1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 78 #include "llvm/Transforms/Utils.h" 79 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 80 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 81 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 82 #include "llvm/Transforms/Utils/SymbolRewriter.h" 83 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 84 #include <memory> 85 using namespace clang; 86 using namespace llvm; 87 88 #define HANDLE_EXTENSION(Ext) \ 89 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 90 #include "llvm/Support/Extension.def" 91 92 namespace { 93 94 // Default filename used for profile generation. 95 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 96 97 class EmitAssemblyHelper { 98 DiagnosticsEngine &Diags; 99 const HeaderSearchOptions &HSOpts; 100 const CodeGenOptions &CodeGenOpts; 101 const clang::TargetOptions &TargetOpts; 102 const LangOptions &LangOpts; 103 Module *TheModule; 104 105 Timer CodeGenerationTime; 106 107 std::unique_ptr<raw_pwrite_stream> OS; 108 109 TargetIRAnalysis getTargetIRAnalysis() const { 110 if (TM) 111 return TM->getTargetIRAnalysis(); 112 113 return TargetIRAnalysis(); 114 } 115 116 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 117 118 /// Generates the TargetMachine. 119 /// Leaves TM unchanged if it is unable to create the target machine. 120 /// Some of our clang tests specify triples which are not built 121 /// into clang. This is okay because these tests check the generated 122 /// IR, and they require DataLayout which depends on the triple. 123 /// In this case, we allow this method to fail and not report an error. 124 /// When MustCreateTM is used, we print an error if we are unable to load 125 /// the requested target. 126 void CreateTargetMachine(bool MustCreateTM); 127 128 /// Add passes necessary to emit assembly or LLVM IR. 129 /// 130 /// \return True on success. 131 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 132 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 133 134 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 135 std::error_code EC; 136 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 137 llvm::sys::fs::OF_None); 138 if (EC) { 139 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 140 F.reset(); 141 } 142 return F; 143 } 144 145 public: 146 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 147 const HeaderSearchOptions &HeaderSearchOpts, 148 const CodeGenOptions &CGOpts, 149 const clang::TargetOptions &TOpts, 150 const LangOptions &LOpts, Module *M) 151 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 152 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 153 CodeGenerationTime("codegen", "Code Generation Time") {} 154 155 ~EmitAssemblyHelper() { 156 if (CodeGenOpts.DisableFree) 157 BuryPointer(std::move(TM)); 158 } 159 160 std::unique_ptr<TargetMachine> TM; 161 162 void EmitAssembly(BackendAction Action, 163 std::unique_ptr<raw_pwrite_stream> OS); 164 165 void EmitAssemblyWithNewPassManager(BackendAction Action, 166 std::unique_ptr<raw_pwrite_stream> OS); 167 }; 168 169 // We need this wrapper to access LangOpts and CGOpts from extension functions 170 // that we add to the PassManagerBuilder. 171 class PassManagerBuilderWrapper : public PassManagerBuilder { 172 public: 173 PassManagerBuilderWrapper(const Triple &TargetTriple, 174 const CodeGenOptions &CGOpts, 175 const LangOptions &LangOpts) 176 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 177 LangOpts(LangOpts) {} 178 const Triple &getTargetTriple() const { return TargetTriple; } 179 const CodeGenOptions &getCGOpts() const { return CGOpts; } 180 const LangOptions &getLangOpts() const { return LangOpts; } 181 182 private: 183 const Triple &TargetTriple; 184 const CodeGenOptions &CGOpts; 185 const LangOptions &LangOpts; 186 }; 187 } 188 189 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 190 if (Builder.OptLevel > 0) 191 PM.add(createObjCARCAPElimPass()); 192 } 193 194 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCExpandPass()); 197 } 198 199 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCOptPass()); 202 } 203 204 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 205 legacy::PassManagerBase &PM) { 206 PM.add(createAddDiscriminatorsPass()); 207 } 208 209 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createBoundsCheckingLegacyPass()); 212 } 213 214 static SanitizerCoverageOptions 215 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 216 SanitizerCoverageOptions Opts; 217 Opts.CoverageType = 218 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 219 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 220 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 221 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 222 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 223 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 224 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 225 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 226 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 227 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 228 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 229 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 230 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 231 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 232 return Opts; 233 } 234 235 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper &>(Builder); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 auto Opts = getSancovOptsFromCGOpts(CGOpts); 241 PM.add(createModuleSanitizerCoverageLegacyPassPass( 242 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 243 CGOpts.SanitizeCoverageBlocklistFiles)); 244 } 245 246 // Check if ASan should use GC-friendly instrumentation for globals. 247 // First of all, there is no point if -fdata-sections is off (expect for MachO, 248 // where this is not a factor). Also, on ELF this feature requires an assembler 249 // extension that only works with -integrated-as at the moment. 250 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 251 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 252 return false; 253 switch (T.getObjectFormat()) { 254 case Triple::MachO: 255 case Triple::COFF: 256 return true; 257 case Triple::ELF: 258 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 259 case Triple::XCOFF: 260 llvm::report_fatal_error("ASan not implemented for XCOFF."); 261 case Triple::Wasm: 262 case Triple::UnknownObjectFormat: 263 break; 264 } 265 return false; 266 } 267 268 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 const PassManagerBuilderWrapper &BuilderWrapper = 271 static_cast<const PassManagerBuilderWrapper&>(Builder); 272 const Triple &T = BuilderWrapper.getTargetTriple(); 273 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 274 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 275 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 276 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 277 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 278 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 279 UseAfterScope)); 280 PM.add(createModuleAddressSanitizerLegacyPassPass( 281 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 282 } 283 284 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 285 legacy::PassManagerBase &PM) { 286 PM.add(createAddressSanitizerFunctionPass( 287 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 288 PM.add(createModuleAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 290 /*UseOdrIndicator*/ false)); 291 } 292 293 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 294 legacy::PassManagerBase &PM) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper &>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 299 PM.add( 300 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 301 } 302 303 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 PM.add(createHWAddressSanitizerLegacyPassPass( 306 /*CompileKernel*/ true, /*Recover*/ true)); 307 } 308 309 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM, 311 bool CompileKernel) { 312 const PassManagerBuilderWrapper &BuilderWrapper = 313 static_cast<const PassManagerBuilderWrapper&>(Builder); 314 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 315 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 316 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 317 PM.add(createMemorySanitizerLegacyPassPass( 318 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 319 320 // MemorySanitizer inserts complex instrumentation that mostly follows 321 // the logic of the original code, but operates on "shadow" values. 322 // It can benefit from re-running some general purpose optimization passes. 323 if (Builder.OptLevel > 0) { 324 PM.add(createEarlyCSEPass()); 325 PM.add(createReassociatePass()); 326 PM.add(createLICMPass()); 327 PM.add(createGVNPass()); 328 PM.add(createInstructionCombiningPass()); 329 PM.add(createDeadStoreEliminationPass()); 330 } 331 } 332 333 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 334 legacy::PassManagerBase &PM) { 335 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 336 } 337 338 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 339 legacy::PassManagerBase &PM) { 340 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 341 } 342 343 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 PM.add(createThreadSanitizerLegacyPassPass()); 346 } 347 348 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 349 legacy::PassManagerBase &PM) { 350 const PassManagerBuilderWrapper &BuilderWrapper = 351 static_cast<const PassManagerBuilderWrapper&>(Builder); 352 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 353 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 354 } 355 356 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 357 const CodeGenOptions &CodeGenOpts) { 358 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 359 360 switch (CodeGenOpts.getVecLib()) { 361 case CodeGenOptions::Accelerate: 362 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 363 break; 364 case CodeGenOptions::MASSV: 365 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 366 break; 367 case CodeGenOptions::SVML: 368 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 369 break; 370 default: 371 break; 372 } 373 return TLII; 374 } 375 376 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 377 legacy::PassManager *MPM) { 378 llvm::SymbolRewriter::RewriteDescriptorList DL; 379 380 llvm::SymbolRewriter::RewriteMapParser MapParser; 381 for (const auto &MapFile : Opts.RewriteMapFiles) 382 MapParser.parse(MapFile, &DL); 383 384 MPM->add(createRewriteSymbolsPass(DL)); 385 } 386 387 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 388 switch (CodeGenOpts.OptimizationLevel) { 389 default: 390 llvm_unreachable("Invalid optimization level!"); 391 case 0: 392 return CodeGenOpt::None; 393 case 1: 394 return CodeGenOpt::Less; 395 case 2: 396 return CodeGenOpt::Default; // O2/Os/Oz 397 case 3: 398 return CodeGenOpt::Aggressive; 399 } 400 } 401 402 static Optional<llvm::CodeModel::Model> 403 getCodeModel(const CodeGenOptions &CodeGenOpts) { 404 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 405 .Case("tiny", llvm::CodeModel::Tiny) 406 .Case("small", llvm::CodeModel::Small) 407 .Case("kernel", llvm::CodeModel::Kernel) 408 .Case("medium", llvm::CodeModel::Medium) 409 .Case("large", llvm::CodeModel::Large) 410 .Case("default", ~1u) 411 .Default(~0u); 412 assert(CodeModel != ~0u && "invalid code model!"); 413 if (CodeModel == ~1u) 414 return None; 415 return static_cast<llvm::CodeModel::Model>(CodeModel); 416 } 417 418 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 419 if (Action == Backend_EmitObj) 420 return CGFT_ObjectFile; 421 else if (Action == Backend_EmitMCNull) 422 return CGFT_Null; 423 else { 424 assert(Action == Backend_EmitAssembly && "Invalid action!"); 425 return CGFT_AssemblyFile; 426 } 427 } 428 429 static void initTargetOptions(DiagnosticsEngine &Diags, 430 llvm::TargetOptions &Options, 431 const CodeGenOptions &CodeGenOpts, 432 const clang::TargetOptions &TargetOpts, 433 const LangOptions &LangOpts, 434 const HeaderSearchOptions &HSOpts) { 435 Options.ThreadModel = 436 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 437 .Case("posix", llvm::ThreadModel::POSIX) 438 .Case("single", llvm::ThreadModel::Single); 439 440 // Set float ABI type. 441 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 442 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 443 "Invalid Floating Point ABI!"); 444 Options.FloatABIType = 445 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 446 .Case("soft", llvm::FloatABI::Soft) 447 .Case("softfp", llvm::FloatABI::Soft) 448 .Case("hard", llvm::FloatABI::Hard) 449 .Default(llvm::FloatABI::Default); 450 451 // Set FP fusion mode. 452 switch (LangOpts.getDefaultFPContractMode()) { 453 case LangOptions::FPM_Off: 454 // Preserve any contraction performed by the front-end. (Strict performs 455 // splitting of the muladd intrinsic in the backend.) 456 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 457 break; 458 case LangOptions::FPM_On: 459 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 460 break; 461 case LangOptions::FPM_Fast: 462 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 463 break; 464 } 465 466 Options.UseInitArray = CodeGenOpts.UseInitArray; 467 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 468 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 469 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 470 471 // Set EABI version. 472 Options.EABIVersion = TargetOpts.EABIVersion; 473 474 if (LangOpts.SjLjExceptions) 475 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 476 if (LangOpts.SEHExceptions) 477 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 478 if (LangOpts.DWARFExceptions) 479 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 480 if (LangOpts.WasmExceptions) 481 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 482 483 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 484 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 485 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 486 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 487 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 488 489 Options.BBSections = 490 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 491 .Case("all", llvm::BasicBlockSection::All) 492 .Case("labels", llvm::BasicBlockSection::Labels) 493 .StartsWith("list=", llvm::BasicBlockSection::List) 494 .Case("none", llvm::BasicBlockSection::None) 495 .Default(llvm::BasicBlockSection::None); 496 497 if (Options.BBSections == llvm::BasicBlockSection::List) { 498 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 499 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 500 if (!MBOrErr) 501 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 502 << MBOrErr.getError().message(); 503 else 504 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 505 } 506 507 Options.FunctionSections = CodeGenOpts.FunctionSections; 508 Options.DataSections = CodeGenOpts.DataSections; 509 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 510 Options.UniqueBasicBlockSectionNames = 511 CodeGenOpts.UniqueBasicBlockSectionNames; 512 Options.TLSSize = CodeGenOpts.TLSSize; 513 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 514 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 515 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 516 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 517 Options.EmitAddrsig = CodeGenOpts.Addrsig; 518 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 519 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 520 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 521 522 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 523 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 524 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 525 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 526 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 527 Options.MCOptions.MCIncrementalLinkerCompatible = 528 CodeGenOpts.IncrementalLinkerCompatible; 529 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 530 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 531 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 532 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 533 Options.MCOptions.ABIName = TargetOpts.ABI; 534 for (const auto &Entry : HSOpts.UserEntries) 535 if (!Entry.IsFramework && 536 (Entry.Group == frontend::IncludeDirGroup::Quoted || 537 Entry.Group == frontend::IncludeDirGroup::Angled || 538 Entry.Group == frontend::IncludeDirGroup::System)) 539 Options.MCOptions.IASSearchPaths.push_back( 540 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 541 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 542 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 543 } 544 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 545 if (CodeGenOpts.DisableGCov) 546 return None; 547 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 548 return None; 549 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 550 // LLVM's -default-gcov-version flag is set to something invalid. 551 GCOVOptions Options; 552 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 553 Options.EmitData = CodeGenOpts.EmitGcovArcs; 554 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 555 Options.NoRedZone = CodeGenOpts.DisableRedZone; 556 Options.Filter = CodeGenOpts.ProfileFilterFiles; 557 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 558 return Options; 559 } 560 561 static Optional<InstrProfOptions> 562 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 563 const LangOptions &LangOpts) { 564 if (!CodeGenOpts.hasProfileClangInstr()) 565 return None; 566 InstrProfOptions Options; 567 Options.NoRedZone = CodeGenOpts.DisableRedZone; 568 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 569 570 // TODO: Surface the option to emit atomic profile counter increments at 571 // the driver level. 572 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 573 return Options; 574 } 575 576 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 577 legacy::FunctionPassManager &FPM) { 578 // Handle disabling of all LLVM passes, where we want to preserve the 579 // internal module before any optimization. 580 if (CodeGenOpts.DisableLLVMPasses) 581 return; 582 583 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 584 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 585 // are inserted before PMBuilder ones - they'd get the default-constructed 586 // TLI with an unknown target otherwise. 587 Triple TargetTriple(TheModule->getTargetTriple()); 588 std::unique_ptr<TargetLibraryInfoImpl> TLII( 589 createTLII(TargetTriple, CodeGenOpts)); 590 591 // If we reached here with a non-empty index file name, then the index file 592 // was empty and we are not performing ThinLTO backend compilation (used in 593 // testing in a distributed build environment). Drop any the type test 594 // assume sequences inserted for whole program vtables so that codegen doesn't 595 // complain. 596 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 597 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 598 /*ImportSummary=*/nullptr, 599 /*DropTypeTests=*/true)); 600 601 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 602 603 // At O0 and O1 we only run the always inliner which is more efficient. At 604 // higher optimization levels we run the normal inliner. 605 if (CodeGenOpts.OptimizationLevel <= 1) { 606 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 607 !CodeGenOpts.DisableLifetimeMarkers) || 608 LangOpts.Coroutines); 609 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 610 } else { 611 // We do not want to inline hot callsites for SamplePGO module-summary build 612 // because profile annotation will happen again in ThinLTO backend, and we 613 // want the IR of the hot path to match the profile. 614 PMBuilder.Inliner = createFunctionInliningPass( 615 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 616 (!CodeGenOpts.SampleProfileFile.empty() && 617 CodeGenOpts.PrepareForThinLTO)); 618 } 619 620 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 621 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 622 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 623 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 624 // Only enable CGProfilePass when using integrated assembler, since 625 // non-integrated assemblers don't recognize .cgprofile section. 626 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 627 628 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 629 // Loop interleaving in the loop vectorizer has historically been set to be 630 // enabled when loop unrolling is enabled. 631 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 632 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 633 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 634 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 635 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 636 637 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 638 639 if (TM) 640 TM->adjustPassManager(PMBuilder); 641 642 if (CodeGenOpts.DebugInfoForProfiling || 643 !CodeGenOpts.SampleProfileFile.empty()) 644 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 645 addAddDiscriminatorsPass); 646 647 // In ObjC ARC mode, add the main ARC optimization passes. 648 if (LangOpts.ObjCAutoRefCount) { 649 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 650 addObjCARCExpandPass); 651 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 652 addObjCARCAPElimPass); 653 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 654 addObjCARCOptPass); 655 } 656 657 if (LangOpts.Coroutines) 658 addCoroutinePassesToExtensionPoints(PMBuilder); 659 660 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 661 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 662 addBoundsCheckingPass); 663 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 664 addBoundsCheckingPass); 665 } 666 667 if (CodeGenOpts.SanitizeCoverageType || 668 CodeGenOpts.SanitizeCoverageIndirectCalls || 669 CodeGenOpts.SanitizeCoverageTraceCmp) { 670 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 671 addSanitizerCoveragePass); 672 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 673 addSanitizerCoveragePass); 674 } 675 676 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 677 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 678 addAddressSanitizerPasses); 679 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 680 addAddressSanitizerPasses); 681 } 682 683 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 684 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 685 addKernelAddressSanitizerPasses); 686 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 687 addKernelAddressSanitizerPasses); 688 } 689 690 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 691 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 692 addHWAddressSanitizerPasses); 693 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 694 addHWAddressSanitizerPasses); 695 } 696 697 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 698 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 699 addKernelHWAddressSanitizerPasses); 700 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 701 addKernelHWAddressSanitizerPasses); 702 } 703 704 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 705 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 706 addMemorySanitizerPass); 707 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 708 addMemorySanitizerPass); 709 } 710 711 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 712 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 713 addKernelMemorySanitizerPass); 714 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 715 addKernelMemorySanitizerPass); 716 } 717 718 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 719 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 720 addThreadSanitizerPass); 721 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 722 addThreadSanitizerPass); 723 } 724 725 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 726 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 727 addDataFlowSanitizerPass); 728 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 729 addDataFlowSanitizerPass); 730 } 731 732 // Set up the per-function pass manager. 733 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 734 if (CodeGenOpts.VerifyModule) 735 FPM.add(createVerifierPass()); 736 737 // Set up the per-module pass manager. 738 if (!CodeGenOpts.RewriteMapFiles.empty()) 739 addSymbolRewriterPass(CodeGenOpts, &MPM); 740 741 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 742 // with unique names. 743 if (CodeGenOpts.UniqueInternalLinkageNames) { 744 MPM.add(createUniqueInternalLinkageNamesPass()); 745 } 746 747 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 748 MPM.add(createGCOVProfilerPass(*Options)); 749 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 750 MPM.add(createStripSymbolsPass(true)); 751 } 752 753 if (Optional<InstrProfOptions> Options = 754 getInstrProfOptions(CodeGenOpts, LangOpts)) 755 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 756 757 bool hasIRInstr = false; 758 if (CodeGenOpts.hasProfileIRInstr()) { 759 PMBuilder.EnablePGOInstrGen = true; 760 hasIRInstr = true; 761 } 762 if (CodeGenOpts.hasProfileCSIRInstr()) { 763 assert(!CodeGenOpts.hasProfileCSIRUse() && 764 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 765 "same time"); 766 assert(!hasIRInstr && 767 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 768 "same time"); 769 PMBuilder.EnablePGOCSInstrGen = true; 770 hasIRInstr = true; 771 } 772 if (hasIRInstr) { 773 if (!CodeGenOpts.InstrProfileOutput.empty()) 774 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 775 else 776 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 777 } 778 if (CodeGenOpts.hasProfileIRUse()) { 779 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 780 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 781 } 782 783 if (!CodeGenOpts.SampleProfileFile.empty()) 784 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 785 786 PMBuilder.populateFunctionPassManager(FPM); 787 PMBuilder.populateModulePassManager(MPM); 788 } 789 790 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 791 SmallVector<const char *, 16> BackendArgs; 792 BackendArgs.push_back("clang"); // Fake program name. 793 if (!CodeGenOpts.DebugPass.empty()) { 794 BackendArgs.push_back("-debug-pass"); 795 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 796 } 797 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 798 BackendArgs.push_back("-limit-float-precision"); 799 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 800 } 801 BackendArgs.push_back(nullptr); 802 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 803 BackendArgs.data()); 804 } 805 806 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 807 // Create the TargetMachine for generating code. 808 std::string Error; 809 std::string Triple = TheModule->getTargetTriple(); 810 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 811 if (!TheTarget) { 812 if (MustCreateTM) 813 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 814 return; 815 } 816 817 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 818 std::string FeaturesStr = 819 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 820 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 821 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 822 823 llvm::TargetOptions Options; 824 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 825 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 826 Options, RM, CM, OptLevel)); 827 } 828 829 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 830 BackendAction Action, 831 raw_pwrite_stream &OS, 832 raw_pwrite_stream *DwoOS) { 833 // Add LibraryInfo. 834 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 835 std::unique_ptr<TargetLibraryInfoImpl> TLII( 836 createTLII(TargetTriple, CodeGenOpts)); 837 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 838 839 // Normal mode, emit a .s or .o file by running the code generator. Note, 840 // this also adds codegenerator level optimization passes. 841 CodeGenFileType CGFT = getCodeGenFileType(Action); 842 843 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 844 // "codegen" passes so that it isn't run multiple times when there is 845 // inlining happening. 846 if (CodeGenOpts.OptimizationLevel > 0) 847 CodeGenPasses.add(createObjCARCContractPass()); 848 849 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 850 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 851 Diags.Report(diag::err_fe_unable_to_interface_with_target); 852 return false; 853 } 854 855 return true; 856 } 857 858 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 859 std::unique_ptr<raw_pwrite_stream> OS) { 860 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 861 862 setCommandLineOpts(CodeGenOpts); 863 864 bool UsesCodeGen = (Action != Backend_EmitNothing && 865 Action != Backend_EmitBC && 866 Action != Backend_EmitLL); 867 CreateTargetMachine(UsesCodeGen); 868 869 if (UsesCodeGen && !TM) 870 return; 871 if (TM) 872 TheModule->setDataLayout(TM->createDataLayout()); 873 874 legacy::PassManager PerModulePasses; 875 PerModulePasses.add( 876 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 877 878 legacy::FunctionPassManager PerFunctionPasses(TheModule); 879 PerFunctionPasses.add( 880 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 881 882 CreatePasses(PerModulePasses, PerFunctionPasses); 883 884 legacy::PassManager CodeGenPasses; 885 CodeGenPasses.add( 886 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 887 888 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 889 890 switch (Action) { 891 case Backend_EmitNothing: 892 break; 893 894 case Backend_EmitBC: 895 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 896 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 897 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 898 if (!ThinLinkOS) 899 return; 900 } 901 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 902 CodeGenOpts.EnableSplitLTOUnit); 903 PerModulePasses.add(createWriteThinLTOBitcodePass( 904 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 905 } else { 906 // Emit a module summary by default for Regular LTO except for ld64 907 // targets 908 bool EmitLTOSummary = 909 (CodeGenOpts.PrepareForLTO && 910 !CodeGenOpts.DisableLLVMPasses && 911 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 912 llvm::Triple::Apple); 913 if (EmitLTOSummary) { 914 if (!TheModule->getModuleFlag("ThinLTO")) 915 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 916 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 917 uint32_t(1)); 918 } 919 920 PerModulePasses.add(createBitcodeWriterPass( 921 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 922 } 923 break; 924 925 case Backend_EmitLL: 926 PerModulePasses.add( 927 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 928 break; 929 930 default: 931 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 932 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 933 if (!DwoOS) 934 return; 935 } 936 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 937 DwoOS ? &DwoOS->os() : nullptr)) 938 return; 939 } 940 941 // Before executing passes, print the final values of the LLVM options. 942 cl::PrintOptionValues(); 943 944 // Run passes. For now we do all passes at once, but eventually we 945 // would like to have the option of streaming code generation. 946 947 { 948 PrettyStackTraceString CrashInfo("Per-function optimization"); 949 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 950 951 PerFunctionPasses.doInitialization(); 952 for (Function &F : *TheModule) 953 if (!F.isDeclaration()) 954 PerFunctionPasses.run(F); 955 PerFunctionPasses.doFinalization(); 956 } 957 958 { 959 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 960 llvm::TimeTraceScope TimeScope("PerModulePasses"); 961 PerModulePasses.run(*TheModule); 962 } 963 964 { 965 PrettyStackTraceString CrashInfo("Code generation"); 966 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 967 CodeGenPasses.run(*TheModule); 968 } 969 970 if (ThinLinkOS) 971 ThinLinkOS->keep(); 972 if (DwoOS) 973 DwoOS->keep(); 974 } 975 976 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 977 switch (Opts.OptimizationLevel) { 978 default: 979 llvm_unreachable("Invalid optimization level!"); 980 981 case 1: 982 return PassBuilder::OptimizationLevel::O1; 983 984 case 2: 985 switch (Opts.OptimizeSize) { 986 default: 987 llvm_unreachable("Invalid optimization level for size!"); 988 989 case 0: 990 return PassBuilder::OptimizationLevel::O2; 991 992 case 1: 993 return PassBuilder::OptimizationLevel::Os; 994 995 case 2: 996 return PassBuilder::OptimizationLevel::Oz; 997 } 998 999 case 3: 1000 return PassBuilder::OptimizationLevel::O3; 1001 } 1002 } 1003 1004 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1005 const LangOptions &LangOpts, 1006 const CodeGenOptions &CodeGenOpts) { 1007 if (!LangOpts.Coroutines) 1008 return; 1009 1010 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1011 1012 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1013 CGPM.addPass(CoroSplitPass()); 1014 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1015 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1016 1017 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1018 } 1019 1020 static void addSanitizersAtO0(ModulePassManager &MPM, 1021 const Triple &TargetTriple, 1022 const LangOptions &LangOpts, 1023 const CodeGenOptions &CodeGenOpts) { 1024 if (CodeGenOpts.SanitizeCoverageType || 1025 CodeGenOpts.SanitizeCoverageIndirectCalls || 1026 CodeGenOpts.SanitizeCoverageTraceCmp) { 1027 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1028 MPM.addPass(ModuleSanitizerCoveragePass( 1029 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1030 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1031 } 1032 1033 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1034 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1035 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1036 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1037 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1038 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1039 MPM.addPass( 1040 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1041 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1042 }; 1043 1044 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1045 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1046 } 1047 1048 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1049 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1050 } 1051 1052 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1053 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1054 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1055 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1056 MPM.addPass(createModuleToFunctionPassAdaptor( 1057 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1058 } 1059 1060 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1061 MPM.addPass(createModuleToFunctionPassAdaptor( 1062 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1063 } 1064 1065 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1066 MPM.addPass(ThreadSanitizerPass()); 1067 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1068 } 1069 } 1070 1071 /// A clean version of `EmitAssembly` that uses the new pass manager. 1072 /// 1073 /// Not all features are currently supported in this system, but where 1074 /// necessary it falls back to the legacy pass manager to at least provide 1075 /// basic functionality. 1076 /// 1077 /// This API is planned to have its functionality finished and then to replace 1078 /// `EmitAssembly` at some point in the future when the default switches. 1079 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1080 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1081 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1082 setCommandLineOpts(CodeGenOpts); 1083 1084 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1085 Action != Backend_EmitBC && 1086 Action != Backend_EmitLL); 1087 CreateTargetMachine(RequiresCodeGen); 1088 1089 if (RequiresCodeGen && !TM) 1090 return; 1091 if (TM) 1092 TheModule->setDataLayout(TM->createDataLayout()); 1093 1094 Optional<PGOOptions> PGOOpt; 1095 1096 if (CodeGenOpts.hasProfileIRInstr()) 1097 // -fprofile-generate. 1098 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1099 ? std::string(DefaultProfileGenName) 1100 : CodeGenOpts.InstrProfileOutput, 1101 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1102 CodeGenOpts.DebugInfoForProfiling); 1103 else if (CodeGenOpts.hasProfileIRUse()) { 1104 // -fprofile-use. 1105 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1106 : PGOOptions::NoCSAction; 1107 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1108 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1109 CSAction, CodeGenOpts.DebugInfoForProfiling); 1110 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1111 // -fprofile-sample-use 1112 PGOOpt = 1113 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1114 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1115 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1116 else if (CodeGenOpts.DebugInfoForProfiling) 1117 // -fdebug-info-for-profiling 1118 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1119 PGOOptions::NoCSAction, true); 1120 1121 // Check to see if we want to generate a CS profile. 1122 if (CodeGenOpts.hasProfileCSIRInstr()) { 1123 assert(!CodeGenOpts.hasProfileCSIRUse() && 1124 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1125 "the same time"); 1126 if (PGOOpt.hasValue()) { 1127 assert(PGOOpt->Action != PGOOptions::IRInstr && 1128 PGOOpt->Action != PGOOptions::SampleUse && 1129 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1130 " pass"); 1131 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1132 ? std::string(DefaultProfileGenName) 1133 : CodeGenOpts.InstrProfileOutput; 1134 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1135 } else 1136 PGOOpt = PGOOptions("", 1137 CodeGenOpts.InstrProfileOutput.empty() 1138 ? std::string(DefaultProfileGenName) 1139 : CodeGenOpts.InstrProfileOutput, 1140 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1141 CodeGenOpts.DebugInfoForProfiling); 1142 } 1143 1144 PipelineTuningOptions PTO; 1145 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1146 // For historical reasons, loop interleaving is set to mirror setting for loop 1147 // unrolling. 1148 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1149 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1150 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1151 // Only enable CGProfilePass when using integrated assembler, since 1152 // non-integrated assemblers don't recognize .cgprofile section. 1153 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1154 PTO.Coroutines = LangOpts.Coroutines; 1155 1156 PassInstrumentationCallbacks PIC; 1157 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1158 SI.registerCallbacks(PIC); 1159 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1160 1161 // Attempt to load pass plugins and register their callbacks with PB. 1162 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1163 auto PassPlugin = PassPlugin::Load(PluginFN); 1164 if (PassPlugin) { 1165 PassPlugin->registerPassBuilderCallbacks(PB); 1166 } else { 1167 Diags.Report(diag::err_fe_unable_to_load_plugin) 1168 << PluginFN << toString(PassPlugin.takeError()); 1169 } 1170 } 1171 #define HANDLE_EXTENSION(Ext) \ 1172 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1173 #include "llvm/Support/Extension.def" 1174 1175 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1176 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1177 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1178 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1179 1180 // Register the AA manager first so that our version is the one used. 1181 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1182 1183 // Register the target library analysis directly and give it a customized 1184 // preset TLI. 1185 Triple TargetTriple(TheModule->getTargetTriple()); 1186 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1187 createTLII(TargetTriple, CodeGenOpts)); 1188 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1189 1190 // Register all the basic analyses with the managers. 1191 PB.registerModuleAnalyses(MAM); 1192 PB.registerCGSCCAnalyses(CGAM); 1193 PB.registerFunctionAnalyses(FAM); 1194 PB.registerLoopAnalyses(LAM); 1195 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1196 1197 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1198 1199 if (!CodeGenOpts.DisableLLVMPasses) { 1200 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1201 bool IsLTO = CodeGenOpts.PrepareForLTO; 1202 1203 if (CodeGenOpts.OptimizationLevel == 0) { 1204 // If we reached here with a non-empty index file name, then the index 1205 // file was empty and we are not performing ThinLTO backend compilation 1206 // (used in testing in a distributed build environment). Drop any the type 1207 // test assume sequences inserted for whole program vtables so that 1208 // codegen doesn't complain. 1209 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1210 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1211 /*ImportSummary=*/nullptr, 1212 /*DropTypeTests=*/true)); 1213 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1214 MPM.addPass(GCOVProfilerPass(*Options)); 1215 if (Optional<InstrProfOptions> Options = 1216 getInstrProfOptions(CodeGenOpts, LangOpts)) 1217 MPM.addPass(InstrProfiling(*Options, false)); 1218 1219 // Build a minimal pipeline based on the semantics required by Clang, 1220 // which is just that always inlining occurs. Further, disable generating 1221 // lifetime intrinsics to avoid enabling further optimizations during 1222 // code generation. 1223 // However, we need to insert lifetime intrinsics to avoid invalid access 1224 // caused by multithreaded coroutines. 1225 MPM.addPass( 1226 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1227 1228 // At -O0, we can still do PGO. Add all the requested passes for 1229 // instrumentation PGO, if requested. 1230 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1231 PGOOpt->Action == PGOOptions::IRUse)) 1232 PB.addPGOInstrPassesForO0( 1233 MPM, CodeGenOpts.DebugPassManager, 1234 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1235 /* IsCS */ false, PGOOpt->ProfileFile, 1236 PGOOpt->ProfileRemappingFile); 1237 1238 // At -O0 we directly run necessary sanitizer passes. 1239 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1240 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1241 1242 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1243 // symbols with unique names. 1244 if (CodeGenOpts.UniqueInternalLinkageNames) { 1245 MPM.addPass(UniqueInternalLinkageNamesPass()); 1246 } 1247 1248 // Lastly, add semantically necessary passes for LTO. 1249 if (IsLTO || IsThinLTO) { 1250 MPM.addPass(CanonicalizeAliasesPass()); 1251 MPM.addPass(NameAnonGlobalPass()); 1252 } 1253 } else { 1254 // Map our optimization levels into one of the distinct levels used to 1255 // configure the pipeline. 1256 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1257 1258 // If we reached here with a non-empty index file name, then the index 1259 // file was empty and we are not performing ThinLTO backend compilation 1260 // (used in testing in a distributed build environment). Drop any the type 1261 // test assume sequences inserted for whole program vtables so that 1262 // codegen doesn't complain. 1263 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1264 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1265 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1266 /*ImportSummary=*/nullptr, 1267 /*DropTypeTests=*/true)); 1268 }); 1269 1270 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1271 MPM.addPass(createModuleToFunctionPassAdaptor( 1272 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1273 }); 1274 1275 // Register callbacks to schedule sanitizer passes at the appropriate part of 1276 // the pipeline. 1277 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1278 PB.registerScalarOptimizerLateEPCallback( 1279 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1280 FPM.addPass(BoundsCheckingPass()); 1281 }); 1282 1283 if (CodeGenOpts.SanitizeCoverageType || 1284 CodeGenOpts.SanitizeCoverageIndirectCalls || 1285 CodeGenOpts.SanitizeCoverageTraceCmp) { 1286 PB.registerOptimizerLastEPCallback( 1287 [this](ModulePassManager &MPM, 1288 PassBuilder::OptimizationLevel Level) { 1289 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1290 MPM.addPass(ModuleSanitizerCoveragePass( 1291 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1292 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1293 }); 1294 } 1295 1296 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1297 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1298 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1299 PB.registerOptimizerLastEPCallback( 1300 [TrackOrigins, Recover](ModulePassManager &MPM, 1301 PassBuilder::OptimizationLevel Level) { 1302 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1303 MPM.addPass(createModuleToFunctionPassAdaptor( 1304 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1305 }); 1306 } 1307 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1308 PB.registerOptimizerLastEPCallback( 1309 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1310 MPM.addPass(ThreadSanitizerPass()); 1311 MPM.addPass( 1312 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1313 }); 1314 } 1315 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1316 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1317 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1318 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1319 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1320 PB.registerOptimizerLastEPCallback( 1321 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1322 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1323 MPM.addPass( 1324 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1325 MPM.addPass(ModuleAddressSanitizerPass( 1326 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1327 UseOdrIndicator)); 1328 MPM.addPass( 1329 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1330 /*CompileKernel=*/false, Recover, UseAfterScope))); 1331 }); 1332 } 1333 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1334 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1335 MPM.addPass(GCOVProfilerPass(*Options)); 1336 }); 1337 if (Optional<InstrProfOptions> Options = 1338 getInstrProfOptions(CodeGenOpts, LangOpts)) 1339 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1340 MPM.addPass(InstrProfiling(*Options, false)); 1341 }); 1342 1343 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1344 // symbols with unique names. 1345 if (CodeGenOpts.UniqueInternalLinkageNames) { 1346 MPM.addPass(UniqueInternalLinkageNamesPass()); 1347 } 1348 1349 if (IsThinLTO) { 1350 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1351 Level, CodeGenOpts.DebugPassManager); 1352 MPM.addPass(CanonicalizeAliasesPass()); 1353 MPM.addPass(NameAnonGlobalPass()); 1354 } else if (IsLTO) { 1355 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1356 CodeGenOpts.DebugPassManager); 1357 MPM.addPass(CanonicalizeAliasesPass()); 1358 MPM.addPass(NameAnonGlobalPass()); 1359 } else { 1360 MPM = PB.buildPerModuleDefaultPipeline(Level, 1361 CodeGenOpts.DebugPassManager); 1362 } 1363 } 1364 1365 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1366 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1367 MPM.addPass(HWAddressSanitizerPass( 1368 /*CompileKernel=*/false, Recover)); 1369 } 1370 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1371 MPM.addPass(HWAddressSanitizerPass( 1372 /*CompileKernel=*/true, /*Recover=*/true)); 1373 } 1374 1375 if (CodeGenOpts.OptimizationLevel == 0) { 1376 // FIXME: the backends do not handle matrix intrinsics currently. Make 1377 // sure they are also lowered in O0. A lightweight version of the pass 1378 // should run in the backend pipeline on demand. 1379 if (LangOpts.MatrixTypes) 1380 MPM.addPass( 1381 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1382 1383 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1384 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1385 } 1386 } 1387 1388 // FIXME: We still use the legacy pass manager to do code generation. We 1389 // create that pass manager here and use it as needed below. 1390 legacy::PassManager CodeGenPasses; 1391 bool NeedCodeGen = false; 1392 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1393 1394 // Append any output we need to the pass manager. 1395 switch (Action) { 1396 case Backend_EmitNothing: 1397 break; 1398 1399 case Backend_EmitBC: 1400 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1401 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1402 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1403 if (!ThinLinkOS) 1404 return; 1405 } 1406 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1407 CodeGenOpts.EnableSplitLTOUnit); 1408 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1409 : nullptr)); 1410 } else { 1411 // Emit a module summary by default for Regular LTO except for ld64 1412 // targets 1413 bool EmitLTOSummary = 1414 (CodeGenOpts.PrepareForLTO && 1415 !CodeGenOpts.DisableLLVMPasses && 1416 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1417 llvm::Triple::Apple); 1418 if (EmitLTOSummary) { 1419 if (!TheModule->getModuleFlag("ThinLTO")) 1420 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1421 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1422 uint32_t(1)); 1423 } 1424 MPM.addPass( 1425 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1426 } 1427 break; 1428 1429 case Backend_EmitLL: 1430 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1431 break; 1432 1433 case Backend_EmitAssembly: 1434 case Backend_EmitMCNull: 1435 case Backend_EmitObj: 1436 NeedCodeGen = true; 1437 CodeGenPasses.add( 1438 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1439 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1440 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1441 if (!DwoOS) 1442 return; 1443 } 1444 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1445 DwoOS ? &DwoOS->os() : nullptr)) 1446 // FIXME: Should we handle this error differently? 1447 return; 1448 break; 1449 } 1450 1451 // Before executing passes, print the final values of the LLVM options. 1452 cl::PrintOptionValues(); 1453 1454 // Now that we have all of the passes ready, run them. 1455 { 1456 PrettyStackTraceString CrashInfo("Optimizer"); 1457 MPM.run(*TheModule, MAM); 1458 } 1459 1460 // Now if needed, run the legacy PM for codegen. 1461 if (NeedCodeGen) { 1462 PrettyStackTraceString CrashInfo("Code generation"); 1463 CodeGenPasses.run(*TheModule); 1464 } 1465 1466 if (ThinLinkOS) 1467 ThinLinkOS->keep(); 1468 if (DwoOS) 1469 DwoOS->keep(); 1470 } 1471 1472 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1473 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1474 if (!BMsOrErr) 1475 return BMsOrErr.takeError(); 1476 1477 // The bitcode file may contain multiple modules, we want the one that is 1478 // marked as being the ThinLTO module. 1479 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1480 return *Bm; 1481 1482 return make_error<StringError>("Could not find module summary", 1483 inconvertibleErrorCode()); 1484 } 1485 1486 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1487 for (BitcodeModule &BM : BMs) { 1488 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1489 if (LTOInfo && LTOInfo->IsThinLTO) 1490 return &BM; 1491 } 1492 return nullptr; 1493 } 1494 1495 static void runThinLTOBackend( 1496 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1497 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1498 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1499 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1500 std::string ProfileRemapping, BackendAction Action) { 1501 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1502 ModuleToDefinedGVSummaries; 1503 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1504 1505 setCommandLineOpts(CGOpts); 1506 1507 // We can simply import the values mentioned in the combined index, since 1508 // we should only invoke this using the individual indexes written out 1509 // via a WriteIndexesThinBackend. 1510 FunctionImporter::ImportMapTy ImportList; 1511 for (auto &GlobalList : *CombinedIndex) { 1512 // Ignore entries for undefined references. 1513 if (GlobalList.second.SummaryList.empty()) 1514 continue; 1515 1516 auto GUID = GlobalList.first; 1517 for (auto &Summary : GlobalList.second.SummaryList) { 1518 // Skip the summaries for the importing module. These are included to 1519 // e.g. record required linkage changes. 1520 if (Summary->modulePath() == M->getModuleIdentifier()) 1521 continue; 1522 // Add an entry to provoke importing by thinBackend. 1523 ImportList[Summary->modulePath()].insert(GUID); 1524 } 1525 } 1526 1527 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1528 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1529 1530 for (auto &I : ImportList) { 1531 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1532 llvm::MemoryBuffer::getFile(I.first()); 1533 if (!MBOrErr) { 1534 errs() << "Error loading imported file '" << I.first() 1535 << "': " << MBOrErr.getError().message() << "\n"; 1536 return; 1537 } 1538 1539 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1540 if (!BMOrErr) { 1541 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1542 errs() << "Error loading imported file '" << I.first() 1543 << "': " << EIB.message() << '\n'; 1544 }); 1545 return; 1546 } 1547 ModuleMap.insert({I.first(), *BMOrErr}); 1548 1549 OwnedImports.push_back(std::move(*MBOrErr)); 1550 } 1551 auto AddStream = [&](size_t Task) { 1552 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1553 }; 1554 lto::Config Conf; 1555 if (CGOpts.SaveTempsFilePrefix != "") { 1556 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1557 /* UseInputModulePath */ false)) { 1558 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1559 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1560 << '\n'; 1561 }); 1562 } 1563 } 1564 Conf.CPU = TOpts.CPU; 1565 Conf.CodeModel = getCodeModel(CGOpts); 1566 Conf.MAttrs = TOpts.Features; 1567 Conf.RelocModel = CGOpts.RelocationModel; 1568 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1569 Conf.OptLevel = CGOpts.OptimizationLevel; 1570 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1571 Conf.SampleProfile = std::move(SampleProfile); 1572 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1573 // For historical reasons, loop interleaving is set to mirror setting for loop 1574 // unrolling. 1575 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1576 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1577 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1578 // Only enable CGProfilePass when using integrated assembler, since 1579 // non-integrated assemblers don't recognize .cgprofile section. 1580 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1581 1582 // Context sensitive profile. 1583 if (CGOpts.hasProfileCSIRInstr()) { 1584 Conf.RunCSIRInstr = true; 1585 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1586 } else if (CGOpts.hasProfileCSIRUse()) { 1587 Conf.RunCSIRInstr = false; 1588 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1589 } 1590 1591 Conf.ProfileRemapping = std::move(ProfileRemapping); 1592 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1593 Conf.DebugPassManager = CGOpts.DebugPassManager; 1594 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1595 Conf.RemarksFilename = CGOpts.OptRecordFile; 1596 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1597 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1598 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1599 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1600 switch (Action) { 1601 case Backend_EmitNothing: 1602 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1603 return false; 1604 }; 1605 break; 1606 case Backend_EmitLL: 1607 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1608 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1609 return false; 1610 }; 1611 break; 1612 case Backend_EmitBC: 1613 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1614 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1615 return false; 1616 }; 1617 break; 1618 default: 1619 Conf.CGFileType = getCodeGenFileType(Action); 1620 break; 1621 } 1622 if (Error E = thinBackend( 1623 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1624 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1625 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1626 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1627 }); 1628 } 1629 } 1630 1631 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1632 const HeaderSearchOptions &HeaderOpts, 1633 const CodeGenOptions &CGOpts, 1634 const clang::TargetOptions &TOpts, 1635 const LangOptions &LOpts, 1636 const llvm::DataLayout &TDesc, Module *M, 1637 BackendAction Action, 1638 std::unique_ptr<raw_pwrite_stream> OS) { 1639 1640 llvm::TimeTraceScope TimeScope("Backend"); 1641 1642 std::unique_ptr<llvm::Module> EmptyModule; 1643 if (!CGOpts.ThinLTOIndexFile.empty()) { 1644 // If we are performing a ThinLTO importing compile, load the function index 1645 // into memory and pass it into runThinLTOBackend, which will run the 1646 // function importer and invoke LTO passes. 1647 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1648 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1649 /*IgnoreEmptyThinLTOIndexFile*/true); 1650 if (!IndexOrErr) { 1651 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1652 "Error loading index file '" + 1653 CGOpts.ThinLTOIndexFile + "': "); 1654 return; 1655 } 1656 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1657 // A null CombinedIndex means we should skip ThinLTO compilation 1658 // (LLVM will optionally ignore empty index files, returning null instead 1659 // of an error). 1660 if (CombinedIndex) { 1661 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1662 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1663 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1664 CGOpts.ProfileRemappingFile, Action); 1665 return; 1666 } 1667 // Distributed indexing detected that nothing from the module is needed 1668 // for the final linking. So we can skip the compilation. We sill need to 1669 // output an empty object file to make sure that a linker does not fail 1670 // trying to read it. Also for some features, like CFI, we must skip 1671 // the compilation as CombinedIndex does not contain all required 1672 // information. 1673 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1674 EmptyModule->setTargetTriple(M->getTargetTriple()); 1675 M = EmptyModule.get(); 1676 } 1677 } 1678 1679 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1680 1681 if (CGOpts.ExperimentalNewPassManager) 1682 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1683 else 1684 AsmHelper.EmitAssembly(Action, std::move(OS)); 1685 1686 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1687 // DataLayout. 1688 if (AsmHelper.TM) { 1689 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1690 if (DLDesc != TDesc.getStringRepresentation()) { 1691 unsigned DiagID = Diags.getCustomDiagID( 1692 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1693 "expected target description '%1'"); 1694 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1695 } 1696 } 1697 } 1698 1699 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1700 // __LLVM,__bitcode section. 1701 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1702 llvm::MemoryBufferRef Buf) { 1703 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1704 return; 1705 llvm::EmbedBitcodeInModule( 1706 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1707 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1708 &CGOpts.CmdArgs); 1709 } 1710