1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 56 #include "llvm/Transforms/ObjCARC.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Utils.h" 60 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 61 #include "llvm/Transforms/Utils/SymbolRewriter.h" 62 #include <memory> 63 using namespace clang; 64 using namespace llvm; 65 66 namespace { 67 68 // Default filename used for profile generation. 69 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 70 71 class EmitAssemblyHelper { 72 DiagnosticsEngine &Diags; 73 const HeaderSearchOptions &HSOpts; 74 const CodeGenOptions &CodeGenOpts; 75 const clang::TargetOptions &TargetOpts; 76 const LangOptions &LangOpts; 77 Module *TheModule; 78 79 Timer CodeGenerationTime; 80 81 std::unique_ptr<raw_pwrite_stream> OS; 82 83 TargetIRAnalysis getTargetIRAnalysis() const { 84 if (TM) 85 return TM->getTargetIRAnalysis(); 86 87 return TargetIRAnalysis(); 88 } 89 90 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 91 92 /// Generates the TargetMachine. 93 /// Leaves TM unchanged if it is unable to create the target machine. 94 /// Some of our clang tests specify triples which are not built 95 /// into clang. This is okay because these tests check the generated 96 /// IR, and they require DataLayout which depends on the triple. 97 /// In this case, we allow this method to fail and not report an error. 98 /// When MustCreateTM is used, we print an error if we are unable to load 99 /// the requested target. 100 void CreateTargetMachine(bool MustCreateTM); 101 102 /// Add passes necessary to emit assembly or LLVM IR. 103 /// 104 /// \return True on success. 105 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 106 raw_pwrite_stream &OS); 107 108 public: 109 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 110 const HeaderSearchOptions &HeaderSearchOpts, 111 const CodeGenOptions &CGOpts, 112 const clang::TargetOptions &TOpts, 113 const LangOptions &LOpts, Module *M) 114 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 115 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 116 CodeGenerationTime("codegen", "Code Generation Time") {} 117 118 ~EmitAssemblyHelper() { 119 if (CodeGenOpts.DisableFree) 120 BuryPointer(std::move(TM)); 121 } 122 123 std::unique_ptr<TargetMachine> TM; 124 125 void EmitAssembly(BackendAction Action, 126 std::unique_ptr<raw_pwrite_stream> OS); 127 128 void EmitAssemblyWithNewPassManager(BackendAction Action, 129 std::unique_ptr<raw_pwrite_stream> OS); 130 }; 131 132 // We need this wrapper to access LangOpts and CGOpts from extension functions 133 // that we add to the PassManagerBuilder. 134 class PassManagerBuilderWrapper : public PassManagerBuilder { 135 public: 136 PassManagerBuilderWrapper(const Triple &TargetTriple, 137 const CodeGenOptions &CGOpts, 138 const LangOptions &LangOpts) 139 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 140 LangOpts(LangOpts) {} 141 const Triple &getTargetTriple() const { return TargetTriple; } 142 const CodeGenOptions &getCGOpts() const { return CGOpts; } 143 const LangOptions &getLangOpts() const { return LangOpts; } 144 145 private: 146 const Triple &TargetTriple; 147 const CodeGenOptions &CGOpts; 148 const LangOptions &LangOpts; 149 }; 150 } 151 152 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 153 if (Builder.OptLevel > 0) 154 PM.add(createObjCARCAPElimPass()); 155 } 156 157 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 158 if (Builder.OptLevel > 0) 159 PM.add(createObjCARCExpandPass()); 160 } 161 162 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 163 if (Builder.OptLevel > 0) 164 PM.add(createObjCARCOptPass()); 165 } 166 167 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 168 legacy::PassManagerBase &PM) { 169 PM.add(createAddDiscriminatorsPass()); 170 } 171 172 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 173 legacy::PassManagerBase &PM) { 174 PM.add(createBoundsCheckingLegacyPass()); 175 } 176 177 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 178 legacy::PassManagerBase &PM) { 179 const PassManagerBuilderWrapper &BuilderWrapper = 180 static_cast<const PassManagerBuilderWrapper&>(Builder); 181 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 182 SanitizerCoverageOptions Opts; 183 Opts.CoverageType = 184 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 185 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 186 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 187 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 188 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 189 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 190 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 191 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 192 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 193 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 194 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 195 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 196 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 197 PM.add(createSanitizerCoverageModulePass(Opts)); 198 } 199 200 // Check if ASan should use GC-friendly instrumentation for globals. 201 // First of all, there is no point if -fdata-sections is off (expect for MachO, 202 // where this is not a factor). Also, on ELF this feature requires an assembler 203 // extension that only works with -integrated-as at the moment. 204 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 205 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 206 return false; 207 switch (T.getObjectFormat()) { 208 case Triple::MachO: 209 case Triple::COFF: 210 return true; 211 case Triple::ELF: 212 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 213 default: 214 return false; 215 } 216 } 217 218 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 219 legacy::PassManagerBase &PM) { 220 const PassManagerBuilderWrapper &BuilderWrapper = 221 static_cast<const PassManagerBuilderWrapper&>(Builder); 222 const Triple &T = BuilderWrapper.getTargetTriple(); 223 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 224 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 225 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 226 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 227 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 228 UseAfterScope)); 229 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 230 UseGlobalsGC)); 231 } 232 233 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 234 legacy::PassManagerBase &PM) { 235 PM.add(createAddressSanitizerFunctionPass( 236 /*CompileKernel*/ true, 237 /*Recover*/ true, /*UseAfterScope*/ false)); 238 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 239 /*Recover*/true)); 240 } 241 242 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 243 legacy::PassManagerBase &PM) { 244 const PassManagerBuilderWrapper &BuilderWrapper = 245 static_cast<const PassManagerBuilderWrapper &>(Builder); 246 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 247 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 248 PM.add(createHWAddressSanitizerPass(Recover)); 249 } 250 251 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 const PassManagerBuilderWrapper &BuilderWrapper = 254 static_cast<const PassManagerBuilderWrapper&>(Builder); 255 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 256 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 257 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 258 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 259 260 // MemorySanitizer inserts complex instrumentation that mostly follows 261 // the logic of the original code, but operates on "shadow" values. 262 // It can benefit from re-running some general purpose optimization passes. 263 if (Builder.OptLevel > 0) { 264 PM.add(createEarlyCSEPass()); 265 PM.add(createReassociatePass()); 266 PM.add(createLICMPass()); 267 PM.add(createGVNPass()); 268 PM.add(createInstructionCombiningPass()); 269 PM.add(createDeadStoreEliminationPass()); 270 } 271 } 272 273 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 274 legacy::PassManagerBase &PM) { 275 PM.add(createThreadSanitizerPass()); 276 } 277 278 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 279 legacy::PassManagerBase &PM) { 280 const PassManagerBuilderWrapper &BuilderWrapper = 281 static_cast<const PassManagerBuilderWrapper&>(Builder); 282 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 283 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 284 } 285 286 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 const PassManagerBuilderWrapper &BuilderWrapper = 289 static_cast<const PassManagerBuilderWrapper&>(Builder); 290 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 291 EfficiencySanitizerOptions Opts; 292 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 293 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 294 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 295 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 296 PM.add(createEfficiencySanitizerPass(Opts)); 297 } 298 299 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 300 const CodeGenOptions &CodeGenOpts) { 301 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 302 if (!CodeGenOpts.SimplifyLibCalls) 303 TLII->disableAllFunctions(); 304 else { 305 // Disable individual libc/libm calls in TargetLibraryInfo. 306 LibFunc F; 307 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 308 if (TLII->getLibFunc(FuncName, F)) 309 TLII->setUnavailable(F); 310 } 311 312 switch (CodeGenOpts.getVecLib()) { 313 case CodeGenOptions::Accelerate: 314 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 315 break; 316 case CodeGenOptions::SVML: 317 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 318 break; 319 default: 320 break; 321 } 322 return TLII; 323 } 324 325 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 326 legacy::PassManager *MPM) { 327 llvm::SymbolRewriter::RewriteDescriptorList DL; 328 329 llvm::SymbolRewriter::RewriteMapParser MapParser; 330 for (const auto &MapFile : Opts.RewriteMapFiles) 331 MapParser.parse(MapFile, &DL); 332 333 MPM->add(createRewriteSymbolsPass(DL)); 334 } 335 336 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 337 switch (CodeGenOpts.OptimizationLevel) { 338 default: 339 llvm_unreachable("Invalid optimization level!"); 340 case 0: 341 return CodeGenOpt::None; 342 case 1: 343 return CodeGenOpt::Less; 344 case 2: 345 return CodeGenOpt::Default; // O2/Os/Oz 346 case 3: 347 return CodeGenOpt::Aggressive; 348 } 349 } 350 351 static Optional<llvm::CodeModel::Model> 352 getCodeModel(const CodeGenOptions &CodeGenOpts) { 353 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 354 .Case("small", llvm::CodeModel::Small) 355 .Case("kernel", llvm::CodeModel::Kernel) 356 .Case("medium", llvm::CodeModel::Medium) 357 .Case("large", llvm::CodeModel::Large) 358 .Case("default", ~1u) 359 .Default(~0u); 360 assert(CodeModel != ~0u && "invalid code model!"); 361 if (CodeModel == ~1u) 362 return None; 363 return static_cast<llvm::CodeModel::Model>(CodeModel); 364 } 365 366 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 367 if (Action == Backend_EmitObj) 368 return TargetMachine::CGFT_ObjectFile; 369 else if (Action == Backend_EmitMCNull) 370 return TargetMachine::CGFT_Null; 371 else { 372 assert(Action == Backend_EmitAssembly && "Invalid action!"); 373 return TargetMachine::CGFT_AssemblyFile; 374 } 375 } 376 377 static void initTargetOptions(llvm::TargetOptions &Options, 378 const CodeGenOptions &CodeGenOpts, 379 const clang::TargetOptions &TargetOpts, 380 const LangOptions &LangOpts, 381 const HeaderSearchOptions &HSOpts) { 382 Options.ThreadModel = 383 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 384 .Case("posix", llvm::ThreadModel::POSIX) 385 .Case("single", llvm::ThreadModel::Single); 386 387 // Set float ABI type. 388 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 389 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 390 "Invalid Floating Point ABI!"); 391 Options.FloatABIType = 392 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 393 .Case("soft", llvm::FloatABI::Soft) 394 .Case("softfp", llvm::FloatABI::Soft) 395 .Case("hard", llvm::FloatABI::Hard) 396 .Default(llvm::FloatABI::Default); 397 398 // Set FP fusion mode. 399 switch (LangOpts.getDefaultFPContractMode()) { 400 case LangOptions::FPC_Off: 401 // Preserve any contraction performed by the front-end. (Strict performs 402 // splitting of the muladd instrinsic in the backend.) 403 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 404 break; 405 case LangOptions::FPC_On: 406 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 407 break; 408 case LangOptions::FPC_Fast: 409 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 410 break; 411 } 412 413 Options.UseInitArray = CodeGenOpts.UseInitArray; 414 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 415 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 416 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 417 418 // Set EABI version. 419 Options.EABIVersion = TargetOpts.EABIVersion; 420 421 if (LangOpts.SjLjExceptions) 422 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 423 if (LangOpts.SEHExceptions) 424 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 425 if (LangOpts.DWARFExceptions) 426 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 427 428 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 429 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 430 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 431 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 432 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 433 Options.FunctionSections = CodeGenOpts.FunctionSections; 434 Options.DataSections = CodeGenOpts.DataSections; 435 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 436 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 437 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 438 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 439 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 440 441 if (CodeGenOpts.EnableSplitDwarf) 442 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 443 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 444 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 445 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 446 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 447 Options.MCOptions.MCIncrementalLinkerCompatible = 448 CodeGenOpts.IncrementalLinkerCompatible; 449 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 450 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 451 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 452 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 453 Options.MCOptions.ABIName = TargetOpts.ABI; 454 for (const auto &Entry : HSOpts.UserEntries) 455 if (!Entry.IsFramework && 456 (Entry.Group == frontend::IncludeDirGroup::Quoted || 457 Entry.Group == frontend::IncludeDirGroup::Angled || 458 Entry.Group == frontend::IncludeDirGroup::System)) 459 Options.MCOptions.IASSearchPaths.push_back( 460 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 461 } 462 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 463 if (CodeGenOpts.DisableGCov) 464 return None; 465 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 466 return None; 467 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 468 // LLVM's -default-gcov-version flag is set to something invalid. 469 GCOVOptions Options; 470 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 471 Options.EmitData = CodeGenOpts.EmitGcovArcs; 472 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 473 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 474 Options.NoRedZone = CodeGenOpts.DisableRedZone; 475 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 476 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 477 return Options; 478 } 479 480 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 481 legacy::FunctionPassManager &FPM) { 482 // Handle disabling of all LLVM passes, where we want to preserve the 483 // internal module before any optimization. 484 if (CodeGenOpts.DisableLLVMPasses) 485 return; 486 487 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 488 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 489 // are inserted before PMBuilder ones - they'd get the default-constructed 490 // TLI with an unknown target otherwise. 491 Triple TargetTriple(TheModule->getTargetTriple()); 492 std::unique_ptr<TargetLibraryInfoImpl> TLII( 493 createTLII(TargetTriple, CodeGenOpts)); 494 495 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 496 497 // At O0 and O1 we only run the always inliner which is more efficient. At 498 // higher optimization levels we run the normal inliner. 499 if (CodeGenOpts.OptimizationLevel <= 1) { 500 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 501 !CodeGenOpts.DisableLifetimeMarkers); 502 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 503 } else { 504 // We do not want to inline hot callsites for SamplePGO module-summary build 505 // because profile annotation will happen again in ThinLTO backend, and we 506 // want the IR of the hot path to match the profile. 507 PMBuilder.Inliner = createFunctionInliningPass( 508 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 509 (!CodeGenOpts.SampleProfileFile.empty() && 510 CodeGenOpts.EmitSummaryIndex)); 511 } 512 513 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 514 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 515 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 516 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 517 518 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 519 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 520 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 521 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 522 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 523 524 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 525 526 if (TM) 527 TM->adjustPassManager(PMBuilder); 528 529 if (CodeGenOpts.DebugInfoForProfiling || 530 !CodeGenOpts.SampleProfileFile.empty()) 531 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 532 addAddDiscriminatorsPass); 533 534 // In ObjC ARC mode, add the main ARC optimization passes. 535 if (LangOpts.ObjCAutoRefCount) { 536 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 537 addObjCARCExpandPass); 538 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 539 addObjCARCAPElimPass); 540 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 541 addObjCARCOptPass); 542 } 543 544 if (LangOpts.CoroutinesTS) 545 addCoroutinePassesToExtensionPoints(PMBuilder); 546 547 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 548 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 549 addBoundsCheckingPass); 550 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 551 addBoundsCheckingPass); 552 } 553 554 if (CodeGenOpts.SanitizeCoverageType || 555 CodeGenOpts.SanitizeCoverageIndirectCalls || 556 CodeGenOpts.SanitizeCoverageTraceCmp) { 557 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 558 addSanitizerCoveragePass); 559 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 560 addSanitizerCoveragePass); 561 } 562 563 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 564 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 565 addAddressSanitizerPasses); 566 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 567 addAddressSanitizerPasses); 568 } 569 570 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 571 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 572 addKernelAddressSanitizerPasses); 573 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 574 addKernelAddressSanitizerPasses); 575 } 576 577 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 578 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 579 addHWAddressSanitizerPasses); 580 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 581 addHWAddressSanitizerPasses); 582 } 583 584 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 585 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 586 addMemorySanitizerPass); 587 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 588 addMemorySanitizerPass); 589 } 590 591 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 592 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 593 addThreadSanitizerPass); 594 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 595 addThreadSanitizerPass); 596 } 597 598 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 599 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 600 addDataFlowSanitizerPass); 601 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 602 addDataFlowSanitizerPass); 603 } 604 605 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 606 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 607 addEfficiencySanitizerPass); 608 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 609 addEfficiencySanitizerPass); 610 } 611 612 // Set up the per-function pass manager. 613 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 614 if (CodeGenOpts.VerifyModule) 615 FPM.add(createVerifierPass()); 616 617 // Set up the per-module pass manager. 618 if (!CodeGenOpts.RewriteMapFiles.empty()) 619 addSymbolRewriterPass(CodeGenOpts, &MPM); 620 621 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 622 MPM.add(createGCOVProfilerPass(*Options)); 623 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 624 MPM.add(createStripSymbolsPass(true)); 625 } 626 627 if (CodeGenOpts.hasProfileClangInstr()) { 628 InstrProfOptions Options; 629 Options.NoRedZone = CodeGenOpts.DisableRedZone; 630 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 631 MPM.add(createInstrProfilingLegacyPass(Options)); 632 } 633 if (CodeGenOpts.hasProfileIRInstr()) { 634 PMBuilder.EnablePGOInstrGen = true; 635 if (!CodeGenOpts.InstrProfileOutput.empty()) 636 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 637 else 638 PMBuilder.PGOInstrGen = DefaultProfileGenName; 639 } 640 if (CodeGenOpts.hasProfileIRUse()) 641 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 642 643 if (!CodeGenOpts.SampleProfileFile.empty()) 644 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 645 646 PMBuilder.populateFunctionPassManager(FPM); 647 PMBuilder.populateModulePassManager(MPM); 648 } 649 650 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 651 SmallVector<const char *, 16> BackendArgs; 652 BackendArgs.push_back("clang"); // Fake program name. 653 if (!CodeGenOpts.DebugPass.empty()) { 654 BackendArgs.push_back("-debug-pass"); 655 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 656 } 657 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 658 BackendArgs.push_back("-limit-float-precision"); 659 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 660 } 661 BackendArgs.push_back(nullptr); 662 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 663 BackendArgs.data()); 664 } 665 666 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 667 // Create the TargetMachine for generating code. 668 std::string Error; 669 std::string Triple = TheModule->getTargetTriple(); 670 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 671 if (!TheTarget) { 672 if (MustCreateTM) 673 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 674 return; 675 } 676 677 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 678 std::string FeaturesStr = 679 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 680 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 681 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 682 683 llvm::TargetOptions Options; 684 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 685 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 686 Options, RM, CM, OptLevel)); 687 } 688 689 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 690 BackendAction Action, 691 raw_pwrite_stream &OS) { 692 // Add LibraryInfo. 693 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 694 std::unique_ptr<TargetLibraryInfoImpl> TLII( 695 createTLII(TargetTriple, CodeGenOpts)); 696 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 697 698 // Normal mode, emit a .s or .o file by running the code generator. Note, 699 // this also adds codegenerator level optimization passes. 700 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 701 702 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 703 // "codegen" passes so that it isn't run multiple times when there is 704 // inlining happening. 705 if (CodeGenOpts.OptimizationLevel > 0) 706 CodeGenPasses.add(createObjCARCContractPass()); 707 708 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 709 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 710 Diags.Report(diag::err_fe_unable_to_interface_with_target); 711 return false; 712 } 713 714 return true; 715 } 716 717 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 718 std::unique_ptr<raw_pwrite_stream> OS) { 719 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 720 721 setCommandLineOpts(CodeGenOpts); 722 723 bool UsesCodeGen = (Action != Backend_EmitNothing && 724 Action != Backend_EmitBC && 725 Action != Backend_EmitLL); 726 CreateTargetMachine(UsesCodeGen); 727 728 if (UsesCodeGen && !TM) 729 return; 730 if (TM) 731 TheModule->setDataLayout(TM->createDataLayout()); 732 733 legacy::PassManager PerModulePasses; 734 PerModulePasses.add( 735 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 736 737 legacy::FunctionPassManager PerFunctionPasses(TheModule); 738 PerFunctionPasses.add( 739 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 740 741 CreatePasses(PerModulePasses, PerFunctionPasses); 742 743 legacy::PassManager CodeGenPasses; 744 CodeGenPasses.add( 745 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 746 747 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 748 749 switch (Action) { 750 case Backend_EmitNothing: 751 break; 752 753 case Backend_EmitBC: 754 if (CodeGenOpts.EmitSummaryIndex) { 755 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 756 std::error_code EC; 757 ThinLinkOS.reset(new llvm::raw_fd_ostream( 758 CodeGenOpts.ThinLinkBitcodeFile, EC, 759 llvm::sys::fs::F_None)); 760 if (EC) { 761 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 762 << EC.message(); 763 return; 764 } 765 } 766 PerModulePasses.add( 767 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 768 } 769 else 770 PerModulePasses.add( 771 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 772 break; 773 774 case Backend_EmitLL: 775 PerModulePasses.add( 776 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 777 break; 778 779 default: 780 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 781 return; 782 } 783 784 // Before executing passes, print the final values of the LLVM options. 785 cl::PrintOptionValues(); 786 787 // Run passes. For now we do all passes at once, but eventually we 788 // would like to have the option of streaming code generation. 789 790 { 791 PrettyStackTraceString CrashInfo("Per-function optimization"); 792 793 PerFunctionPasses.doInitialization(); 794 for (Function &F : *TheModule) 795 if (!F.isDeclaration()) 796 PerFunctionPasses.run(F); 797 PerFunctionPasses.doFinalization(); 798 } 799 800 { 801 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 802 PerModulePasses.run(*TheModule); 803 } 804 805 { 806 PrettyStackTraceString CrashInfo("Code generation"); 807 CodeGenPasses.run(*TheModule); 808 } 809 } 810 811 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 812 switch (Opts.OptimizationLevel) { 813 default: 814 llvm_unreachable("Invalid optimization level!"); 815 816 case 1: 817 return PassBuilder::O1; 818 819 case 2: 820 switch (Opts.OptimizeSize) { 821 default: 822 llvm_unreachable("Invalid optimization level for size!"); 823 824 case 0: 825 return PassBuilder::O2; 826 827 case 1: 828 return PassBuilder::Os; 829 830 case 2: 831 return PassBuilder::Oz; 832 } 833 834 case 3: 835 return PassBuilder::O3; 836 } 837 } 838 839 /// A clean version of `EmitAssembly` that uses the new pass manager. 840 /// 841 /// Not all features are currently supported in this system, but where 842 /// necessary it falls back to the legacy pass manager to at least provide 843 /// basic functionality. 844 /// 845 /// This API is planned to have its functionality finished and then to replace 846 /// `EmitAssembly` at some point in the future when the default switches. 847 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 848 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 849 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 850 setCommandLineOpts(CodeGenOpts); 851 852 // The new pass manager always makes a target machine available to passes 853 // during construction. 854 CreateTargetMachine(/*MustCreateTM*/ true); 855 if (!TM) 856 // This will already be diagnosed, just bail. 857 return; 858 TheModule->setDataLayout(TM->createDataLayout()); 859 860 Optional<PGOOptions> PGOOpt; 861 862 if (CodeGenOpts.hasProfileIRInstr()) 863 // -fprofile-generate. 864 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 865 ? DefaultProfileGenName 866 : CodeGenOpts.InstrProfileOutput, 867 "", "", true, CodeGenOpts.DebugInfoForProfiling); 868 else if (CodeGenOpts.hasProfileIRUse()) 869 // -fprofile-use. 870 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 871 CodeGenOpts.DebugInfoForProfiling); 872 else if (!CodeGenOpts.SampleProfileFile.empty()) 873 // -fprofile-sample-use 874 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 875 CodeGenOpts.DebugInfoForProfiling); 876 else if (CodeGenOpts.DebugInfoForProfiling) 877 // -fdebug-info-for-profiling 878 PGOOpt = PGOOptions("", "", "", false, true); 879 880 PassBuilder PB(TM.get(), PGOOpt); 881 882 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 883 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 884 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 885 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 886 887 // Register the AA manager first so that our version is the one used. 888 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 889 890 // Register the target library analysis directly and give it a customized 891 // preset TLI. 892 Triple TargetTriple(TheModule->getTargetTriple()); 893 std::unique_ptr<TargetLibraryInfoImpl> TLII( 894 createTLII(TargetTriple, CodeGenOpts)); 895 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 896 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 897 898 // Register all the basic analyses with the managers. 899 PB.registerModuleAnalyses(MAM); 900 PB.registerCGSCCAnalyses(CGAM); 901 PB.registerFunctionAnalyses(FAM); 902 PB.registerLoopAnalyses(LAM); 903 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 904 905 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 906 907 if (!CodeGenOpts.DisableLLVMPasses) { 908 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 909 bool IsLTO = CodeGenOpts.PrepareForLTO; 910 911 if (CodeGenOpts.OptimizationLevel == 0) { 912 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 913 MPM.addPass(GCOVProfilerPass(*Options)); 914 915 // Build a minimal pipeline based on the semantics required by Clang, 916 // which is just that always inlining occurs. 917 MPM.addPass(AlwaysInlinerPass()); 918 919 // At -O0 we directly run necessary sanitizer passes. 920 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 921 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 922 923 // Lastly, add a semantically necessary pass for ThinLTO. 924 if (IsThinLTO) 925 MPM.addPass(NameAnonGlobalPass()); 926 } else { 927 // Map our optimization levels into one of the distinct levels used to 928 // configure the pipeline. 929 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 930 931 // Register callbacks to schedule sanitizer passes at the appropriate part of 932 // the pipeline. 933 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 934 PB.registerScalarOptimizerLateEPCallback( 935 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 936 FPM.addPass(BoundsCheckingPass()); 937 }); 938 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 939 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 940 MPM.addPass(GCOVProfilerPass(*Options)); 941 }); 942 943 if (IsThinLTO) { 944 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 945 Level, CodeGenOpts.DebugPassManager); 946 MPM.addPass(NameAnonGlobalPass()); 947 } else if (IsLTO) { 948 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 949 CodeGenOpts.DebugPassManager); 950 } else { 951 MPM = PB.buildPerModuleDefaultPipeline(Level, 952 CodeGenOpts.DebugPassManager); 953 } 954 } 955 } 956 957 // FIXME: We still use the legacy pass manager to do code generation. We 958 // create that pass manager here and use it as needed below. 959 legacy::PassManager CodeGenPasses; 960 bool NeedCodeGen = false; 961 Optional<raw_fd_ostream> ThinLinkOS; 962 963 // Append any output we need to the pass manager. 964 switch (Action) { 965 case Backend_EmitNothing: 966 break; 967 968 case Backend_EmitBC: 969 if (CodeGenOpts.EmitSummaryIndex) { 970 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 971 std::error_code EC; 972 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 973 llvm::sys::fs::F_None); 974 if (EC) { 975 Diags.Report(diag::err_fe_unable_to_open_output) 976 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 977 return; 978 } 979 } 980 MPM.addPass( 981 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 982 } else { 983 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 984 CodeGenOpts.EmitSummaryIndex, 985 CodeGenOpts.EmitSummaryIndex)); 986 } 987 break; 988 989 case Backend_EmitLL: 990 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 991 break; 992 993 case Backend_EmitAssembly: 994 case Backend_EmitMCNull: 995 case Backend_EmitObj: 996 NeedCodeGen = true; 997 CodeGenPasses.add( 998 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 999 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1000 // FIXME: Should we handle this error differently? 1001 return; 1002 break; 1003 } 1004 1005 // Before executing passes, print the final values of the LLVM options. 1006 cl::PrintOptionValues(); 1007 1008 // Now that we have all of the passes ready, run them. 1009 { 1010 PrettyStackTraceString CrashInfo("Optimizer"); 1011 MPM.run(*TheModule, MAM); 1012 } 1013 1014 // Now if needed, run the legacy PM for codegen. 1015 if (NeedCodeGen) { 1016 PrettyStackTraceString CrashInfo("Code generation"); 1017 CodeGenPasses.run(*TheModule); 1018 } 1019 } 1020 1021 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1022 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1023 if (!BMsOrErr) 1024 return BMsOrErr.takeError(); 1025 1026 // The bitcode file may contain multiple modules, we want the one that is 1027 // marked as being the ThinLTO module. 1028 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1029 return *Bm; 1030 1031 return make_error<StringError>("Could not find module summary", 1032 inconvertibleErrorCode()); 1033 } 1034 1035 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1036 for (BitcodeModule &BM : BMs) { 1037 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1038 if (LTOInfo && LTOInfo->IsThinLTO) 1039 return &BM; 1040 } 1041 return nullptr; 1042 } 1043 1044 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1045 const HeaderSearchOptions &HeaderOpts, 1046 const CodeGenOptions &CGOpts, 1047 const clang::TargetOptions &TOpts, 1048 const LangOptions &LOpts, 1049 std::unique_ptr<raw_pwrite_stream> OS, 1050 std::string SampleProfile, 1051 BackendAction Action) { 1052 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1053 ModuleToDefinedGVSummaries; 1054 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1055 1056 setCommandLineOpts(CGOpts); 1057 1058 // We can simply import the values mentioned in the combined index, since 1059 // we should only invoke this using the individual indexes written out 1060 // via a WriteIndexesThinBackend. 1061 FunctionImporter::ImportMapTy ImportList; 1062 for (auto &GlobalList : *CombinedIndex) { 1063 // Ignore entries for undefined references. 1064 if (GlobalList.second.SummaryList.empty()) 1065 continue; 1066 1067 auto GUID = GlobalList.first; 1068 assert(GlobalList.second.SummaryList.size() == 1 && 1069 "Expected individual combined index to have one summary per GUID"); 1070 auto &Summary = GlobalList.second.SummaryList[0]; 1071 // Skip the summaries for the importing module. These are included to 1072 // e.g. record required linkage changes. 1073 if (Summary->modulePath() == M->getModuleIdentifier()) 1074 continue; 1075 // Doesn't matter what value we plug in to the map, just needs an entry 1076 // to provoke importing by thinBackend. 1077 ImportList[Summary->modulePath()][GUID] = 1; 1078 } 1079 1080 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1081 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1082 1083 for (auto &I : ImportList) { 1084 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1085 llvm::MemoryBuffer::getFile(I.first()); 1086 if (!MBOrErr) { 1087 errs() << "Error loading imported file '" << I.first() 1088 << "': " << MBOrErr.getError().message() << "\n"; 1089 return; 1090 } 1091 1092 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1093 if (!BMOrErr) { 1094 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1095 errs() << "Error loading imported file '" << I.first() 1096 << "': " << EIB.message() << '\n'; 1097 }); 1098 return; 1099 } 1100 ModuleMap.insert({I.first(), *BMOrErr}); 1101 1102 OwnedImports.push_back(std::move(*MBOrErr)); 1103 } 1104 auto AddStream = [&](size_t Task) { 1105 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1106 }; 1107 lto::Config Conf; 1108 Conf.CPU = TOpts.CPU; 1109 Conf.CodeModel = getCodeModel(CGOpts); 1110 Conf.MAttrs = TOpts.Features; 1111 Conf.RelocModel = CGOpts.RelocationModel; 1112 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1113 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1114 Conf.SampleProfile = std::move(SampleProfile); 1115 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1116 Conf.DebugPassManager = CGOpts.DebugPassManager; 1117 switch (Action) { 1118 case Backend_EmitNothing: 1119 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1120 return false; 1121 }; 1122 break; 1123 case Backend_EmitLL: 1124 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1125 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1126 return false; 1127 }; 1128 break; 1129 case Backend_EmitBC: 1130 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1131 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1132 return false; 1133 }; 1134 break; 1135 default: 1136 Conf.CGFileType = getCodeGenFileType(Action); 1137 break; 1138 } 1139 if (Error E = thinBackend( 1140 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1141 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1142 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1143 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1144 }); 1145 } 1146 } 1147 1148 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1149 const HeaderSearchOptions &HeaderOpts, 1150 const CodeGenOptions &CGOpts, 1151 const clang::TargetOptions &TOpts, 1152 const LangOptions &LOpts, 1153 const llvm::DataLayout &TDesc, Module *M, 1154 BackendAction Action, 1155 std::unique_ptr<raw_pwrite_stream> OS) { 1156 std::unique_ptr<llvm::Module> EmptyModule; 1157 if (!CGOpts.ThinLTOIndexFile.empty()) { 1158 // If we are performing a ThinLTO importing compile, load the function index 1159 // into memory and pass it into runThinLTOBackend, which will run the 1160 // function importer and invoke LTO passes. 1161 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1162 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1163 /*IgnoreEmptyThinLTOIndexFile*/true); 1164 if (!IndexOrErr) { 1165 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1166 "Error loading index file '" + 1167 CGOpts.ThinLTOIndexFile + "': "); 1168 return; 1169 } 1170 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1171 // A null CombinedIndex means we should skip ThinLTO compilation 1172 // (LLVM will optionally ignore empty index files, returning null instead 1173 // of an error). 1174 if (CombinedIndex) { 1175 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1176 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1177 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1178 Action); 1179 return; 1180 } 1181 // Distributed indexing detected that nothing from the module is needed 1182 // for the final linking. So we can skip the compilation. We sill need to 1183 // output an empty object file to make sure that a linker does not fail 1184 // trying to read it. Also for some features, like CFI, we must skip 1185 // the compilation as CombinedIndex does not contain all required 1186 // information. 1187 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1188 EmptyModule->setTargetTriple(M->getTargetTriple()); 1189 M = EmptyModule.get(); 1190 } 1191 } 1192 1193 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1194 1195 if (CGOpts.ExperimentalNewPassManager) 1196 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1197 else 1198 AsmHelper.EmitAssembly(Action, std::move(OS)); 1199 1200 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1201 // DataLayout. 1202 if (AsmHelper.TM) { 1203 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1204 if (DLDesc != TDesc.getStringRepresentation()) { 1205 unsigned DiagID = Diags.getCustomDiagID( 1206 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1207 "expected target description '%1'"); 1208 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1209 } 1210 } 1211 } 1212 1213 static const char* getSectionNameForBitcode(const Triple &T) { 1214 switch (T.getObjectFormat()) { 1215 case Triple::MachO: 1216 return "__LLVM,__bitcode"; 1217 case Triple::COFF: 1218 case Triple::ELF: 1219 case Triple::Wasm: 1220 case Triple::UnknownObjectFormat: 1221 return ".llvmbc"; 1222 } 1223 llvm_unreachable("Unimplemented ObjectFormatType"); 1224 } 1225 1226 static const char* getSectionNameForCommandline(const Triple &T) { 1227 switch (T.getObjectFormat()) { 1228 case Triple::MachO: 1229 return "__LLVM,__cmdline"; 1230 case Triple::COFF: 1231 case Triple::ELF: 1232 case Triple::Wasm: 1233 case Triple::UnknownObjectFormat: 1234 return ".llvmcmd"; 1235 } 1236 llvm_unreachable("Unimplemented ObjectFormatType"); 1237 } 1238 1239 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1240 // __LLVM,__bitcode section. 1241 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1242 llvm::MemoryBufferRef Buf) { 1243 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1244 return; 1245 1246 // Save llvm.compiler.used and remote it. 1247 SmallVector<Constant*, 2> UsedArray; 1248 SmallSet<GlobalValue*, 4> UsedGlobals; 1249 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1250 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1251 for (auto *GV : UsedGlobals) { 1252 if (GV->getName() != "llvm.embedded.module" && 1253 GV->getName() != "llvm.cmdline") 1254 UsedArray.push_back( 1255 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1256 } 1257 if (Used) 1258 Used->eraseFromParent(); 1259 1260 // Embed the bitcode for the llvm module. 1261 std::string Data; 1262 ArrayRef<uint8_t> ModuleData; 1263 Triple T(M->getTargetTriple()); 1264 // Create a constant that contains the bitcode. 1265 // In case of embedding a marker, ignore the input Buf and use the empty 1266 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1267 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1268 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1269 (const unsigned char *)Buf.getBufferEnd())) { 1270 // If the input is LLVM Assembly, bitcode is produced by serializing 1271 // the module. Use-lists order need to be perserved in this case. 1272 llvm::raw_string_ostream OS(Data); 1273 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1274 ModuleData = 1275 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1276 } else 1277 // If the input is LLVM bitcode, write the input byte stream directly. 1278 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1279 Buf.getBufferSize()); 1280 } 1281 llvm::Constant *ModuleConstant = 1282 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1283 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1284 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1285 ModuleConstant); 1286 GV->setSection(getSectionNameForBitcode(T)); 1287 UsedArray.push_back( 1288 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1289 if (llvm::GlobalVariable *Old = 1290 M->getGlobalVariable("llvm.embedded.module", true)) { 1291 assert(Old->hasOneUse() && 1292 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1293 GV->takeName(Old); 1294 Old->eraseFromParent(); 1295 } else { 1296 GV->setName("llvm.embedded.module"); 1297 } 1298 1299 // Skip if only bitcode needs to be embedded. 1300 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1301 // Embed command-line options. 1302 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1303 CGOpts.CmdArgs.size()); 1304 llvm::Constant *CmdConstant = 1305 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1306 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1307 llvm::GlobalValue::PrivateLinkage, 1308 CmdConstant); 1309 GV->setSection(getSectionNameForCommandline(T)); 1310 UsedArray.push_back( 1311 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1312 if (llvm::GlobalVariable *Old = 1313 M->getGlobalVariable("llvm.cmdline", true)) { 1314 assert(Old->hasOneUse() && 1315 "llvm.cmdline can only be used once in llvm.compiler.used"); 1316 GV->takeName(Old); 1317 Old->eraseFromParent(); 1318 } else { 1319 GV->setName("llvm.cmdline"); 1320 } 1321 } 1322 1323 if (UsedArray.empty()) 1324 return; 1325 1326 // Recreate llvm.compiler.used. 1327 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1328 auto *NewUsed = new GlobalVariable( 1329 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1330 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1331 NewUsed->setSection("llvm.metadata"); 1332 } 1333