1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/InstCombine/InstCombine.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 57 #include "llvm/Transforms/ObjCARC.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Scalar/GVN.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 62 #include "llvm/Transforms/Utils/SymbolRewriter.h" 63 #include <memory> 64 using namespace clang; 65 using namespace llvm; 66 67 namespace { 68 69 // Default filename used for profile generation. 70 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 71 72 class EmitAssemblyHelper { 73 DiagnosticsEngine &Diags; 74 const HeaderSearchOptions &HSOpts; 75 const CodeGenOptions &CodeGenOpts; 76 const clang::TargetOptions &TargetOpts; 77 const LangOptions &LangOpts; 78 Module *TheModule; 79 80 Timer CodeGenerationTime; 81 82 std::unique_ptr<raw_pwrite_stream> OS; 83 84 TargetIRAnalysis getTargetIRAnalysis() const { 85 if (TM) 86 return TM->getTargetIRAnalysis(); 87 88 return TargetIRAnalysis(); 89 } 90 91 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 92 93 /// Generates the TargetMachine. 94 /// Leaves TM unchanged if it is unable to create the target machine. 95 /// Some of our clang tests specify triples which are not built 96 /// into clang. This is okay because these tests check the generated 97 /// IR, and they require DataLayout which depends on the triple. 98 /// In this case, we allow this method to fail and not report an error. 99 /// When MustCreateTM is used, we print an error if we are unable to load 100 /// the requested target. 101 void CreateTargetMachine(bool MustCreateTM); 102 103 /// Add passes necessary to emit assembly or LLVM IR. 104 /// 105 /// \return True on success. 106 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 107 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 108 109 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 110 std::error_code EC; 111 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 112 llvm::sys::fs::F_None); 113 if (EC) { 114 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 115 F.reset(); 116 } 117 return F; 118 } 119 120 public: 121 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 122 const HeaderSearchOptions &HeaderSearchOpts, 123 const CodeGenOptions &CGOpts, 124 const clang::TargetOptions &TOpts, 125 const LangOptions &LOpts, Module *M) 126 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 127 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 128 CodeGenerationTime("codegen", "Code Generation Time") {} 129 130 ~EmitAssemblyHelper() { 131 if (CodeGenOpts.DisableFree) 132 BuryPointer(std::move(TM)); 133 } 134 135 std::unique_ptr<TargetMachine> TM; 136 137 void EmitAssembly(BackendAction Action, 138 std::unique_ptr<raw_pwrite_stream> OS); 139 140 void EmitAssemblyWithNewPassManager(BackendAction Action, 141 std::unique_ptr<raw_pwrite_stream> OS); 142 }; 143 144 // We need this wrapper to access LangOpts and CGOpts from extension functions 145 // that we add to the PassManagerBuilder. 146 class PassManagerBuilderWrapper : public PassManagerBuilder { 147 public: 148 PassManagerBuilderWrapper(const Triple &TargetTriple, 149 const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 152 LangOpts(LangOpts) {} 153 const Triple &getTargetTriple() const { return TargetTriple; } 154 const CodeGenOptions &getCGOpts() const { return CGOpts; } 155 const LangOptions &getLangOpts() const { return LangOpts; } 156 157 private: 158 const Triple &TargetTriple; 159 const CodeGenOptions &CGOpts; 160 const LangOptions &LangOpts; 161 }; 162 } 163 164 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 165 if (Builder.OptLevel > 0) 166 PM.add(createObjCARCAPElimPass()); 167 } 168 169 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 170 if (Builder.OptLevel > 0) 171 PM.add(createObjCARCExpandPass()); 172 } 173 174 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCOptPass()); 177 } 178 179 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 180 legacy::PassManagerBase &PM) { 181 PM.add(createAddDiscriminatorsPass()); 182 } 183 184 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 185 legacy::PassManagerBase &PM) { 186 PM.add(createBoundsCheckingLegacyPass()); 187 } 188 189 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 const PassManagerBuilderWrapper &BuilderWrapper = 192 static_cast<const PassManagerBuilderWrapper&>(Builder); 193 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 194 SanitizerCoverageOptions Opts; 195 Opts.CoverageType = 196 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 197 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 198 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 199 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 200 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 201 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 202 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 203 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 204 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 205 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 206 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 207 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 208 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 209 PM.add(createSanitizerCoverageModulePass(Opts)); 210 } 211 212 // Check if ASan should use GC-friendly instrumentation for globals. 213 // First of all, there is no point if -fdata-sections is off (expect for MachO, 214 // where this is not a factor). Also, on ELF this feature requires an assembler 215 // extension that only works with -integrated-as at the moment. 216 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 217 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 218 return false; 219 switch (T.getObjectFormat()) { 220 case Triple::MachO: 221 case Triple::COFF: 222 return true; 223 case Triple::ELF: 224 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 225 default: 226 return false; 227 } 228 } 229 230 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 231 legacy::PassManagerBase &PM) { 232 const PassManagerBuilderWrapper &BuilderWrapper = 233 static_cast<const PassManagerBuilderWrapper&>(Builder); 234 const Triple &T = BuilderWrapper.getTargetTriple(); 235 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 236 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 237 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 238 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 239 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 240 UseAfterScope)); 241 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 242 UseGlobalsGC)); 243 } 244 245 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 PM.add(createAddressSanitizerFunctionPass( 248 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 249 PM.add(createAddressSanitizerModulePass( 250 /*CompileKernel*/ true, /*Recover*/ true)); 251 } 252 253 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper &>(Builder); 257 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 258 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 259 PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover)); 260 } 261 262 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 PM.add(createHWAddressSanitizerPass( 265 /*CompileKernel*/ true, /*Recover*/ true)); 266 } 267 268 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 269 legacy::PassManagerBase &PM) { 270 const PassManagerBuilderWrapper &BuilderWrapper = 271 static_cast<const PassManagerBuilderWrapper&>(Builder); 272 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 273 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 274 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 275 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 276 277 // MemorySanitizer inserts complex instrumentation that mostly follows 278 // the logic of the original code, but operates on "shadow" values. 279 // It can benefit from re-running some general purpose optimization passes. 280 if (Builder.OptLevel > 0) { 281 PM.add(createEarlyCSEPass()); 282 PM.add(createReassociatePass()); 283 PM.add(createLICMPass()); 284 PM.add(createGVNPass()); 285 PM.add(createInstructionCombiningPass()); 286 PM.add(createDeadStoreEliminationPass()); 287 } 288 } 289 290 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 291 legacy::PassManagerBase &PM) { 292 PM.add(createThreadSanitizerPass()); 293 } 294 295 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 const PassManagerBuilderWrapper &BuilderWrapper = 298 static_cast<const PassManagerBuilderWrapper&>(Builder); 299 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 300 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 301 } 302 303 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper&>(Builder); 307 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 308 EfficiencySanitizerOptions Opts; 309 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 310 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 311 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 312 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 313 PM.add(createEfficiencySanitizerPass(Opts)); 314 } 315 316 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 317 const CodeGenOptions &CodeGenOpts) { 318 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 319 if (!CodeGenOpts.SimplifyLibCalls) 320 TLII->disableAllFunctions(); 321 else { 322 // Disable individual libc/libm calls in TargetLibraryInfo. 323 LibFunc F; 324 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 325 if (TLII->getLibFunc(FuncName, F)) 326 TLII->setUnavailable(F); 327 } 328 329 switch (CodeGenOpts.getVecLib()) { 330 case CodeGenOptions::Accelerate: 331 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 332 break; 333 case CodeGenOptions::SVML: 334 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 335 break; 336 default: 337 break; 338 } 339 return TLII; 340 } 341 342 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 343 legacy::PassManager *MPM) { 344 llvm::SymbolRewriter::RewriteDescriptorList DL; 345 346 llvm::SymbolRewriter::RewriteMapParser MapParser; 347 for (const auto &MapFile : Opts.RewriteMapFiles) 348 MapParser.parse(MapFile, &DL); 349 350 MPM->add(createRewriteSymbolsPass(DL)); 351 } 352 353 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 354 switch (CodeGenOpts.OptimizationLevel) { 355 default: 356 llvm_unreachable("Invalid optimization level!"); 357 case 0: 358 return CodeGenOpt::None; 359 case 1: 360 return CodeGenOpt::Less; 361 case 2: 362 return CodeGenOpt::Default; // O2/Os/Oz 363 case 3: 364 return CodeGenOpt::Aggressive; 365 } 366 } 367 368 static Optional<llvm::CodeModel::Model> 369 getCodeModel(const CodeGenOptions &CodeGenOpts) { 370 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 371 .Case("small", llvm::CodeModel::Small) 372 .Case("kernel", llvm::CodeModel::Kernel) 373 .Case("medium", llvm::CodeModel::Medium) 374 .Case("large", llvm::CodeModel::Large) 375 .Case("default", ~1u) 376 .Default(~0u); 377 assert(CodeModel != ~0u && "invalid code model!"); 378 if (CodeModel == ~1u) 379 return None; 380 return static_cast<llvm::CodeModel::Model>(CodeModel); 381 } 382 383 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 384 if (Action == Backend_EmitObj) 385 return TargetMachine::CGFT_ObjectFile; 386 else if (Action == Backend_EmitMCNull) 387 return TargetMachine::CGFT_Null; 388 else { 389 assert(Action == Backend_EmitAssembly && "Invalid action!"); 390 return TargetMachine::CGFT_AssemblyFile; 391 } 392 } 393 394 static void initTargetOptions(llvm::TargetOptions &Options, 395 const CodeGenOptions &CodeGenOpts, 396 const clang::TargetOptions &TargetOpts, 397 const LangOptions &LangOpts, 398 const HeaderSearchOptions &HSOpts) { 399 Options.ThreadModel = 400 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 401 .Case("posix", llvm::ThreadModel::POSIX) 402 .Case("single", llvm::ThreadModel::Single); 403 404 // Set float ABI type. 405 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 406 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 407 "Invalid Floating Point ABI!"); 408 Options.FloatABIType = 409 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 410 .Case("soft", llvm::FloatABI::Soft) 411 .Case("softfp", llvm::FloatABI::Soft) 412 .Case("hard", llvm::FloatABI::Hard) 413 .Default(llvm::FloatABI::Default); 414 415 // Set FP fusion mode. 416 switch (LangOpts.getDefaultFPContractMode()) { 417 case LangOptions::FPC_Off: 418 // Preserve any contraction performed by the front-end. (Strict performs 419 // splitting of the muladd instrinsic in the backend.) 420 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 421 break; 422 case LangOptions::FPC_On: 423 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 424 break; 425 case LangOptions::FPC_Fast: 426 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 427 break; 428 } 429 430 Options.UseInitArray = CodeGenOpts.UseInitArray; 431 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 432 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 433 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 434 435 // Set EABI version. 436 Options.EABIVersion = TargetOpts.EABIVersion; 437 438 if (LangOpts.SjLjExceptions) 439 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 440 if (LangOpts.SEHExceptions) 441 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 442 if (LangOpts.DWARFExceptions) 443 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 444 445 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 446 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 447 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 448 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 449 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 450 Options.FunctionSections = CodeGenOpts.FunctionSections; 451 Options.DataSections = CodeGenOpts.DataSections; 452 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 453 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 454 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 455 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 456 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 457 458 if (CodeGenOpts.EnableSplitDwarf) 459 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 460 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 461 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 462 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 463 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 464 Options.MCOptions.MCIncrementalLinkerCompatible = 465 CodeGenOpts.IncrementalLinkerCompatible; 466 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 467 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 468 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 469 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 470 Options.MCOptions.ABIName = TargetOpts.ABI; 471 for (const auto &Entry : HSOpts.UserEntries) 472 if (!Entry.IsFramework && 473 (Entry.Group == frontend::IncludeDirGroup::Quoted || 474 Entry.Group == frontend::IncludeDirGroup::Angled || 475 Entry.Group == frontend::IncludeDirGroup::System)) 476 Options.MCOptions.IASSearchPaths.push_back( 477 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 478 } 479 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 480 if (CodeGenOpts.DisableGCov) 481 return None; 482 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 483 return None; 484 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 485 // LLVM's -default-gcov-version flag is set to something invalid. 486 GCOVOptions Options; 487 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 488 Options.EmitData = CodeGenOpts.EmitGcovArcs; 489 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 490 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 491 Options.NoRedZone = CodeGenOpts.DisableRedZone; 492 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 493 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 494 return Options; 495 } 496 497 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 498 legacy::FunctionPassManager &FPM) { 499 // Handle disabling of all LLVM passes, where we want to preserve the 500 // internal module before any optimization. 501 if (CodeGenOpts.DisableLLVMPasses) 502 return; 503 504 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 505 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 506 // are inserted before PMBuilder ones - they'd get the default-constructed 507 // TLI with an unknown target otherwise. 508 Triple TargetTriple(TheModule->getTargetTriple()); 509 std::unique_ptr<TargetLibraryInfoImpl> TLII( 510 createTLII(TargetTriple, CodeGenOpts)); 511 512 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 513 514 // At O0 and O1 we only run the always inliner which is more efficient. At 515 // higher optimization levels we run the normal inliner. 516 if (CodeGenOpts.OptimizationLevel <= 1) { 517 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 518 !CodeGenOpts.DisableLifetimeMarkers); 519 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 520 } else { 521 // We do not want to inline hot callsites for SamplePGO module-summary build 522 // because profile annotation will happen again in ThinLTO backend, and we 523 // want the IR of the hot path to match the profile. 524 PMBuilder.Inliner = createFunctionInliningPass( 525 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 526 (!CodeGenOpts.SampleProfileFile.empty() && 527 CodeGenOpts.PrepareForThinLTO)); 528 } 529 530 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 531 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 532 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 533 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 534 535 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 536 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 537 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 538 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 539 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 540 541 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 542 543 if (TM) 544 TM->adjustPassManager(PMBuilder); 545 546 if (CodeGenOpts.DebugInfoForProfiling || 547 !CodeGenOpts.SampleProfileFile.empty()) 548 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 549 addAddDiscriminatorsPass); 550 551 // In ObjC ARC mode, add the main ARC optimization passes. 552 if (LangOpts.ObjCAutoRefCount) { 553 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 554 addObjCARCExpandPass); 555 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 556 addObjCARCAPElimPass); 557 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 558 addObjCARCOptPass); 559 } 560 561 if (LangOpts.CoroutinesTS) 562 addCoroutinePassesToExtensionPoints(PMBuilder); 563 564 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 565 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 566 addBoundsCheckingPass); 567 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 568 addBoundsCheckingPass); 569 } 570 571 if (CodeGenOpts.SanitizeCoverageType || 572 CodeGenOpts.SanitizeCoverageIndirectCalls || 573 CodeGenOpts.SanitizeCoverageTraceCmp) { 574 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 575 addSanitizerCoveragePass); 576 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 577 addSanitizerCoveragePass); 578 } 579 580 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 581 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 582 addAddressSanitizerPasses); 583 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 584 addAddressSanitizerPasses); 585 } 586 587 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 588 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 589 addKernelAddressSanitizerPasses); 590 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 591 addKernelAddressSanitizerPasses); 592 } 593 594 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 595 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 596 addHWAddressSanitizerPasses); 597 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 598 addHWAddressSanitizerPasses); 599 } 600 601 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 602 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 603 addKernelHWAddressSanitizerPasses); 604 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 605 addKernelHWAddressSanitizerPasses); 606 } 607 608 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 609 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 610 addMemorySanitizerPass); 611 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 612 addMemorySanitizerPass); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 616 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 617 addThreadSanitizerPass); 618 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 619 addThreadSanitizerPass); 620 } 621 622 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 623 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 624 addDataFlowSanitizerPass); 625 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 626 addDataFlowSanitizerPass); 627 } 628 629 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 630 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 631 addEfficiencySanitizerPass); 632 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 633 addEfficiencySanitizerPass); 634 } 635 636 // Set up the per-function pass manager. 637 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 638 if (CodeGenOpts.VerifyModule) 639 FPM.add(createVerifierPass()); 640 641 // Set up the per-module pass manager. 642 if (!CodeGenOpts.RewriteMapFiles.empty()) 643 addSymbolRewriterPass(CodeGenOpts, &MPM); 644 645 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 646 MPM.add(createGCOVProfilerPass(*Options)); 647 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 648 MPM.add(createStripSymbolsPass(true)); 649 } 650 651 if (CodeGenOpts.hasProfileClangInstr()) { 652 InstrProfOptions Options; 653 Options.NoRedZone = CodeGenOpts.DisableRedZone; 654 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 655 MPM.add(createInstrProfilingLegacyPass(Options)); 656 } 657 if (CodeGenOpts.hasProfileIRInstr()) { 658 PMBuilder.EnablePGOInstrGen = true; 659 if (!CodeGenOpts.InstrProfileOutput.empty()) 660 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 661 else 662 PMBuilder.PGOInstrGen = DefaultProfileGenName; 663 } 664 if (CodeGenOpts.hasProfileIRUse()) 665 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 666 667 if (!CodeGenOpts.SampleProfileFile.empty()) 668 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 669 670 PMBuilder.populateFunctionPassManager(FPM); 671 PMBuilder.populateModulePassManager(MPM); 672 } 673 674 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 675 SmallVector<const char *, 16> BackendArgs; 676 BackendArgs.push_back("clang"); // Fake program name. 677 if (!CodeGenOpts.DebugPass.empty()) { 678 BackendArgs.push_back("-debug-pass"); 679 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 680 } 681 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 682 BackendArgs.push_back("-limit-float-precision"); 683 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 684 } 685 BackendArgs.push_back(nullptr); 686 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 687 BackendArgs.data()); 688 } 689 690 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 691 // Create the TargetMachine for generating code. 692 std::string Error; 693 std::string Triple = TheModule->getTargetTriple(); 694 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 695 if (!TheTarget) { 696 if (MustCreateTM) 697 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 698 return; 699 } 700 701 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 702 std::string FeaturesStr = 703 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 704 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 705 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 706 707 llvm::TargetOptions Options; 708 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 709 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 710 Options, RM, CM, OptLevel)); 711 } 712 713 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 714 BackendAction Action, 715 raw_pwrite_stream &OS, 716 raw_pwrite_stream *DwoOS) { 717 // Add LibraryInfo. 718 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 719 std::unique_ptr<TargetLibraryInfoImpl> TLII( 720 createTLII(TargetTriple, CodeGenOpts)); 721 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 722 723 // Normal mode, emit a .s or .o file by running the code generator. Note, 724 // this also adds codegenerator level optimization passes. 725 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 726 727 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 728 // "codegen" passes so that it isn't run multiple times when there is 729 // inlining happening. 730 if (CodeGenOpts.OptimizationLevel > 0) 731 CodeGenPasses.add(createObjCARCContractPass()); 732 733 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 734 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 735 Diags.Report(diag::err_fe_unable_to_interface_with_target); 736 return false; 737 } 738 739 return true; 740 } 741 742 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 743 std::unique_ptr<raw_pwrite_stream> OS) { 744 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 745 746 setCommandLineOpts(CodeGenOpts); 747 748 bool UsesCodeGen = (Action != Backend_EmitNothing && 749 Action != Backend_EmitBC && 750 Action != Backend_EmitLL); 751 CreateTargetMachine(UsesCodeGen); 752 753 if (UsesCodeGen && !TM) 754 return; 755 if (TM) 756 TheModule->setDataLayout(TM->createDataLayout()); 757 758 legacy::PassManager PerModulePasses; 759 PerModulePasses.add( 760 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 761 762 legacy::FunctionPassManager PerFunctionPasses(TheModule); 763 PerFunctionPasses.add( 764 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 765 766 CreatePasses(PerModulePasses, PerFunctionPasses); 767 768 legacy::PassManager CodeGenPasses; 769 CodeGenPasses.add( 770 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 771 772 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 773 774 switch (Action) { 775 case Backend_EmitNothing: 776 break; 777 778 case Backend_EmitBC: 779 if (CodeGenOpts.PrepareForThinLTO) { 780 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 781 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 782 if (!ThinLinkOS) 783 return; 784 } 785 PerModulePasses.add(createWriteThinLTOBitcodePass( 786 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 787 } else { 788 // Emit a module summary by default for Regular LTO except for ld64 789 // targets 790 bool EmitLTOSummary = 791 (CodeGenOpts.PrepareForLTO && 792 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 793 llvm::Triple::Apple); 794 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 795 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 796 797 PerModulePasses.add( 798 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 799 EmitLTOSummary)); 800 } 801 break; 802 803 case Backend_EmitLL: 804 PerModulePasses.add( 805 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 806 break; 807 808 default: 809 if (!CodeGenOpts.SplitDwarfFile.empty()) { 810 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 811 if (!DwoOS) 812 return; 813 } 814 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 815 DwoOS ? &DwoOS->os() : nullptr)) 816 return; 817 } 818 819 // Before executing passes, print the final values of the LLVM options. 820 cl::PrintOptionValues(); 821 822 // Run passes. For now we do all passes at once, but eventually we 823 // would like to have the option of streaming code generation. 824 825 { 826 PrettyStackTraceString CrashInfo("Per-function optimization"); 827 828 PerFunctionPasses.doInitialization(); 829 for (Function &F : *TheModule) 830 if (!F.isDeclaration()) 831 PerFunctionPasses.run(F); 832 PerFunctionPasses.doFinalization(); 833 } 834 835 { 836 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 837 PerModulePasses.run(*TheModule); 838 } 839 840 { 841 PrettyStackTraceString CrashInfo("Code generation"); 842 CodeGenPasses.run(*TheModule); 843 } 844 845 if (ThinLinkOS) 846 ThinLinkOS->keep(); 847 if (DwoOS) 848 DwoOS->keep(); 849 } 850 851 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 852 switch (Opts.OptimizationLevel) { 853 default: 854 llvm_unreachable("Invalid optimization level!"); 855 856 case 1: 857 return PassBuilder::O1; 858 859 case 2: 860 switch (Opts.OptimizeSize) { 861 default: 862 llvm_unreachable("Invalid optimization level for size!"); 863 864 case 0: 865 return PassBuilder::O2; 866 867 case 1: 868 return PassBuilder::Os; 869 870 case 2: 871 return PassBuilder::Oz; 872 } 873 874 case 3: 875 return PassBuilder::O3; 876 } 877 } 878 879 /// A clean version of `EmitAssembly` that uses the new pass manager. 880 /// 881 /// Not all features are currently supported in this system, but where 882 /// necessary it falls back to the legacy pass manager to at least provide 883 /// basic functionality. 884 /// 885 /// This API is planned to have its functionality finished and then to replace 886 /// `EmitAssembly` at some point in the future when the default switches. 887 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 888 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 889 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 890 setCommandLineOpts(CodeGenOpts); 891 892 // The new pass manager always makes a target machine available to passes 893 // during construction. 894 CreateTargetMachine(/*MustCreateTM*/ true); 895 if (!TM) 896 // This will already be diagnosed, just bail. 897 return; 898 TheModule->setDataLayout(TM->createDataLayout()); 899 900 Optional<PGOOptions> PGOOpt; 901 902 if (CodeGenOpts.hasProfileIRInstr()) 903 // -fprofile-generate. 904 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 905 ? DefaultProfileGenName 906 : CodeGenOpts.InstrProfileOutput, 907 "", "", true, CodeGenOpts.DebugInfoForProfiling); 908 else if (CodeGenOpts.hasProfileIRUse()) 909 // -fprofile-use. 910 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 911 CodeGenOpts.DebugInfoForProfiling); 912 else if (!CodeGenOpts.SampleProfileFile.empty()) 913 // -fprofile-sample-use 914 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 915 CodeGenOpts.DebugInfoForProfiling); 916 else if (CodeGenOpts.DebugInfoForProfiling) 917 // -fdebug-info-for-profiling 918 PGOOpt = PGOOptions("", "", "", false, true); 919 920 PassBuilder PB(TM.get(), PGOOpt); 921 922 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 923 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 924 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 925 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 926 927 // Register the AA manager first so that our version is the one used. 928 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 929 930 // Register the target library analysis directly and give it a customized 931 // preset TLI. 932 Triple TargetTriple(TheModule->getTargetTriple()); 933 std::unique_ptr<TargetLibraryInfoImpl> TLII( 934 createTLII(TargetTriple, CodeGenOpts)); 935 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 936 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 937 938 // Register all the basic analyses with the managers. 939 PB.registerModuleAnalyses(MAM); 940 PB.registerCGSCCAnalyses(CGAM); 941 PB.registerFunctionAnalyses(FAM); 942 PB.registerLoopAnalyses(LAM); 943 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 944 945 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 946 947 if (!CodeGenOpts.DisableLLVMPasses) { 948 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 949 bool IsLTO = CodeGenOpts.PrepareForLTO; 950 951 if (CodeGenOpts.OptimizationLevel == 0) { 952 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 953 MPM.addPass(GCOVProfilerPass(*Options)); 954 955 // Build a minimal pipeline based on the semantics required by Clang, 956 // which is just that always inlining occurs. 957 MPM.addPass(AlwaysInlinerPass()); 958 959 // At -O0 we directly run necessary sanitizer passes. 960 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 961 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 962 963 // Lastly, add a semantically necessary pass for LTO. 964 if (IsLTO || IsThinLTO) 965 MPM.addPass(NameAnonGlobalPass()); 966 } else { 967 // Map our optimization levels into one of the distinct levels used to 968 // configure the pipeline. 969 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 970 971 // Register callbacks to schedule sanitizer passes at the appropriate part of 972 // the pipeline. 973 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 974 PB.registerScalarOptimizerLateEPCallback( 975 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 976 FPM.addPass(BoundsCheckingPass()); 977 }); 978 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 979 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 980 MPM.addPass(GCOVProfilerPass(*Options)); 981 }); 982 983 if (IsThinLTO) { 984 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 985 Level, CodeGenOpts.DebugPassManager); 986 MPM.addPass(NameAnonGlobalPass()); 987 } else if (IsLTO) { 988 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 989 CodeGenOpts.DebugPassManager); 990 MPM.addPass(NameAnonGlobalPass()); 991 } else { 992 MPM = PB.buildPerModuleDefaultPipeline(Level, 993 CodeGenOpts.DebugPassManager); 994 } 995 } 996 } 997 998 // FIXME: We still use the legacy pass manager to do code generation. We 999 // create that pass manager here and use it as needed below. 1000 legacy::PassManager CodeGenPasses; 1001 bool NeedCodeGen = false; 1002 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1003 1004 // Append any output we need to the pass manager. 1005 switch (Action) { 1006 case Backend_EmitNothing: 1007 break; 1008 1009 case Backend_EmitBC: 1010 if (CodeGenOpts.PrepareForThinLTO) { 1011 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1012 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1013 if (!ThinLinkOS) 1014 return; 1015 } 1016 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1017 : nullptr)); 1018 } else { 1019 // Emit a module summary by default for Regular LTO except for ld64 1020 // targets 1021 bool EmitLTOSummary = 1022 (CodeGenOpts.PrepareForLTO && 1023 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1024 llvm::Triple::Apple); 1025 if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO")) 1026 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1027 1028 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1029 EmitLTOSummary)); 1030 } 1031 break; 1032 1033 case Backend_EmitLL: 1034 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1035 break; 1036 1037 case Backend_EmitAssembly: 1038 case Backend_EmitMCNull: 1039 case Backend_EmitObj: 1040 NeedCodeGen = true; 1041 CodeGenPasses.add( 1042 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1043 if (!CodeGenOpts.SplitDwarfFile.empty()) { 1044 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile); 1045 if (!DwoOS) 1046 return; 1047 } 1048 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1049 DwoOS ? &DwoOS->os() : nullptr)) 1050 // FIXME: Should we handle this error differently? 1051 return; 1052 break; 1053 } 1054 1055 // Before executing passes, print the final values of the LLVM options. 1056 cl::PrintOptionValues(); 1057 1058 // Now that we have all of the passes ready, run them. 1059 { 1060 PrettyStackTraceString CrashInfo("Optimizer"); 1061 MPM.run(*TheModule, MAM); 1062 } 1063 1064 // Now if needed, run the legacy PM for codegen. 1065 if (NeedCodeGen) { 1066 PrettyStackTraceString CrashInfo("Code generation"); 1067 CodeGenPasses.run(*TheModule); 1068 } 1069 1070 if (ThinLinkOS) 1071 ThinLinkOS->keep(); 1072 if (DwoOS) 1073 DwoOS->keep(); 1074 } 1075 1076 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1077 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1078 if (!BMsOrErr) 1079 return BMsOrErr.takeError(); 1080 1081 // The bitcode file may contain multiple modules, we want the one that is 1082 // marked as being the ThinLTO module. 1083 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1084 return *Bm; 1085 1086 return make_error<StringError>("Could not find module summary", 1087 inconvertibleErrorCode()); 1088 } 1089 1090 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1091 for (BitcodeModule &BM : BMs) { 1092 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1093 if (LTOInfo && LTOInfo->IsThinLTO) 1094 return &BM; 1095 } 1096 return nullptr; 1097 } 1098 1099 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1100 const HeaderSearchOptions &HeaderOpts, 1101 const CodeGenOptions &CGOpts, 1102 const clang::TargetOptions &TOpts, 1103 const LangOptions &LOpts, 1104 std::unique_ptr<raw_pwrite_stream> OS, 1105 std::string SampleProfile, 1106 BackendAction Action) { 1107 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1108 ModuleToDefinedGVSummaries; 1109 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1110 1111 setCommandLineOpts(CGOpts); 1112 1113 // We can simply import the values mentioned in the combined index, since 1114 // we should only invoke this using the individual indexes written out 1115 // via a WriteIndexesThinBackend. 1116 FunctionImporter::ImportMapTy ImportList; 1117 for (auto &GlobalList : *CombinedIndex) { 1118 // Ignore entries for undefined references. 1119 if (GlobalList.second.SummaryList.empty()) 1120 continue; 1121 1122 auto GUID = GlobalList.first; 1123 assert(GlobalList.second.SummaryList.size() == 1 && 1124 "Expected individual combined index to have one summary per GUID"); 1125 auto &Summary = GlobalList.second.SummaryList[0]; 1126 // Skip the summaries for the importing module. These are included to 1127 // e.g. record required linkage changes. 1128 if (Summary->modulePath() == M->getModuleIdentifier()) 1129 continue; 1130 // Doesn't matter what value we plug in to the map, just needs an entry 1131 // to provoke importing by thinBackend. 1132 ImportList[Summary->modulePath()][GUID] = 1; 1133 } 1134 1135 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1136 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1137 1138 for (auto &I : ImportList) { 1139 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1140 llvm::MemoryBuffer::getFile(I.first()); 1141 if (!MBOrErr) { 1142 errs() << "Error loading imported file '" << I.first() 1143 << "': " << MBOrErr.getError().message() << "\n"; 1144 return; 1145 } 1146 1147 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1148 if (!BMOrErr) { 1149 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1150 errs() << "Error loading imported file '" << I.first() 1151 << "': " << EIB.message() << '\n'; 1152 }); 1153 return; 1154 } 1155 ModuleMap.insert({I.first(), *BMOrErr}); 1156 1157 OwnedImports.push_back(std::move(*MBOrErr)); 1158 } 1159 auto AddStream = [&](size_t Task) { 1160 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1161 }; 1162 lto::Config Conf; 1163 if (CGOpts.SaveTempsFilePrefix != "") { 1164 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1165 /* UseInputModulePath */ false)) { 1166 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1167 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1168 << '\n'; 1169 }); 1170 } 1171 } 1172 Conf.CPU = TOpts.CPU; 1173 Conf.CodeModel = getCodeModel(CGOpts); 1174 Conf.MAttrs = TOpts.Features; 1175 Conf.RelocModel = CGOpts.RelocationModel; 1176 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1177 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1178 Conf.SampleProfile = std::move(SampleProfile); 1179 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1180 Conf.DebugPassManager = CGOpts.DebugPassManager; 1181 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1182 Conf.RemarksFilename = CGOpts.OptRecordFile; 1183 Conf.DwoPath = CGOpts.SplitDwarfFile; 1184 switch (Action) { 1185 case Backend_EmitNothing: 1186 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1187 return false; 1188 }; 1189 break; 1190 case Backend_EmitLL: 1191 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1192 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1193 return false; 1194 }; 1195 break; 1196 case Backend_EmitBC: 1197 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1198 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1199 return false; 1200 }; 1201 break; 1202 default: 1203 Conf.CGFileType = getCodeGenFileType(Action); 1204 break; 1205 } 1206 if (Error E = thinBackend( 1207 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1208 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1209 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1210 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1211 }); 1212 } 1213 } 1214 1215 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1216 const HeaderSearchOptions &HeaderOpts, 1217 const CodeGenOptions &CGOpts, 1218 const clang::TargetOptions &TOpts, 1219 const LangOptions &LOpts, 1220 const llvm::DataLayout &TDesc, Module *M, 1221 BackendAction Action, 1222 std::unique_ptr<raw_pwrite_stream> OS) { 1223 std::unique_ptr<llvm::Module> EmptyModule; 1224 if (!CGOpts.ThinLTOIndexFile.empty()) { 1225 // If we are performing a ThinLTO importing compile, load the function index 1226 // into memory and pass it into runThinLTOBackend, which will run the 1227 // function importer and invoke LTO passes. 1228 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1229 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1230 /*IgnoreEmptyThinLTOIndexFile*/true); 1231 if (!IndexOrErr) { 1232 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1233 "Error loading index file '" + 1234 CGOpts.ThinLTOIndexFile + "': "); 1235 return; 1236 } 1237 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1238 // A null CombinedIndex means we should skip ThinLTO compilation 1239 // (LLVM will optionally ignore empty index files, returning null instead 1240 // of an error). 1241 if (CombinedIndex) { 1242 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1243 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1244 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1245 Action); 1246 return; 1247 } 1248 // Distributed indexing detected that nothing from the module is needed 1249 // for the final linking. So we can skip the compilation. We sill need to 1250 // output an empty object file to make sure that a linker does not fail 1251 // trying to read it. Also for some features, like CFI, we must skip 1252 // the compilation as CombinedIndex does not contain all required 1253 // information. 1254 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1255 EmptyModule->setTargetTriple(M->getTargetTriple()); 1256 M = EmptyModule.get(); 1257 } 1258 } 1259 1260 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1261 1262 if (CGOpts.ExperimentalNewPassManager) 1263 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1264 else 1265 AsmHelper.EmitAssembly(Action, std::move(OS)); 1266 1267 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1268 // DataLayout. 1269 if (AsmHelper.TM) { 1270 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1271 if (DLDesc != TDesc.getStringRepresentation()) { 1272 unsigned DiagID = Diags.getCustomDiagID( 1273 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1274 "expected target description '%1'"); 1275 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1276 } 1277 } 1278 } 1279 1280 static const char* getSectionNameForBitcode(const Triple &T) { 1281 switch (T.getObjectFormat()) { 1282 case Triple::MachO: 1283 return "__LLVM,__bitcode"; 1284 case Triple::COFF: 1285 case Triple::ELF: 1286 case Triple::Wasm: 1287 case Triple::UnknownObjectFormat: 1288 return ".llvmbc"; 1289 } 1290 llvm_unreachable("Unimplemented ObjectFormatType"); 1291 } 1292 1293 static const char* getSectionNameForCommandline(const Triple &T) { 1294 switch (T.getObjectFormat()) { 1295 case Triple::MachO: 1296 return "__LLVM,__cmdline"; 1297 case Triple::COFF: 1298 case Triple::ELF: 1299 case Triple::Wasm: 1300 case Triple::UnknownObjectFormat: 1301 return ".llvmcmd"; 1302 } 1303 llvm_unreachable("Unimplemented ObjectFormatType"); 1304 } 1305 1306 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1307 // __LLVM,__bitcode section. 1308 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1309 llvm::MemoryBufferRef Buf) { 1310 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1311 return; 1312 1313 // Save llvm.compiler.used and remote it. 1314 SmallVector<Constant*, 2> UsedArray; 1315 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1316 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1317 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1318 for (auto *GV : UsedGlobals) { 1319 if (GV->getName() != "llvm.embedded.module" && 1320 GV->getName() != "llvm.cmdline") 1321 UsedArray.push_back( 1322 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1323 } 1324 if (Used) 1325 Used->eraseFromParent(); 1326 1327 // Embed the bitcode for the llvm module. 1328 std::string Data; 1329 ArrayRef<uint8_t> ModuleData; 1330 Triple T(M->getTargetTriple()); 1331 // Create a constant that contains the bitcode. 1332 // In case of embedding a marker, ignore the input Buf and use the empty 1333 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1334 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1335 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1336 (const unsigned char *)Buf.getBufferEnd())) { 1337 // If the input is LLVM Assembly, bitcode is produced by serializing 1338 // the module. Use-lists order need to be perserved in this case. 1339 llvm::raw_string_ostream OS(Data); 1340 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1341 ModuleData = 1342 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1343 } else 1344 // If the input is LLVM bitcode, write the input byte stream directly. 1345 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1346 Buf.getBufferSize()); 1347 } 1348 llvm::Constant *ModuleConstant = 1349 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1350 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1351 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1352 ModuleConstant); 1353 GV->setSection(getSectionNameForBitcode(T)); 1354 UsedArray.push_back( 1355 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1356 if (llvm::GlobalVariable *Old = 1357 M->getGlobalVariable("llvm.embedded.module", true)) { 1358 assert(Old->hasOneUse() && 1359 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1360 GV->takeName(Old); 1361 Old->eraseFromParent(); 1362 } else { 1363 GV->setName("llvm.embedded.module"); 1364 } 1365 1366 // Skip if only bitcode needs to be embedded. 1367 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1368 // Embed command-line options. 1369 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1370 CGOpts.CmdArgs.size()); 1371 llvm::Constant *CmdConstant = 1372 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1373 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1374 llvm::GlobalValue::PrivateLinkage, 1375 CmdConstant); 1376 GV->setSection(getSectionNameForCommandline(T)); 1377 UsedArray.push_back( 1378 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1379 if (llvm::GlobalVariable *Old = 1380 M->getGlobalVariable("llvm.cmdline", true)) { 1381 assert(Old->hasOneUse() && 1382 "llvm.cmdline can only be used once in llvm.compiler.used"); 1383 GV->takeName(Old); 1384 Old->eraseFromParent(); 1385 } else { 1386 GV->setName("llvm.cmdline"); 1387 } 1388 } 1389 1390 if (UsedArray.empty()) 1391 return; 1392 1393 // Recreate llvm.compiler.used. 1394 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1395 auto *NewUsed = new GlobalVariable( 1396 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1397 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1398 NewUsed->setSection("llvm.metadata"); 1399 } 1400