1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/ObjCARC.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 58 #include "llvm/Transforms/Utils/SymbolRewriter.h" 59 #include <memory> 60 using namespace clang; 61 using namespace llvm; 62 63 namespace { 64 65 // Default filename used for profile generation. 66 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 67 68 class EmitAssemblyHelper { 69 DiagnosticsEngine &Diags; 70 const HeaderSearchOptions &HSOpts; 71 const CodeGenOptions &CodeGenOpts; 72 const clang::TargetOptions &TargetOpts; 73 const LangOptions &LangOpts; 74 Module *TheModule; 75 76 Timer CodeGenerationTime; 77 78 std::unique_ptr<raw_pwrite_stream> OS; 79 80 TargetIRAnalysis getTargetIRAnalysis() const { 81 if (TM) 82 return TM->getTargetIRAnalysis(); 83 84 return TargetIRAnalysis(); 85 } 86 87 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 88 89 /// Generates the TargetMachine. 90 /// Leaves TM unchanged if it is unable to create the target machine. 91 /// Some of our clang tests specify triples which are not built 92 /// into clang. This is okay because these tests check the generated 93 /// IR, and they require DataLayout which depends on the triple. 94 /// In this case, we allow this method to fail and not report an error. 95 /// When MustCreateTM is used, we print an error if we are unable to load 96 /// the requested target. 97 void CreateTargetMachine(bool MustCreateTM); 98 99 /// Add passes necessary to emit assembly or LLVM IR. 100 /// 101 /// \return True on success. 102 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 103 raw_pwrite_stream &OS); 104 105 public: 106 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 107 const HeaderSearchOptions &HeaderSearchOpts, 108 const CodeGenOptions &CGOpts, 109 const clang::TargetOptions &TOpts, 110 const LangOptions &LOpts, Module *M) 111 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 112 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 113 CodeGenerationTime("codegen", "Code Generation Time") {} 114 115 ~EmitAssemblyHelper() { 116 if (CodeGenOpts.DisableFree) 117 BuryPointer(std::move(TM)); 118 } 119 120 std::unique_ptr<TargetMachine> TM; 121 122 void EmitAssembly(BackendAction Action, 123 std::unique_ptr<raw_pwrite_stream> OS); 124 125 void EmitAssemblyWithNewPassManager(BackendAction Action, 126 std::unique_ptr<raw_pwrite_stream> OS); 127 }; 128 129 // We need this wrapper to access LangOpts and CGOpts from extension functions 130 // that we add to the PassManagerBuilder. 131 class PassManagerBuilderWrapper : public PassManagerBuilder { 132 public: 133 PassManagerBuilderWrapper(const Triple &TargetTriple, 134 const CodeGenOptions &CGOpts, 135 const LangOptions &LangOpts) 136 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 137 LangOpts(LangOpts) {} 138 const Triple &getTargetTriple() const { return TargetTriple; } 139 const CodeGenOptions &getCGOpts() const { return CGOpts; } 140 const LangOptions &getLangOpts() const { return LangOpts; } 141 142 private: 143 const Triple &TargetTriple; 144 const CodeGenOptions &CGOpts; 145 const LangOptions &LangOpts; 146 }; 147 } 148 149 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 150 if (Builder.OptLevel > 0) 151 PM.add(createObjCARCAPElimPass()); 152 } 153 154 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 155 if (Builder.OptLevel > 0) 156 PM.add(createObjCARCExpandPass()); 157 } 158 159 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 160 if (Builder.OptLevel > 0) 161 PM.add(createObjCARCOptPass()); 162 } 163 164 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 165 legacy::PassManagerBase &PM) { 166 PM.add(createAddDiscriminatorsPass()); 167 } 168 169 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 170 legacy::PassManagerBase &PM) { 171 PM.add(createBoundsCheckingPass()); 172 } 173 174 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 175 legacy::PassManagerBase &PM) { 176 const PassManagerBuilderWrapper &BuilderWrapper = 177 static_cast<const PassManagerBuilderWrapper&>(Builder); 178 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 179 SanitizerCoverageOptions Opts; 180 Opts.CoverageType = 181 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 182 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 183 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 184 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 185 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 186 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 187 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 188 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 189 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 190 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 191 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 192 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 193 PM.add(createSanitizerCoverageModulePass(Opts)); 194 } 195 196 // Check if ASan should use GC-friendly instrumentation for globals. 197 // First of all, there is no point if -fdata-sections is off (expect for MachO, 198 // where this is not a factor). Also, on ELF this feature requires an assembler 199 // extension that only works with -integrated-as at the moment. 200 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 201 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 202 return false; 203 switch (T.getObjectFormat()) { 204 case Triple::MachO: 205 case Triple::COFF: 206 return true; 207 case Triple::ELF: 208 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 209 default: 210 return false; 211 } 212 } 213 214 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 215 legacy::PassManagerBase &PM) { 216 const PassManagerBuilderWrapper &BuilderWrapper = 217 static_cast<const PassManagerBuilderWrapper&>(Builder); 218 const Triple &T = BuilderWrapper.getTargetTriple(); 219 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 220 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 221 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 222 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 223 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 224 UseAfterScope)); 225 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 226 UseGlobalsGC)); 227 } 228 229 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 230 legacy::PassManagerBase &PM) { 231 PM.add(createAddressSanitizerFunctionPass( 232 /*CompileKernel*/ true, 233 /*Recover*/ true, /*UseAfterScope*/ false)); 234 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 235 /*Recover*/true)); 236 } 237 238 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 239 legacy::PassManagerBase &PM) { 240 const PassManagerBuilderWrapper &BuilderWrapper = 241 static_cast<const PassManagerBuilderWrapper&>(Builder); 242 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 243 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 244 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 245 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 246 247 // MemorySanitizer inserts complex instrumentation that mostly follows 248 // the logic of the original code, but operates on "shadow" values. 249 // It can benefit from re-running some general purpose optimization passes. 250 if (Builder.OptLevel > 0) { 251 PM.add(createEarlyCSEPass()); 252 PM.add(createReassociatePass()); 253 PM.add(createLICMPass()); 254 PM.add(createGVNPass()); 255 PM.add(createInstructionCombiningPass()); 256 PM.add(createDeadStoreEliminationPass()); 257 } 258 } 259 260 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 261 legacy::PassManagerBase &PM) { 262 PM.add(createThreadSanitizerPass()); 263 } 264 265 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 266 legacy::PassManagerBase &PM) { 267 const PassManagerBuilderWrapper &BuilderWrapper = 268 static_cast<const PassManagerBuilderWrapper&>(Builder); 269 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 270 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 271 } 272 273 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 274 legacy::PassManagerBase &PM) { 275 const PassManagerBuilderWrapper &BuilderWrapper = 276 static_cast<const PassManagerBuilderWrapper&>(Builder); 277 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 278 EfficiencySanitizerOptions Opts; 279 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 280 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 281 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 282 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 283 PM.add(createEfficiencySanitizerPass(Opts)); 284 } 285 286 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 287 const CodeGenOptions &CodeGenOpts) { 288 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 289 if (!CodeGenOpts.SimplifyLibCalls) 290 TLII->disableAllFunctions(); 291 else { 292 // Disable individual libc/libm calls in TargetLibraryInfo. 293 LibFunc F; 294 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 295 if (TLII->getLibFunc(FuncName, F)) 296 TLII->setUnavailable(F); 297 } 298 299 switch (CodeGenOpts.getVecLib()) { 300 case CodeGenOptions::Accelerate: 301 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 302 break; 303 case CodeGenOptions::SVML: 304 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 305 break; 306 default: 307 break; 308 } 309 return TLII; 310 } 311 312 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 313 legacy::PassManager *MPM) { 314 llvm::SymbolRewriter::RewriteDescriptorList DL; 315 316 llvm::SymbolRewriter::RewriteMapParser MapParser; 317 for (const auto &MapFile : Opts.RewriteMapFiles) 318 MapParser.parse(MapFile, &DL); 319 320 MPM->add(createRewriteSymbolsPass(DL)); 321 } 322 323 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 324 switch (CodeGenOpts.OptimizationLevel) { 325 default: 326 llvm_unreachable("Invalid optimization level!"); 327 case 0: 328 return CodeGenOpt::None; 329 case 1: 330 return CodeGenOpt::Less; 331 case 2: 332 return CodeGenOpt::Default; // O2/Os/Oz 333 case 3: 334 return CodeGenOpt::Aggressive; 335 } 336 } 337 338 static Optional<llvm::CodeModel::Model> 339 getCodeModel(const CodeGenOptions &CodeGenOpts) { 340 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 341 .Case("small", llvm::CodeModel::Small) 342 .Case("kernel", llvm::CodeModel::Kernel) 343 .Case("medium", llvm::CodeModel::Medium) 344 .Case("large", llvm::CodeModel::Large) 345 .Case("default", ~1u) 346 .Default(~0u); 347 assert(CodeModel != ~0u && "invalid code model!"); 348 if (CodeModel == ~1u) 349 return None; 350 return static_cast<llvm::CodeModel::Model>(CodeModel); 351 } 352 353 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 354 // Keep this synced with the equivalent code in 355 // lib/Frontend/CompilerInvocation.cpp 356 llvm::Optional<llvm::Reloc::Model> RM; 357 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 358 .Case("static", llvm::Reloc::Static) 359 .Case("pic", llvm::Reloc::PIC_) 360 .Case("ropi", llvm::Reloc::ROPI) 361 .Case("rwpi", llvm::Reloc::RWPI) 362 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 363 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 364 assert(RM.hasValue() && "invalid PIC model!"); 365 return *RM; 366 } 367 368 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 369 if (Action == Backend_EmitObj) 370 return TargetMachine::CGFT_ObjectFile; 371 else if (Action == Backend_EmitMCNull) 372 return TargetMachine::CGFT_Null; 373 else { 374 assert(Action == Backend_EmitAssembly && "Invalid action!"); 375 return TargetMachine::CGFT_AssemblyFile; 376 } 377 } 378 379 static void initTargetOptions(llvm::TargetOptions &Options, 380 const CodeGenOptions &CodeGenOpts, 381 const clang::TargetOptions &TargetOpts, 382 const LangOptions &LangOpts, 383 const HeaderSearchOptions &HSOpts) { 384 Options.ThreadModel = 385 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 386 .Case("posix", llvm::ThreadModel::POSIX) 387 .Case("single", llvm::ThreadModel::Single); 388 389 // Set float ABI type. 390 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 391 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 392 "Invalid Floating Point ABI!"); 393 Options.FloatABIType = 394 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 395 .Case("soft", llvm::FloatABI::Soft) 396 .Case("softfp", llvm::FloatABI::Soft) 397 .Case("hard", llvm::FloatABI::Hard) 398 .Default(llvm::FloatABI::Default); 399 400 // Set FP fusion mode. 401 switch (LangOpts.getDefaultFPContractMode()) { 402 case LangOptions::FPC_Off: 403 // Preserve any contraction performed by the front-end. (Strict performs 404 // splitting of the muladd instrinsic in the backend.) 405 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 406 break; 407 case LangOptions::FPC_On: 408 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 409 break; 410 case LangOptions::FPC_Fast: 411 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 412 break; 413 } 414 415 Options.UseInitArray = CodeGenOpts.UseInitArray; 416 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 417 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 418 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 419 420 // Set EABI version. 421 Options.EABIVersion = TargetOpts.EABIVersion; 422 423 if (LangOpts.SjLjExceptions) 424 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 425 426 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 427 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 428 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 429 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 430 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 431 Options.FunctionSections = CodeGenOpts.FunctionSections; 432 Options.DataSections = CodeGenOpts.DataSections; 433 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 434 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 435 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 436 437 if (CodeGenOpts.EnableSplitDwarf) 438 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 439 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 440 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 441 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 442 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 443 Options.MCOptions.MCIncrementalLinkerCompatible = 444 CodeGenOpts.IncrementalLinkerCompatible; 445 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 446 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 447 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 448 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 449 Options.MCOptions.ABIName = TargetOpts.ABI; 450 for (const auto &Entry : HSOpts.UserEntries) 451 if (!Entry.IsFramework && 452 (Entry.Group == frontend::IncludeDirGroup::Quoted || 453 Entry.Group == frontend::IncludeDirGroup::Angled || 454 Entry.Group == frontend::IncludeDirGroup::System)) 455 Options.MCOptions.IASSearchPaths.push_back( 456 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 457 } 458 459 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 460 legacy::FunctionPassManager &FPM) { 461 // Handle disabling of all LLVM passes, where we want to preserve the 462 // internal module before any optimization. 463 if (CodeGenOpts.DisableLLVMPasses) 464 return; 465 466 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 467 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 468 // are inserted before PMBuilder ones - they'd get the default-constructed 469 // TLI with an unknown target otherwise. 470 Triple TargetTriple(TheModule->getTargetTriple()); 471 std::unique_ptr<TargetLibraryInfoImpl> TLII( 472 createTLII(TargetTriple, CodeGenOpts)); 473 474 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 475 476 // At O0 and O1 we only run the always inliner which is more efficient. At 477 // higher optimization levels we run the normal inliner. 478 if (CodeGenOpts.OptimizationLevel <= 1) { 479 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 480 !CodeGenOpts.DisableLifetimeMarkers); 481 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 482 } else { 483 // We do not want to inline hot callsites for SamplePGO module-summary build 484 // because profile annotation will happen again in ThinLTO backend, and we 485 // want the IR of the hot path to match the profile. 486 PMBuilder.Inliner = createFunctionInliningPass( 487 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 488 (!CodeGenOpts.SampleProfileFile.empty() && 489 CodeGenOpts.EmitSummaryIndex)); 490 } 491 492 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 493 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 494 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 495 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 496 497 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 498 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 499 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 500 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 501 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 502 503 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 504 505 if (TM) 506 TM->adjustPassManager(PMBuilder); 507 508 if (CodeGenOpts.DebugInfoForProfiling || 509 !CodeGenOpts.SampleProfileFile.empty()) 510 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 511 addAddDiscriminatorsPass); 512 513 // In ObjC ARC mode, add the main ARC optimization passes. 514 if (LangOpts.ObjCAutoRefCount) { 515 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 516 addObjCARCExpandPass); 517 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 518 addObjCARCAPElimPass); 519 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 520 addObjCARCOptPass); 521 } 522 523 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 524 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 525 addBoundsCheckingPass); 526 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 527 addBoundsCheckingPass); 528 } 529 530 if (CodeGenOpts.SanitizeCoverageType || 531 CodeGenOpts.SanitizeCoverageIndirectCalls || 532 CodeGenOpts.SanitizeCoverageTraceCmp) { 533 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 534 addSanitizerCoveragePass); 535 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 536 addSanitizerCoveragePass); 537 } 538 539 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 540 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 541 addAddressSanitizerPasses); 542 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 543 addAddressSanitizerPasses); 544 } 545 546 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 547 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 548 addKernelAddressSanitizerPasses); 549 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 550 addKernelAddressSanitizerPasses); 551 } 552 553 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 554 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 555 addMemorySanitizerPass); 556 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 557 addMemorySanitizerPass); 558 } 559 560 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 561 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 562 addThreadSanitizerPass); 563 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 564 addThreadSanitizerPass); 565 } 566 567 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 568 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 569 addDataFlowSanitizerPass); 570 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 571 addDataFlowSanitizerPass); 572 } 573 574 if (LangOpts.CoroutinesTS) 575 addCoroutinePassesToExtensionPoints(PMBuilder); 576 577 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 578 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 579 addEfficiencySanitizerPass); 580 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 581 addEfficiencySanitizerPass); 582 } 583 584 // Set up the per-function pass manager. 585 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 586 if (CodeGenOpts.VerifyModule) 587 FPM.add(createVerifierPass()); 588 589 // Set up the per-module pass manager. 590 if (!CodeGenOpts.RewriteMapFiles.empty()) 591 addSymbolRewriterPass(CodeGenOpts, &MPM); 592 593 if (!CodeGenOpts.DisableGCov && 594 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 595 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 596 // LLVM's -default-gcov-version flag is set to something invalid. 597 GCOVOptions Options; 598 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 599 Options.EmitData = CodeGenOpts.EmitGcovArcs; 600 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 601 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 602 Options.NoRedZone = CodeGenOpts.DisableRedZone; 603 Options.FunctionNamesInData = 604 !CodeGenOpts.CoverageNoFunctionNamesInData; 605 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 606 MPM.add(createGCOVProfilerPass(Options)); 607 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 608 MPM.add(createStripSymbolsPass(true)); 609 } 610 611 if (CodeGenOpts.hasProfileClangInstr()) { 612 InstrProfOptions Options; 613 Options.NoRedZone = CodeGenOpts.DisableRedZone; 614 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 615 MPM.add(createInstrProfilingLegacyPass(Options)); 616 } 617 if (CodeGenOpts.hasProfileIRInstr()) { 618 PMBuilder.EnablePGOInstrGen = true; 619 if (!CodeGenOpts.InstrProfileOutput.empty()) 620 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 621 else 622 PMBuilder.PGOInstrGen = DefaultProfileGenName; 623 } 624 if (CodeGenOpts.hasProfileIRUse()) 625 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 626 627 if (!CodeGenOpts.SampleProfileFile.empty()) 628 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 629 630 PMBuilder.populateFunctionPassManager(FPM); 631 PMBuilder.populateModulePassManager(MPM); 632 } 633 634 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 635 SmallVector<const char *, 16> BackendArgs; 636 BackendArgs.push_back("clang"); // Fake program name. 637 if (!CodeGenOpts.DebugPass.empty()) { 638 BackendArgs.push_back("-debug-pass"); 639 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 640 } 641 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 642 BackendArgs.push_back("-limit-float-precision"); 643 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 644 } 645 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 646 BackendArgs.push_back(BackendOption.c_str()); 647 BackendArgs.push_back(nullptr); 648 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 649 BackendArgs.data()); 650 } 651 652 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 653 // Create the TargetMachine for generating code. 654 std::string Error; 655 std::string Triple = TheModule->getTargetTriple(); 656 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 657 if (!TheTarget) { 658 if (MustCreateTM) 659 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 660 return; 661 } 662 663 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 664 std::string FeaturesStr = 665 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 666 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 667 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 668 669 llvm::TargetOptions Options; 670 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 671 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 672 Options, RM, CM, OptLevel)); 673 } 674 675 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 676 BackendAction Action, 677 raw_pwrite_stream &OS) { 678 // Add LibraryInfo. 679 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 680 std::unique_ptr<TargetLibraryInfoImpl> TLII( 681 createTLII(TargetTriple, CodeGenOpts)); 682 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 683 684 // Normal mode, emit a .s or .o file by running the code generator. Note, 685 // this also adds codegenerator level optimization passes. 686 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 687 688 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 689 // "codegen" passes so that it isn't run multiple times when there is 690 // inlining happening. 691 if (CodeGenOpts.OptimizationLevel > 0) 692 CodeGenPasses.add(createObjCARCContractPass()); 693 694 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 695 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 696 Diags.Report(diag::err_fe_unable_to_interface_with_target); 697 return false; 698 } 699 700 return true; 701 } 702 703 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 704 std::unique_ptr<raw_pwrite_stream> OS) { 705 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 706 707 setCommandLineOpts(CodeGenOpts); 708 709 bool UsesCodeGen = (Action != Backend_EmitNothing && 710 Action != Backend_EmitBC && 711 Action != Backend_EmitLL); 712 CreateTargetMachine(UsesCodeGen); 713 714 if (UsesCodeGen && !TM) 715 return; 716 if (TM) 717 TheModule->setDataLayout(TM->createDataLayout()); 718 719 legacy::PassManager PerModulePasses; 720 PerModulePasses.add( 721 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 722 723 legacy::FunctionPassManager PerFunctionPasses(TheModule); 724 PerFunctionPasses.add( 725 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 726 727 CreatePasses(PerModulePasses, PerFunctionPasses); 728 729 legacy::PassManager CodeGenPasses; 730 CodeGenPasses.add( 731 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 732 733 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 734 735 switch (Action) { 736 case Backend_EmitNothing: 737 break; 738 739 case Backend_EmitBC: 740 if (CodeGenOpts.EmitSummaryIndex) { 741 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 742 std::error_code EC; 743 ThinLinkOS.reset(new llvm::raw_fd_ostream( 744 CodeGenOpts.ThinLinkBitcodeFile, EC, 745 llvm::sys::fs::F_None)); 746 if (EC) { 747 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 748 << EC.message(); 749 return; 750 } 751 } 752 PerModulePasses.add( 753 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 754 } 755 else 756 PerModulePasses.add( 757 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 758 break; 759 760 case Backend_EmitLL: 761 PerModulePasses.add( 762 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 763 break; 764 765 default: 766 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 767 return; 768 } 769 770 // Before executing passes, print the final values of the LLVM options. 771 cl::PrintOptionValues(); 772 773 // Run passes. For now we do all passes at once, but eventually we 774 // would like to have the option of streaming code generation. 775 776 { 777 PrettyStackTraceString CrashInfo("Per-function optimization"); 778 779 PerFunctionPasses.doInitialization(); 780 for (Function &F : *TheModule) 781 if (!F.isDeclaration()) 782 PerFunctionPasses.run(F); 783 PerFunctionPasses.doFinalization(); 784 } 785 786 { 787 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 788 PerModulePasses.run(*TheModule); 789 } 790 791 { 792 PrettyStackTraceString CrashInfo("Code generation"); 793 CodeGenPasses.run(*TheModule); 794 } 795 } 796 797 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 798 switch (Opts.OptimizationLevel) { 799 default: 800 llvm_unreachable("Invalid optimization level!"); 801 802 case 1: 803 return PassBuilder::O1; 804 805 case 2: 806 switch (Opts.OptimizeSize) { 807 default: 808 llvm_unreachable("Invalide optimization level for size!"); 809 810 case 0: 811 return PassBuilder::O2; 812 813 case 1: 814 return PassBuilder::Os; 815 816 case 2: 817 return PassBuilder::Oz; 818 } 819 820 case 3: 821 return PassBuilder::O3; 822 } 823 } 824 825 /// A clean version of `EmitAssembly` that uses the new pass manager. 826 /// 827 /// Not all features are currently supported in this system, but where 828 /// necessary it falls back to the legacy pass manager to at least provide 829 /// basic functionality. 830 /// 831 /// This API is planned to have its functionality finished and then to replace 832 /// `EmitAssembly` at some point in the future when the default switches. 833 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 834 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 835 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 836 setCommandLineOpts(CodeGenOpts); 837 838 // The new pass manager always makes a target machine available to passes 839 // during construction. 840 CreateTargetMachine(/*MustCreateTM*/ true); 841 if (!TM) 842 // This will already be diagnosed, just bail. 843 return; 844 TheModule->setDataLayout(TM->createDataLayout()); 845 846 Optional<PGOOptions> PGOOpt; 847 848 if (CodeGenOpts.hasProfileIRInstr()) 849 // -fprofile-generate. 850 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 851 ? DefaultProfileGenName 852 : CodeGenOpts.InstrProfileOutput, 853 "", "", true, CodeGenOpts.DebugInfoForProfiling); 854 else if (CodeGenOpts.hasProfileIRUse()) 855 // -fprofile-use. 856 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 857 CodeGenOpts.DebugInfoForProfiling); 858 else if (!CodeGenOpts.SampleProfileFile.empty()) 859 // -fprofile-sample-use 860 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 861 CodeGenOpts.DebugInfoForProfiling); 862 else if (CodeGenOpts.DebugInfoForProfiling) 863 // -fdebug-info-for-profiling 864 PGOOpt = PGOOptions("", "", "", false, true); 865 866 PassBuilder PB(TM.get(), PGOOpt); 867 868 LoopAnalysisManager LAM; 869 FunctionAnalysisManager FAM; 870 CGSCCAnalysisManager CGAM; 871 ModuleAnalysisManager MAM; 872 873 // Register the AA manager first so that our version is the one used. 874 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 875 876 // Register the target library analysis directly and give it a customized 877 // preset TLI. 878 Triple TargetTriple(TheModule->getTargetTriple()); 879 std::unique_ptr<TargetLibraryInfoImpl> TLII( 880 createTLII(TargetTriple, CodeGenOpts)); 881 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 882 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 883 884 // Register all the basic analyses with the managers. 885 PB.registerModuleAnalyses(MAM); 886 PB.registerCGSCCAnalyses(CGAM); 887 PB.registerFunctionAnalyses(FAM); 888 PB.registerLoopAnalyses(LAM); 889 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 890 891 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 892 893 if (!CodeGenOpts.DisableLLVMPasses) { 894 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 895 bool IsLTO = CodeGenOpts.PrepareForLTO; 896 897 if (CodeGenOpts.OptimizationLevel == 0) { 898 // Build a minimal pipeline based on the semantics required by Clang, 899 // which is just that always inlining occurs. 900 MPM.addPass(AlwaysInlinerPass()); 901 if (IsThinLTO) 902 MPM.addPass(NameAnonGlobalPass()); 903 } else { 904 // Map our optimization levels into one of the distinct levels used to 905 // configure the pipeline. 906 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 907 908 if (IsThinLTO) { 909 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 910 Level, CodeGenOpts.DebugPassManager); 911 MPM.addPass(NameAnonGlobalPass()); 912 } else if (IsLTO) { 913 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 914 CodeGenOpts.DebugPassManager); 915 } else { 916 MPM = PB.buildPerModuleDefaultPipeline(Level, 917 CodeGenOpts.DebugPassManager); 918 } 919 } 920 } 921 922 // FIXME: We still use the legacy pass manager to do code generation. We 923 // create that pass manager here and use it as needed below. 924 legacy::PassManager CodeGenPasses; 925 bool NeedCodeGen = false; 926 Optional<raw_fd_ostream> ThinLinkOS; 927 928 // Append any output we need to the pass manager. 929 switch (Action) { 930 case Backend_EmitNothing: 931 break; 932 933 case Backend_EmitBC: 934 if (CodeGenOpts.EmitSummaryIndex) { 935 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 936 std::error_code EC; 937 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 938 llvm::sys::fs::F_None); 939 if (EC) { 940 Diags.Report(diag::err_fe_unable_to_open_output) 941 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 942 return; 943 } 944 } 945 MPM.addPass( 946 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 947 } else { 948 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 949 CodeGenOpts.EmitSummaryIndex, 950 CodeGenOpts.EmitSummaryIndex)); 951 } 952 break; 953 954 case Backend_EmitLL: 955 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 956 break; 957 958 case Backend_EmitAssembly: 959 case Backend_EmitMCNull: 960 case Backend_EmitObj: 961 NeedCodeGen = true; 962 CodeGenPasses.add( 963 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 964 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 965 // FIXME: Should we handle this error differently? 966 return; 967 break; 968 } 969 970 // Before executing passes, print the final values of the LLVM options. 971 cl::PrintOptionValues(); 972 973 // Now that we have all of the passes ready, run them. 974 { 975 PrettyStackTraceString CrashInfo("Optimizer"); 976 MPM.run(*TheModule, MAM); 977 } 978 979 // Now if needed, run the legacy PM for codegen. 980 if (NeedCodeGen) { 981 PrettyStackTraceString CrashInfo("Code generation"); 982 CodeGenPasses.run(*TheModule); 983 } 984 } 985 986 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 987 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 988 if (!BMsOrErr) 989 return BMsOrErr.takeError(); 990 991 // The bitcode file may contain multiple modules, we want the one that is 992 // marked as being the ThinLTO module. 993 for (BitcodeModule &BM : *BMsOrErr) { 994 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 995 if (LTOInfo && LTOInfo->IsThinLTO) 996 return BM; 997 } 998 999 return make_error<StringError>("Could not find module summary", 1000 inconvertibleErrorCode()); 1001 } 1002 1003 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1004 const HeaderSearchOptions &HeaderOpts, 1005 const CodeGenOptions &CGOpts, 1006 const clang::TargetOptions &TOpts, 1007 const LangOptions &LOpts, 1008 std::unique_ptr<raw_pwrite_stream> OS, 1009 std::string SampleProfile, 1010 BackendAction Action) { 1011 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1012 ModuleToDefinedGVSummaries; 1013 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1014 1015 setCommandLineOpts(CGOpts); 1016 1017 // We can simply import the values mentioned in the combined index, since 1018 // we should only invoke this using the individual indexes written out 1019 // via a WriteIndexesThinBackend. 1020 FunctionImporter::ImportMapTy ImportList; 1021 for (auto &GlobalList : *CombinedIndex) { 1022 // Ignore entries for undefined references. 1023 if (GlobalList.second.SummaryList.empty()) 1024 continue; 1025 1026 auto GUID = GlobalList.first; 1027 assert(GlobalList.second.SummaryList.size() == 1 && 1028 "Expected individual combined index to have one summary per GUID"); 1029 auto &Summary = GlobalList.second.SummaryList[0]; 1030 // Skip the summaries for the importing module. These are included to 1031 // e.g. record required linkage changes. 1032 if (Summary->modulePath() == M->getModuleIdentifier()) 1033 continue; 1034 // Doesn't matter what value we plug in to the map, just needs an entry 1035 // to provoke importing by thinBackend. 1036 ImportList[Summary->modulePath()][GUID] = 1; 1037 } 1038 1039 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1040 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1041 1042 for (auto &I : ImportList) { 1043 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1044 llvm::MemoryBuffer::getFile(I.first()); 1045 if (!MBOrErr) { 1046 errs() << "Error loading imported file '" << I.first() 1047 << "': " << MBOrErr.getError().message() << "\n"; 1048 return; 1049 } 1050 1051 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1052 if (!BMOrErr) { 1053 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1054 errs() << "Error loading imported file '" << I.first() 1055 << "': " << EIB.message() << '\n'; 1056 }); 1057 return; 1058 } 1059 ModuleMap.insert({I.first(), *BMOrErr}); 1060 1061 OwnedImports.push_back(std::move(*MBOrErr)); 1062 } 1063 auto AddStream = [&](size_t Task) { 1064 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1065 }; 1066 lto::Config Conf; 1067 Conf.CPU = TOpts.CPU; 1068 Conf.CodeModel = getCodeModel(CGOpts); 1069 Conf.MAttrs = TOpts.Features; 1070 Conf.RelocModel = getRelocModel(CGOpts); 1071 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1072 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1073 Conf.SampleProfile = std::move(SampleProfile); 1074 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1075 switch (Action) { 1076 case Backend_EmitNothing: 1077 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1078 return false; 1079 }; 1080 break; 1081 case Backend_EmitLL: 1082 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1083 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1084 return false; 1085 }; 1086 break; 1087 case Backend_EmitBC: 1088 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1089 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1090 return false; 1091 }; 1092 break; 1093 default: 1094 Conf.CGFileType = getCodeGenFileType(Action); 1095 break; 1096 } 1097 if (Error E = thinBackend( 1098 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1099 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1100 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1101 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1102 }); 1103 } 1104 } 1105 1106 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1107 const HeaderSearchOptions &HeaderOpts, 1108 const CodeGenOptions &CGOpts, 1109 const clang::TargetOptions &TOpts, 1110 const LangOptions &LOpts, 1111 const llvm::DataLayout &TDesc, Module *M, 1112 BackendAction Action, 1113 std::unique_ptr<raw_pwrite_stream> OS) { 1114 if (!CGOpts.ThinLTOIndexFile.empty()) { 1115 // If we are performing a ThinLTO importing compile, load the function index 1116 // into memory and pass it into runThinLTOBackend, which will run the 1117 // function importer and invoke LTO passes. 1118 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1119 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1120 /*IgnoreEmptyThinLTOIndexFile*/true); 1121 if (!IndexOrErr) { 1122 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1123 "Error loading index file '" + 1124 CGOpts.ThinLTOIndexFile + "': "); 1125 return; 1126 } 1127 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1128 // A null CombinedIndex means we should skip ThinLTO compilation 1129 // (LLVM will optionally ignore empty index files, returning null instead 1130 // of an error). 1131 bool DoThinLTOBackend = CombinedIndex != nullptr; 1132 if (DoThinLTOBackend) { 1133 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1134 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1135 return; 1136 } 1137 } 1138 1139 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1140 1141 if (CGOpts.ExperimentalNewPassManager) 1142 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1143 else 1144 AsmHelper.EmitAssembly(Action, std::move(OS)); 1145 1146 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1147 // DataLayout. 1148 if (AsmHelper.TM) { 1149 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1150 if (DLDesc != TDesc.getStringRepresentation()) { 1151 unsigned DiagID = Diags.getCustomDiagID( 1152 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1153 "expected target description '%1'"); 1154 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1155 } 1156 } 1157 } 1158 1159 static const char* getSectionNameForBitcode(const Triple &T) { 1160 switch (T.getObjectFormat()) { 1161 case Triple::MachO: 1162 return "__LLVM,__bitcode"; 1163 case Triple::COFF: 1164 case Triple::ELF: 1165 case Triple::Wasm: 1166 case Triple::UnknownObjectFormat: 1167 return ".llvmbc"; 1168 } 1169 llvm_unreachable("Unimplemented ObjectFormatType"); 1170 } 1171 1172 static const char* getSectionNameForCommandline(const Triple &T) { 1173 switch (T.getObjectFormat()) { 1174 case Triple::MachO: 1175 return "__LLVM,__cmdline"; 1176 case Triple::COFF: 1177 case Triple::ELF: 1178 case Triple::Wasm: 1179 case Triple::UnknownObjectFormat: 1180 return ".llvmcmd"; 1181 } 1182 llvm_unreachable("Unimplemented ObjectFormatType"); 1183 } 1184 1185 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1186 // __LLVM,__bitcode section. 1187 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1188 llvm::MemoryBufferRef Buf) { 1189 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1190 return; 1191 1192 // Save llvm.compiler.used and remote it. 1193 SmallVector<Constant*, 2> UsedArray; 1194 SmallSet<GlobalValue*, 4> UsedGlobals; 1195 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1196 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1197 for (auto *GV : UsedGlobals) { 1198 if (GV->getName() != "llvm.embedded.module" && 1199 GV->getName() != "llvm.cmdline") 1200 UsedArray.push_back( 1201 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1202 } 1203 if (Used) 1204 Used->eraseFromParent(); 1205 1206 // Embed the bitcode for the llvm module. 1207 std::string Data; 1208 ArrayRef<uint8_t> ModuleData; 1209 Triple T(M->getTargetTriple()); 1210 // Create a constant that contains the bitcode. 1211 // In case of embedding a marker, ignore the input Buf and use the empty 1212 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1213 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1214 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1215 (const unsigned char *)Buf.getBufferEnd())) { 1216 // If the input is LLVM Assembly, bitcode is produced by serializing 1217 // the module. Use-lists order need to be perserved in this case. 1218 llvm::raw_string_ostream OS(Data); 1219 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1220 ModuleData = 1221 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1222 } else 1223 // If the input is LLVM bitcode, write the input byte stream directly. 1224 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1225 Buf.getBufferSize()); 1226 } 1227 llvm::Constant *ModuleConstant = 1228 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1229 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1230 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1231 ModuleConstant); 1232 GV->setSection(getSectionNameForBitcode(T)); 1233 UsedArray.push_back( 1234 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1235 if (llvm::GlobalVariable *Old = 1236 M->getGlobalVariable("llvm.embedded.module", true)) { 1237 assert(Old->hasOneUse() && 1238 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1239 GV->takeName(Old); 1240 Old->eraseFromParent(); 1241 } else { 1242 GV->setName("llvm.embedded.module"); 1243 } 1244 1245 // Skip if only bitcode needs to be embedded. 1246 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1247 // Embed command-line options. 1248 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1249 CGOpts.CmdArgs.size()); 1250 llvm::Constant *CmdConstant = 1251 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1252 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1253 llvm::GlobalValue::PrivateLinkage, 1254 CmdConstant); 1255 GV->setSection(getSectionNameForCommandline(T)); 1256 UsedArray.push_back( 1257 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1258 if (llvm::GlobalVariable *Old = 1259 M->getGlobalVariable("llvm.cmdline", true)) { 1260 assert(Old->hasOneUse() && 1261 "llvm.cmdline can only be used once in llvm.compiler.used"); 1262 GV->takeName(Old); 1263 Old->eraseFromParent(); 1264 } else { 1265 GV->setName("llvm.cmdline"); 1266 } 1267 } 1268 1269 if (UsedArray.empty()) 1270 return; 1271 1272 // Recreate llvm.compiler.used. 1273 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1274 auto *NewUsed = new GlobalVariable( 1275 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1276 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1277 NewUsed->setSection("llvm.metadata"); 1278 } 1279