1202 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1203 // __LLVM,__bitcode section. 1204 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1205 llvm::MemoryBufferRef Buf) { 1206 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1207 return; 1208 1209 // Save llvm.compiler.used and remote it. 1210 SmallVector<Constant*, 2> UsedArray; 1211 SmallSet<GlobalValue*, 4> UsedGlobals; 1212 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1213 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1214 for (auto *GV : UsedGlobals) { 1215 if (GV->getName() != "llvm.embedded.module" && 1216 GV->getName() != "llvm.cmdline") 1217 UsedArray.push_back( 1218 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1219 } 1220 if (Used) 1221 Used->eraseFromParent(); 1222 1223 // Embed the bitcode for the llvm module. 1224 std::string Data; 1225 ArrayRef<uint8_t> ModuleData; 1226 Triple T(M->getTargetTriple()); 1227 // Create a constant that contains the bitcode. 1228 // In case of embedding a marker, ignore the input Buf and use the empty 1229 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1230 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1231 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1232 (const unsigned char *)Buf.getBufferEnd())) { 1233 // If the input is LLVM Assembly, bitcode is produced by serializing 1234 // the module. Use-lists order need to be perserved in this case. 1235 llvm::raw_string_ostream OS(Data); 1236 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1237 ModuleData = 1238 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1239 } else 1240 // If the input is LLVM bitcode, write the input byte stream directly. 1241 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1242 Buf.getBufferSize()); 1243 } 1244 llvm::Constant *ModuleConstant = 1245 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1246 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1247 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1248 ModuleConstant); 1249 GV->setSection(getSectionNameForBitcode(T)); 1250 UsedArray.push_back( 1251 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1252 if (llvm::GlobalVariable *Old = 1253 M->getGlobalVariable("llvm.embedded.module", true)) { 1254 assert(Old->hasOneUse() && 1255 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1256 GV->takeName(Old); 1257 Old->eraseFromParent(); 1258 } else { 1259 GV->setName("llvm.embedded.module"); 1260 } 1261 1262 // Skip if only bitcode needs to be embedded. 1263 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1264 // Embed command-line options. 1265 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1266 CGOpts.CmdArgs.size()); 1267 llvm::Constant *CmdConstant = 1268 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1269 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1270 llvm::GlobalValue::PrivateLinkage, 1271 CmdConstant); 1272 GV->setSection(getSectionNameForCommandline(T)); 1273 UsedArray.push_back( 1274 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1275 if (llvm::GlobalVariable *Old = 1276 M->getGlobalVariable("llvm.cmdline", true)) { 1277 assert(Old->hasOneUse() && 1278 "llvm.cmdline can only be used once in llvm.compiler.used"); 1279 GV->takeName(Old); 1280 Old->eraseFromParent(); 1281 } else { 1282 GV->setName("llvm.cmdline"); 1283 } 1284 } 1285 1286 if (UsedArray.empty()) 1287 return; 1288 1289 // Recreate llvm.compiler.used. 1290 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1291 auto *NewUsed = new GlobalVariable( 1292 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1293 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1294 NewUsed->setSection("llvm.metadata"); 1295 } 1296