1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/GCOVProfiler.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 54 #include "llvm/Transforms/Instrumentation.h" 55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 56 #include "llvm/Transforms/ObjCARC.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 60 #include "llvm/Transforms/Utils/SymbolRewriter.h" 61 #include <memory> 62 using namespace clang; 63 using namespace llvm; 64 65 namespace { 66 67 // Default filename used for profile generation. 68 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 69 70 class EmitAssemblyHelper { 71 DiagnosticsEngine &Diags; 72 const HeaderSearchOptions &HSOpts; 73 const CodeGenOptions &CodeGenOpts; 74 const clang::TargetOptions &TargetOpts; 75 const LangOptions &LangOpts; 76 Module *TheModule; 77 78 Timer CodeGenerationTime; 79 80 std::unique_ptr<raw_pwrite_stream> OS; 81 82 TargetIRAnalysis getTargetIRAnalysis() const { 83 if (TM) 84 return TM->getTargetIRAnalysis(); 85 86 return TargetIRAnalysis(); 87 } 88 89 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 90 91 /// Generates the TargetMachine. 92 /// Leaves TM unchanged if it is unable to create the target machine. 93 /// Some of our clang tests specify triples which are not built 94 /// into clang. This is okay because these tests check the generated 95 /// IR, and they require DataLayout which depends on the triple. 96 /// In this case, we allow this method to fail and not report an error. 97 /// When MustCreateTM is used, we print an error if we are unable to load 98 /// the requested target. 99 void CreateTargetMachine(bool MustCreateTM); 100 101 /// Add passes necessary to emit assembly or LLVM IR. 102 /// 103 /// \return True on success. 104 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 105 raw_pwrite_stream &OS); 106 107 public: 108 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 109 const HeaderSearchOptions &HeaderSearchOpts, 110 const CodeGenOptions &CGOpts, 111 const clang::TargetOptions &TOpts, 112 const LangOptions &LOpts, Module *M) 113 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 114 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 115 CodeGenerationTime("codegen", "Code Generation Time") {} 116 117 ~EmitAssemblyHelper() { 118 if (CodeGenOpts.DisableFree) 119 BuryPointer(std::move(TM)); 120 } 121 122 std::unique_ptr<TargetMachine> TM; 123 124 void EmitAssembly(BackendAction Action, 125 std::unique_ptr<raw_pwrite_stream> OS); 126 127 void EmitAssemblyWithNewPassManager(BackendAction Action, 128 std::unique_ptr<raw_pwrite_stream> OS); 129 }; 130 131 // We need this wrapper to access LangOpts and CGOpts from extension functions 132 // that we add to the PassManagerBuilder. 133 class PassManagerBuilderWrapper : public PassManagerBuilder { 134 public: 135 PassManagerBuilderWrapper(const Triple &TargetTriple, 136 const CodeGenOptions &CGOpts, 137 const LangOptions &LangOpts) 138 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 139 LangOpts(LangOpts) {} 140 const Triple &getTargetTriple() const { return TargetTriple; } 141 const CodeGenOptions &getCGOpts() const { return CGOpts; } 142 const LangOptions &getLangOpts() const { return LangOpts; } 143 144 private: 145 const Triple &TargetTriple; 146 const CodeGenOptions &CGOpts; 147 const LangOptions &LangOpts; 148 }; 149 } 150 151 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 152 if (Builder.OptLevel > 0) 153 PM.add(createObjCARCAPElimPass()); 154 } 155 156 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 157 if (Builder.OptLevel > 0) 158 PM.add(createObjCARCExpandPass()); 159 } 160 161 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCOptPass()); 164 } 165 166 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 167 legacy::PassManagerBase &PM) { 168 PM.add(createAddDiscriminatorsPass()); 169 } 170 171 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 172 legacy::PassManagerBase &PM) { 173 PM.add(createBoundsCheckingLegacyPass()); 174 } 175 176 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 const PassManagerBuilderWrapper &BuilderWrapper = 179 static_cast<const PassManagerBuilderWrapper&>(Builder); 180 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 181 SanitizerCoverageOptions Opts; 182 Opts.CoverageType = 183 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 184 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 185 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 186 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 187 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 188 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 189 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 190 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 191 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 192 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 193 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 194 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 195 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 196 PM.add(createSanitizerCoverageModulePass(Opts)); 197 } 198 199 // Check if ASan should use GC-friendly instrumentation for globals. 200 // First of all, there is no point if -fdata-sections is off (expect for MachO, 201 // where this is not a factor). Also, on ELF this feature requires an assembler 202 // extension that only works with -integrated-as at the moment. 203 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 204 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 205 return false; 206 switch (T.getObjectFormat()) { 207 case Triple::MachO: 208 case Triple::COFF: 209 return true; 210 case Triple::ELF: 211 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 212 default: 213 return false; 214 } 215 } 216 217 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 218 legacy::PassManagerBase &PM) { 219 const PassManagerBuilderWrapper &BuilderWrapper = 220 static_cast<const PassManagerBuilderWrapper&>(Builder); 221 const Triple &T = BuilderWrapper.getTargetTriple(); 222 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 223 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 224 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 225 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 226 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 227 UseAfterScope)); 228 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 229 UseGlobalsGC)); 230 } 231 232 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 233 legacy::PassManagerBase &PM) { 234 PM.add(createAddressSanitizerFunctionPass( 235 /*CompileKernel*/ true, 236 /*Recover*/ true, /*UseAfterScope*/ false)); 237 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 238 /*Recover*/true)); 239 } 240 241 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 242 legacy::PassManagerBase &PM) { 243 const PassManagerBuilderWrapper &BuilderWrapper = 244 static_cast<const PassManagerBuilderWrapper &>(Builder); 245 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 247 PM.add(createHWAddressSanitizerPass(Recover)); 248 } 249 250 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 251 legacy::PassManagerBase &PM) { 252 const PassManagerBuilderWrapper &BuilderWrapper = 253 static_cast<const PassManagerBuilderWrapper&>(Builder); 254 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 255 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 256 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 257 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 258 259 // MemorySanitizer inserts complex instrumentation that mostly follows 260 // the logic of the original code, but operates on "shadow" values. 261 // It can benefit from re-running some general purpose optimization passes. 262 if (Builder.OptLevel > 0) { 263 PM.add(createEarlyCSEPass()); 264 PM.add(createReassociatePass()); 265 PM.add(createLICMPass()); 266 PM.add(createGVNPass()); 267 PM.add(createInstructionCombiningPass()); 268 PM.add(createDeadStoreEliminationPass()); 269 } 270 } 271 272 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createThreadSanitizerPass()); 275 } 276 277 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 278 legacy::PassManagerBase &PM) { 279 const PassManagerBuilderWrapper &BuilderWrapper = 280 static_cast<const PassManagerBuilderWrapper&>(Builder); 281 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 282 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 283 } 284 285 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 286 legacy::PassManagerBase &PM) { 287 const PassManagerBuilderWrapper &BuilderWrapper = 288 static_cast<const PassManagerBuilderWrapper&>(Builder); 289 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 290 EfficiencySanitizerOptions Opts; 291 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 292 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 293 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 294 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 295 PM.add(createEfficiencySanitizerPass(Opts)); 296 } 297 298 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 299 const CodeGenOptions &CodeGenOpts) { 300 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 301 if (!CodeGenOpts.SimplifyLibCalls) 302 TLII->disableAllFunctions(); 303 else { 304 // Disable individual libc/libm calls in TargetLibraryInfo. 305 LibFunc F; 306 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 307 if (TLII->getLibFunc(FuncName, F)) 308 TLII->setUnavailable(F); 309 } 310 311 switch (CodeGenOpts.getVecLib()) { 312 case CodeGenOptions::Accelerate: 313 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 314 break; 315 case CodeGenOptions::SVML: 316 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 317 break; 318 default: 319 break; 320 } 321 return TLII; 322 } 323 324 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 325 legacy::PassManager *MPM) { 326 llvm::SymbolRewriter::RewriteDescriptorList DL; 327 328 llvm::SymbolRewriter::RewriteMapParser MapParser; 329 for (const auto &MapFile : Opts.RewriteMapFiles) 330 MapParser.parse(MapFile, &DL); 331 332 MPM->add(createRewriteSymbolsPass(DL)); 333 } 334 335 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 336 switch (CodeGenOpts.OptimizationLevel) { 337 default: 338 llvm_unreachable("Invalid optimization level!"); 339 case 0: 340 return CodeGenOpt::None; 341 case 1: 342 return CodeGenOpt::Less; 343 case 2: 344 return CodeGenOpt::Default; // O2/Os/Oz 345 case 3: 346 return CodeGenOpt::Aggressive; 347 } 348 } 349 350 static Optional<llvm::CodeModel::Model> 351 getCodeModel(const CodeGenOptions &CodeGenOpts) { 352 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 353 .Case("small", llvm::CodeModel::Small) 354 .Case("kernel", llvm::CodeModel::Kernel) 355 .Case("medium", llvm::CodeModel::Medium) 356 .Case("large", llvm::CodeModel::Large) 357 .Case("default", ~1u) 358 .Default(~0u); 359 assert(CodeModel != ~0u && "invalid code model!"); 360 if (CodeModel == ~1u) 361 return None; 362 return static_cast<llvm::CodeModel::Model>(CodeModel); 363 } 364 365 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 366 if (Action == Backend_EmitObj) 367 return TargetMachine::CGFT_ObjectFile; 368 else if (Action == Backend_EmitMCNull) 369 return TargetMachine::CGFT_Null; 370 else { 371 assert(Action == Backend_EmitAssembly && "Invalid action!"); 372 return TargetMachine::CGFT_AssemblyFile; 373 } 374 } 375 376 static void initTargetOptions(llvm::TargetOptions &Options, 377 const CodeGenOptions &CodeGenOpts, 378 const clang::TargetOptions &TargetOpts, 379 const LangOptions &LangOpts, 380 const HeaderSearchOptions &HSOpts) { 381 Options.ThreadModel = 382 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 383 .Case("posix", llvm::ThreadModel::POSIX) 384 .Case("single", llvm::ThreadModel::Single); 385 386 // Set float ABI type. 387 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 388 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 389 "Invalid Floating Point ABI!"); 390 Options.FloatABIType = 391 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 392 .Case("soft", llvm::FloatABI::Soft) 393 .Case("softfp", llvm::FloatABI::Soft) 394 .Case("hard", llvm::FloatABI::Hard) 395 .Default(llvm::FloatABI::Default); 396 397 // Set FP fusion mode. 398 switch (LangOpts.getDefaultFPContractMode()) { 399 case LangOptions::FPC_Off: 400 // Preserve any contraction performed by the front-end. (Strict performs 401 // splitting of the muladd instrinsic in the backend.) 402 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 403 break; 404 case LangOptions::FPC_On: 405 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 406 break; 407 case LangOptions::FPC_Fast: 408 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 409 break; 410 } 411 412 Options.UseInitArray = CodeGenOpts.UseInitArray; 413 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 414 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 415 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 416 417 // Set EABI version. 418 Options.EABIVersion = TargetOpts.EABIVersion; 419 420 if (LangOpts.SjLjExceptions) 421 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 422 if (LangOpts.SEHExceptions) 423 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 424 if (LangOpts.DWARFExceptions) 425 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 426 427 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 428 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 429 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 430 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 431 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 432 Options.FunctionSections = CodeGenOpts.FunctionSections; 433 Options.DataSections = CodeGenOpts.DataSections; 434 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 435 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 436 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 437 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 438 439 if (CodeGenOpts.EnableSplitDwarf) 440 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 441 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 442 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 443 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 444 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 445 Options.MCOptions.MCIncrementalLinkerCompatible = 446 CodeGenOpts.IncrementalLinkerCompatible; 447 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 448 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 449 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 450 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 451 Options.MCOptions.ABIName = TargetOpts.ABI; 452 for (const auto &Entry : HSOpts.UserEntries) 453 if (!Entry.IsFramework && 454 (Entry.Group == frontend::IncludeDirGroup::Quoted || 455 Entry.Group == frontend::IncludeDirGroup::Angled || 456 Entry.Group == frontend::IncludeDirGroup::System)) 457 Options.MCOptions.IASSearchPaths.push_back( 458 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 459 } 460 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 461 if (CodeGenOpts.DisableGCov) 462 return None; 463 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 464 return None; 465 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 466 // LLVM's -default-gcov-version flag is set to something invalid. 467 GCOVOptions Options; 468 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 469 Options.EmitData = CodeGenOpts.EmitGcovArcs; 470 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 471 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 472 Options.NoRedZone = CodeGenOpts.DisableRedZone; 473 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 474 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 475 return Options; 476 } 477 478 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 479 legacy::FunctionPassManager &FPM) { 480 // Handle disabling of all LLVM passes, where we want to preserve the 481 // internal module before any optimization. 482 if (CodeGenOpts.DisableLLVMPasses) 483 return; 484 485 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 486 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 487 // are inserted before PMBuilder ones - they'd get the default-constructed 488 // TLI with an unknown target otherwise. 489 Triple TargetTriple(TheModule->getTargetTriple()); 490 std::unique_ptr<TargetLibraryInfoImpl> TLII( 491 createTLII(TargetTriple, CodeGenOpts)); 492 493 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 494 495 // At O0 and O1 we only run the always inliner which is more efficient. At 496 // higher optimization levels we run the normal inliner. 497 if (CodeGenOpts.OptimizationLevel <= 1) { 498 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 499 !CodeGenOpts.DisableLifetimeMarkers); 500 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 501 } else { 502 // We do not want to inline hot callsites for SamplePGO module-summary build 503 // because profile annotation will happen again in ThinLTO backend, and we 504 // want the IR of the hot path to match the profile. 505 PMBuilder.Inliner = createFunctionInliningPass( 506 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 507 (!CodeGenOpts.SampleProfileFile.empty() && 508 CodeGenOpts.EmitSummaryIndex)); 509 } 510 511 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 512 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 513 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 514 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 515 516 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 517 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 518 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 519 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 520 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 521 522 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 523 524 if (TM) 525 TM->adjustPassManager(PMBuilder); 526 527 if (CodeGenOpts.DebugInfoForProfiling || 528 !CodeGenOpts.SampleProfileFile.empty()) 529 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 530 addAddDiscriminatorsPass); 531 532 // In ObjC ARC mode, add the main ARC optimization passes. 533 if (LangOpts.ObjCAutoRefCount) { 534 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 535 addObjCARCExpandPass); 536 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 537 addObjCARCAPElimPass); 538 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 539 addObjCARCOptPass); 540 } 541 542 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 543 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 544 addBoundsCheckingPass); 545 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 546 addBoundsCheckingPass); 547 } 548 549 if (CodeGenOpts.SanitizeCoverageType || 550 CodeGenOpts.SanitizeCoverageIndirectCalls || 551 CodeGenOpts.SanitizeCoverageTraceCmp) { 552 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 553 addSanitizerCoveragePass); 554 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 555 addSanitizerCoveragePass); 556 } 557 558 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 559 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 560 addAddressSanitizerPasses); 561 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 562 addAddressSanitizerPasses); 563 } 564 565 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 566 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 567 addKernelAddressSanitizerPasses); 568 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 569 addKernelAddressSanitizerPasses); 570 } 571 572 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 573 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 574 addHWAddressSanitizerPasses); 575 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 576 addHWAddressSanitizerPasses); 577 } 578 579 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 580 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 581 addMemorySanitizerPass); 582 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 583 addMemorySanitizerPass); 584 } 585 586 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 587 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 588 addThreadSanitizerPass); 589 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 590 addThreadSanitizerPass); 591 } 592 593 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 594 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 595 addDataFlowSanitizerPass); 596 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 597 addDataFlowSanitizerPass); 598 } 599 600 if (LangOpts.CoroutinesTS) 601 addCoroutinePassesToExtensionPoints(PMBuilder); 602 603 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 604 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 605 addEfficiencySanitizerPass); 606 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 607 addEfficiencySanitizerPass); 608 } 609 610 // Set up the per-function pass manager. 611 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 612 if (CodeGenOpts.VerifyModule) 613 FPM.add(createVerifierPass()); 614 615 // Set up the per-module pass manager. 616 if (!CodeGenOpts.RewriteMapFiles.empty()) 617 addSymbolRewriterPass(CodeGenOpts, &MPM); 618 619 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 620 MPM.add(createGCOVProfilerPass(*Options)); 621 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 622 MPM.add(createStripSymbolsPass(true)); 623 } 624 625 if (CodeGenOpts.hasProfileClangInstr()) { 626 InstrProfOptions Options; 627 Options.NoRedZone = CodeGenOpts.DisableRedZone; 628 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 629 MPM.add(createInstrProfilingLegacyPass(Options)); 630 } 631 if (CodeGenOpts.hasProfileIRInstr()) { 632 PMBuilder.EnablePGOInstrGen = true; 633 if (!CodeGenOpts.InstrProfileOutput.empty()) 634 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 635 else 636 PMBuilder.PGOInstrGen = DefaultProfileGenName; 637 } 638 if (CodeGenOpts.hasProfileIRUse()) 639 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 640 641 if (!CodeGenOpts.SampleProfileFile.empty()) 642 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 643 644 PMBuilder.populateFunctionPassManager(FPM); 645 PMBuilder.populateModulePassManager(MPM); 646 } 647 648 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 649 SmallVector<const char *, 16> BackendArgs; 650 BackendArgs.push_back("clang"); // Fake program name. 651 if (!CodeGenOpts.DebugPass.empty()) { 652 BackendArgs.push_back("-debug-pass"); 653 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 654 } 655 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 656 BackendArgs.push_back("-limit-float-precision"); 657 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 658 } 659 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 660 BackendArgs.push_back(BackendOption.c_str()); 661 BackendArgs.push_back(nullptr); 662 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 663 BackendArgs.data()); 664 } 665 666 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 667 // Create the TargetMachine for generating code. 668 std::string Error; 669 std::string Triple = TheModule->getTargetTriple(); 670 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 671 if (!TheTarget) { 672 if (MustCreateTM) 673 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 674 return; 675 } 676 677 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 678 std::string FeaturesStr = 679 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 680 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 681 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 682 683 llvm::TargetOptions Options; 684 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 685 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 686 Options, RM, CM, OptLevel)); 687 } 688 689 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 690 BackendAction Action, 691 raw_pwrite_stream &OS) { 692 // Add LibraryInfo. 693 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 694 std::unique_ptr<TargetLibraryInfoImpl> TLII( 695 createTLII(TargetTriple, CodeGenOpts)); 696 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 697 698 // Normal mode, emit a .s or .o file by running the code generator. Note, 699 // this also adds codegenerator level optimization passes. 700 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 701 702 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 703 // "codegen" passes so that it isn't run multiple times when there is 704 // inlining happening. 705 if (CodeGenOpts.OptimizationLevel > 0) 706 CodeGenPasses.add(createObjCARCContractPass()); 707 708 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 709 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 710 Diags.Report(diag::err_fe_unable_to_interface_with_target); 711 return false; 712 } 713 714 return true; 715 } 716 717 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 718 std::unique_ptr<raw_pwrite_stream> OS) { 719 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 720 721 setCommandLineOpts(CodeGenOpts); 722 723 bool UsesCodeGen = (Action != Backend_EmitNothing && 724 Action != Backend_EmitBC && 725 Action != Backend_EmitLL); 726 CreateTargetMachine(UsesCodeGen); 727 728 if (UsesCodeGen && !TM) 729 return; 730 if (TM) 731 TheModule->setDataLayout(TM->createDataLayout()); 732 733 legacy::PassManager PerModulePasses; 734 PerModulePasses.add( 735 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 736 737 legacy::FunctionPassManager PerFunctionPasses(TheModule); 738 PerFunctionPasses.add( 739 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 740 741 CreatePasses(PerModulePasses, PerFunctionPasses); 742 743 legacy::PassManager CodeGenPasses; 744 CodeGenPasses.add( 745 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 746 747 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 748 749 switch (Action) { 750 case Backend_EmitNothing: 751 break; 752 753 case Backend_EmitBC: 754 if (CodeGenOpts.EmitSummaryIndex) { 755 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 756 std::error_code EC; 757 ThinLinkOS.reset(new llvm::raw_fd_ostream( 758 CodeGenOpts.ThinLinkBitcodeFile, EC, 759 llvm::sys::fs::F_None)); 760 if (EC) { 761 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 762 << EC.message(); 763 return; 764 } 765 } 766 PerModulePasses.add( 767 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 768 } 769 else 770 PerModulePasses.add( 771 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 772 break; 773 774 case Backend_EmitLL: 775 PerModulePasses.add( 776 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 777 break; 778 779 default: 780 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 781 return; 782 } 783 784 // Before executing passes, print the final values of the LLVM options. 785 cl::PrintOptionValues(); 786 787 // Run passes. For now we do all passes at once, but eventually we 788 // would like to have the option of streaming code generation. 789 790 { 791 PrettyStackTraceString CrashInfo("Per-function optimization"); 792 793 PerFunctionPasses.doInitialization(); 794 for (Function &F : *TheModule) 795 if (!F.isDeclaration()) 796 PerFunctionPasses.run(F); 797 PerFunctionPasses.doFinalization(); 798 } 799 800 { 801 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 802 PerModulePasses.run(*TheModule); 803 } 804 805 { 806 PrettyStackTraceString CrashInfo("Code generation"); 807 CodeGenPasses.run(*TheModule); 808 } 809 } 810 811 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 812 switch (Opts.OptimizationLevel) { 813 default: 814 llvm_unreachable("Invalid optimization level!"); 815 816 case 1: 817 return PassBuilder::O1; 818 819 case 2: 820 switch (Opts.OptimizeSize) { 821 default: 822 llvm_unreachable("Invalide optimization level for size!"); 823 824 case 0: 825 return PassBuilder::O2; 826 827 case 1: 828 return PassBuilder::Os; 829 830 case 2: 831 return PassBuilder::Oz; 832 } 833 834 case 3: 835 return PassBuilder::O3; 836 } 837 } 838 839 /// A clean version of `EmitAssembly` that uses the new pass manager. 840 /// 841 /// Not all features are currently supported in this system, but where 842 /// necessary it falls back to the legacy pass manager to at least provide 843 /// basic functionality. 844 /// 845 /// This API is planned to have its functionality finished and then to replace 846 /// `EmitAssembly` at some point in the future when the default switches. 847 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 848 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 849 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 850 setCommandLineOpts(CodeGenOpts); 851 852 // The new pass manager always makes a target machine available to passes 853 // during construction. 854 CreateTargetMachine(/*MustCreateTM*/ true); 855 if (!TM) 856 // This will already be diagnosed, just bail. 857 return; 858 TheModule->setDataLayout(TM->createDataLayout()); 859 860 Optional<PGOOptions> PGOOpt; 861 862 if (CodeGenOpts.hasProfileIRInstr()) 863 // -fprofile-generate. 864 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 865 ? DefaultProfileGenName 866 : CodeGenOpts.InstrProfileOutput, 867 "", "", true, CodeGenOpts.DebugInfoForProfiling); 868 else if (CodeGenOpts.hasProfileIRUse()) 869 // -fprofile-use. 870 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 871 CodeGenOpts.DebugInfoForProfiling); 872 else if (!CodeGenOpts.SampleProfileFile.empty()) 873 // -fprofile-sample-use 874 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 875 CodeGenOpts.DebugInfoForProfiling); 876 else if (CodeGenOpts.DebugInfoForProfiling) 877 // -fdebug-info-for-profiling 878 PGOOpt = PGOOptions("", "", "", false, true); 879 880 PassBuilder PB(TM.get(), PGOOpt); 881 882 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 883 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 884 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 885 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 886 887 // Register the AA manager first so that our version is the one used. 888 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 889 890 // Register the target library analysis directly and give it a customized 891 // preset TLI. 892 Triple TargetTriple(TheModule->getTargetTriple()); 893 std::unique_ptr<TargetLibraryInfoImpl> TLII( 894 createTLII(TargetTriple, CodeGenOpts)); 895 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 896 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 897 898 // Register all the basic analyses with the managers. 899 PB.registerModuleAnalyses(MAM); 900 PB.registerCGSCCAnalyses(CGAM); 901 PB.registerFunctionAnalyses(FAM); 902 PB.registerLoopAnalyses(LAM); 903 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 904 905 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 906 907 if (!CodeGenOpts.DisableLLVMPasses) { 908 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 909 bool IsLTO = CodeGenOpts.PrepareForLTO; 910 911 if (CodeGenOpts.OptimizationLevel == 0) { 912 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 913 MPM.addPass(GCOVProfilerPass(*Options)); 914 915 // Build a minimal pipeline based on the semantics required by Clang, 916 // which is just that always inlining occurs. 917 MPM.addPass(AlwaysInlinerPass()); 918 919 // At -O0 we directly run necessary sanitizer passes. 920 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 921 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 922 923 // Lastly, add a semantically necessary pass for ThinLTO. 924 if (IsThinLTO) 925 MPM.addPass(NameAnonGlobalPass()); 926 } else { 927 // Map our optimization levels into one of the distinct levels used to 928 // configure the pipeline. 929 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 930 931 // Register callbacks to schedule sanitizer passes at the appropriate part of 932 // the pipeline. 933 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 934 PB.registerScalarOptimizerLateEPCallback( 935 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 936 FPM.addPass(BoundsCheckingPass()); 937 }); 938 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 939 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 940 MPM.addPass(GCOVProfilerPass(*Options)); 941 }); 942 943 if (IsThinLTO) { 944 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 945 Level, CodeGenOpts.DebugPassManager); 946 MPM.addPass(NameAnonGlobalPass()); 947 } else if (IsLTO) { 948 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 949 CodeGenOpts.DebugPassManager); 950 } else { 951 MPM = PB.buildPerModuleDefaultPipeline(Level, 952 CodeGenOpts.DebugPassManager); 953 } 954 } 955 } 956 957 // FIXME: We still use the legacy pass manager to do code generation. We 958 // create that pass manager here and use it as needed below. 959 legacy::PassManager CodeGenPasses; 960 bool NeedCodeGen = false; 961 Optional<raw_fd_ostream> ThinLinkOS; 962 963 // Append any output we need to the pass manager. 964 switch (Action) { 965 case Backend_EmitNothing: 966 break; 967 968 case Backend_EmitBC: 969 if (CodeGenOpts.EmitSummaryIndex) { 970 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 971 std::error_code EC; 972 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 973 llvm::sys::fs::F_None); 974 if (EC) { 975 Diags.Report(diag::err_fe_unable_to_open_output) 976 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 977 return; 978 } 979 } 980 MPM.addPass( 981 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 982 } else { 983 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 984 CodeGenOpts.EmitSummaryIndex, 985 CodeGenOpts.EmitSummaryIndex)); 986 } 987 break; 988 989 case Backend_EmitLL: 990 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 991 break; 992 993 case Backend_EmitAssembly: 994 case Backend_EmitMCNull: 995 case Backend_EmitObj: 996 NeedCodeGen = true; 997 CodeGenPasses.add( 998 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 999 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 1000 // FIXME: Should we handle this error differently? 1001 return; 1002 break; 1003 } 1004 1005 // Before executing passes, print the final values of the LLVM options. 1006 cl::PrintOptionValues(); 1007 1008 // Now that we have all of the passes ready, run them. 1009 { 1010 PrettyStackTraceString CrashInfo("Optimizer"); 1011 MPM.run(*TheModule, MAM); 1012 } 1013 1014 // Now if needed, run the legacy PM for codegen. 1015 if (NeedCodeGen) { 1016 PrettyStackTraceString CrashInfo("Code generation"); 1017 CodeGenPasses.run(*TheModule); 1018 } 1019 } 1020 1021 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1022 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1023 if (!BMsOrErr) 1024 return BMsOrErr.takeError(); 1025 1026 // The bitcode file may contain multiple modules, we want the one that is 1027 // marked as being the ThinLTO module. 1028 for (BitcodeModule &BM : *BMsOrErr) { 1029 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1030 if (LTOInfo && LTOInfo->IsThinLTO) 1031 return BM; 1032 } 1033 1034 return make_error<StringError>("Could not find module summary", 1035 inconvertibleErrorCode()); 1036 } 1037 1038 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1039 const HeaderSearchOptions &HeaderOpts, 1040 const CodeGenOptions &CGOpts, 1041 const clang::TargetOptions &TOpts, 1042 const LangOptions &LOpts, 1043 std::unique_ptr<raw_pwrite_stream> OS, 1044 std::string SampleProfile, 1045 BackendAction Action) { 1046 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1047 ModuleToDefinedGVSummaries; 1048 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1049 1050 setCommandLineOpts(CGOpts); 1051 1052 // We can simply import the values mentioned in the combined index, since 1053 // we should only invoke this using the individual indexes written out 1054 // via a WriteIndexesThinBackend. 1055 FunctionImporter::ImportMapTy ImportList; 1056 for (auto &GlobalList : *CombinedIndex) { 1057 // Ignore entries for undefined references. 1058 if (GlobalList.second.SummaryList.empty()) 1059 continue; 1060 1061 auto GUID = GlobalList.first; 1062 assert(GlobalList.second.SummaryList.size() == 1 && 1063 "Expected individual combined index to have one summary per GUID"); 1064 auto &Summary = GlobalList.second.SummaryList[0]; 1065 // Skip the summaries for the importing module. These are included to 1066 // e.g. record required linkage changes. 1067 if (Summary->modulePath() == M->getModuleIdentifier()) 1068 continue; 1069 // Doesn't matter what value we plug in to the map, just needs an entry 1070 // to provoke importing by thinBackend. 1071 ImportList[Summary->modulePath()][GUID] = 1; 1072 } 1073 1074 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1075 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1076 1077 for (auto &I : ImportList) { 1078 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1079 llvm::MemoryBuffer::getFile(I.first()); 1080 if (!MBOrErr) { 1081 errs() << "Error loading imported file '" << I.first() 1082 << "': " << MBOrErr.getError().message() << "\n"; 1083 return; 1084 } 1085 1086 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1087 if (!BMOrErr) { 1088 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1089 errs() << "Error loading imported file '" << I.first() 1090 << "': " << EIB.message() << '\n'; 1091 }); 1092 return; 1093 } 1094 ModuleMap.insert({I.first(), *BMOrErr}); 1095 1096 OwnedImports.push_back(std::move(*MBOrErr)); 1097 } 1098 auto AddStream = [&](size_t Task) { 1099 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1100 }; 1101 lto::Config Conf; 1102 Conf.CPU = TOpts.CPU; 1103 Conf.CodeModel = getCodeModel(CGOpts); 1104 Conf.MAttrs = TOpts.Features; 1105 Conf.RelocModel = CGOpts.RelocationModel; 1106 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1107 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1108 Conf.SampleProfile = std::move(SampleProfile); 1109 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1110 Conf.DebugPassManager = CGOpts.DebugPassManager; 1111 switch (Action) { 1112 case Backend_EmitNothing: 1113 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1114 return false; 1115 }; 1116 break; 1117 case Backend_EmitLL: 1118 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1119 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1120 return false; 1121 }; 1122 break; 1123 case Backend_EmitBC: 1124 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1125 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1126 return false; 1127 }; 1128 break; 1129 default: 1130 Conf.CGFileType = getCodeGenFileType(Action); 1131 break; 1132 } 1133 if (Error E = thinBackend( 1134 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1135 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1136 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1137 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1138 }); 1139 } 1140 } 1141 1142 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1143 const HeaderSearchOptions &HeaderOpts, 1144 const CodeGenOptions &CGOpts, 1145 const clang::TargetOptions &TOpts, 1146 const LangOptions &LOpts, 1147 const llvm::DataLayout &TDesc, Module *M, 1148 BackendAction Action, 1149 std::unique_ptr<raw_pwrite_stream> OS) { 1150 if (!CGOpts.ThinLTOIndexFile.empty()) { 1151 // If we are performing a ThinLTO importing compile, load the function index 1152 // into memory and pass it into runThinLTOBackend, which will run the 1153 // function importer and invoke LTO passes. 1154 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1155 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1156 /*IgnoreEmptyThinLTOIndexFile*/true); 1157 if (!IndexOrErr) { 1158 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1159 "Error loading index file '" + 1160 CGOpts.ThinLTOIndexFile + "': "); 1161 return; 1162 } 1163 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1164 // A null CombinedIndex means we should skip ThinLTO compilation 1165 // (LLVM will optionally ignore empty index files, returning null instead 1166 // of an error). 1167 bool DoThinLTOBackend = CombinedIndex != nullptr; 1168 if (DoThinLTOBackend) { 1169 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1170 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1171 return; 1172 } 1173 } 1174 1175 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1176 1177 if (CGOpts.ExperimentalNewPassManager) 1178 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1179 else 1180 AsmHelper.EmitAssembly(Action, std::move(OS)); 1181 1182 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1183 // DataLayout. 1184 if (AsmHelper.TM) { 1185 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1186 if (DLDesc != TDesc.getStringRepresentation()) { 1187 unsigned DiagID = Diags.getCustomDiagID( 1188 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1189 "expected target description '%1'"); 1190 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1191 } 1192 } 1193 } 1194 1195 static const char* getSectionNameForBitcode(const Triple &T) { 1196 switch (T.getObjectFormat()) { 1197 case Triple::MachO: 1198 return "__LLVM,__bitcode"; 1199 case Triple::COFF: 1200 case Triple::ELF: 1201 case Triple::Wasm: 1202 case Triple::UnknownObjectFormat: 1203 return ".llvmbc"; 1204 } 1205 llvm_unreachable("Unimplemented ObjectFormatType"); 1206 } 1207 1208 static const char* getSectionNameForCommandline(const Triple &T) { 1209 switch (T.getObjectFormat()) { 1210 case Triple::MachO: 1211 return "__LLVM,__cmdline"; 1212 case Triple::COFF: 1213 case Triple::ELF: 1214 case Triple::Wasm: 1215 case Triple::UnknownObjectFormat: 1216 return ".llvmcmd"; 1217 } 1218 llvm_unreachable("Unimplemented ObjectFormatType"); 1219 } 1220 1221 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1222 // __LLVM,__bitcode section. 1223 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1224 llvm::MemoryBufferRef Buf) { 1225 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1226 return; 1227 1228 // Save llvm.compiler.used and remote it. 1229 SmallVector<Constant*, 2> UsedArray; 1230 SmallSet<GlobalValue*, 4> UsedGlobals; 1231 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1232 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1233 for (auto *GV : UsedGlobals) { 1234 if (GV->getName() != "llvm.embedded.module" && 1235 GV->getName() != "llvm.cmdline") 1236 UsedArray.push_back( 1237 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1238 } 1239 if (Used) 1240 Used->eraseFromParent(); 1241 1242 // Embed the bitcode for the llvm module. 1243 std::string Data; 1244 ArrayRef<uint8_t> ModuleData; 1245 Triple T(M->getTargetTriple()); 1246 // Create a constant that contains the bitcode. 1247 // In case of embedding a marker, ignore the input Buf and use the empty 1248 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1249 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1250 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1251 (const unsigned char *)Buf.getBufferEnd())) { 1252 // If the input is LLVM Assembly, bitcode is produced by serializing 1253 // the module. Use-lists order need to be perserved in this case. 1254 llvm::raw_string_ostream OS(Data); 1255 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1256 ModuleData = 1257 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1258 } else 1259 // If the input is LLVM bitcode, write the input byte stream directly. 1260 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1261 Buf.getBufferSize()); 1262 } 1263 llvm::Constant *ModuleConstant = 1264 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1265 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1266 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1267 ModuleConstant); 1268 GV->setSection(getSectionNameForBitcode(T)); 1269 UsedArray.push_back( 1270 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1271 if (llvm::GlobalVariable *Old = 1272 M->getGlobalVariable("llvm.embedded.module", true)) { 1273 assert(Old->hasOneUse() && 1274 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1275 GV->takeName(Old); 1276 Old->eraseFromParent(); 1277 } else { 1278 GV->setName("llvm.embedded.module"); 1279 } 1280 1281 // Skip if only bitcode needs to be embedded. 1282 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1283 // Embed command-line options. 1284 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1285 CGOpts.CmdArgs.size()); 1286 llvm::Constant *CmdConstant = 1287 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1288 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1289 llvm::GlobalValue::PrivateLinkage, 1290 CmdConstant); 1291 GV->setSection(getSectionNameForCommandline(T)); 1292 UsedArray.push_back( 1293 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1294 if (llvm::GlobalVariable *Old = 1295 M->getGlobalVariable("llvm.cmdline", true)) { 1296 assert(Old->hasOneUse() && 1297 "llvm.cmdline can only be used once in llvm.compiler.used"); 1298 GV->takeName(Old); 1299 Old->eraseFromParent(); 1300 } else { 1301 GV->setName("llvm.cmdline"); 1302 } 1303 } 1304 1305 if (UsedArray.empty()) 1306 return; 1307 1308 // Recreate llvm.compiler.used. 1309 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1310 auto *NewUsed = new GlobalVariable( 1311 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1312 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1313 NewUsed->setSection("llvm.metadata"); 1314 } 1315