1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Passes/StandardInstrumentations.h" 41 #include "llvm/Support/BuryPointer.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/PrettyStackTrace.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/Coroutines.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/LowerTypeTests.h" 55 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 56 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 57 #include "llvm/Transforms/InstCombine/InstCombine.h" 58 #include "llvm/Transforms/Instrumentation.h" 59 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 60 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 61 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 62 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 63 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 64 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 65 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 66 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 67 #include "llvm/Transforms/ObjCARC.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Scalar/GVN.h" 70 #include "llvm/Transforms/Utils.h" 71 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 72 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 73 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 74 #include "llvm/Transforms/Utils/SymbolRewriter.h" 75 #include <memory> 76 using namespace clang; 77 using namespace llvm; 78 79 #define HANDLE_EXTENSION(Ext) \ 80 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 81 #include "llvm/Support/Extension.def" 82 83 namespace { 84 85 // Default filename used for profile generation. 86 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 87 88 class EmitAssemblyHelper { 89 DiagnosticsEngine &Diags; 90 const HeaderSearchOptions &HSOpts; 91 const CodeGenOptions &CodeGenOpts; 92 const clang::TargetOptions &TargetOpts; 93 const LangOptions &LangOpts; 94 Module *TheModule; 95 96 Timer CodeGenerationTime; 97 98 std::unique_ptr<raw_pwrite_stream> OS; 99 100 TargetIRAnalysis getTargetIRAnalysis() const { 101 if (TM) 102 return TM->getTargetIRAnalysis(); 103 104 return TargetIRAnalysis(); 105 } 106 107 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 108 109 /// Generates the TargetMachine. 110 /// Leaves TM unchanged if it is unable to create the target machine. 111 /// Some of our clang tests specify triples which are not built 112 /// into clang. This is okay because these tests check the generated 113 /// IR, and they require DataLayout which depends on the triple. 114 /// In this case, we allow this method to fail and not report an error. 115 /// When MustCreateTM is used, we print an error if we are unable to load 116 /// the requested target. 117 void CreateTargetMachine(bool MustCreateTM); 118 119 /// Add passes necessary to emit assembly or LLVM IR. 120 /// 121 /// \return True on success. 122 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 123 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 124 125 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 126 std::error_code EC; 127 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 128 llvm::sys::fs::OF_None); 129 if (EC) { 130 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 131 F.reset(); 132 } 133 return F; 134 } 135 136 public: 137 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 138 const HeaderSearchOptions &HeaderSearchOpts, 139 const CodeGenOptions &CGOpts, 140 const clang::TargetOptions &TOpts, 141 const LangOptions &LOpts, Module *M) 142 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 143 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 144 CodeGenerationTime("codegen", "Code Generation Time") {} 145 146 ~EmitAssemblyHelper() { 147 if (CodeGenOpts.DisableFree) 148 BuryPointer(std::move(TM)); 149 } 150 151 std::unique_ptr<TargetMachine> TM; 152 153 void EmitAssembly(BackendAction Action, 154 std::unique_ptr<raw_pwrite_stream> OS); 155 156 void EmitAssemblyWithNewPassManager(BackendAction Action, 157 std::unique_ptr<raw_pwrite_stream> OS); 158 }; 159 160 // We need this wrapper to access LangOpts and CGOpts from extension functions 161 // that we add to the PassManagerBuilder. 162 class PassManagerBuilderWrapper : public PassManagerBuilder { 163 public: 164 PassManagerBuilderWrapper(const Triple &TargetTriple, 165 const CodeGenOptions &CGOpts, 166 const LangOptions &LangOpts) 167 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 168 LangOpts(LangOpts) {} 169 const Triple &getTargetTriple() const { return TargetTriple; } 170 const CodeGenOptions &getCGOpts() const { return CGOpts; } 171 const LangOptions &getLangOpts() const { return LangOpts; } 172 173 private: 174 const Triple &TargetTriple; 175 const CodeGenOptions &CGOpts; 176 const LangOptions &LangOpts; 177 }; 178 } 179 180 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 181 if (Builder.OptLevel > 0) 182 PM.add(createObjCARCAPElimPass()); 183 } 184 185 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCExpandPass()); 188 } 189 190 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 191 if (Builder.OptLevel > 0) 192 PM.add(createObjCARCOptPass()); 193 } 194 195 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 PM.add(createAddDiscriminatorsPass()); 198 } 199 200 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 201 legacy::PassManagerBase &PM) { 202 PM.add(createBoundsCheckingLegacyPass()); 203 } 204 205 static SanitizerCoverageOptions 206 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 207 SanitizerCoverageOptions Opts; 208 Opts.CoverageType = 209 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 210 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 211 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 212 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 213 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 214 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 215 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 216 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 217 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 218 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 219 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 220 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 221 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 222 return Opts; 223 } 224 225 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 226 legacy::PassManagerBase &PM) { 227 const PassManagerBuilderWrapper &BuilderWrapper = 228 static_cast<const PassManagerBuilderWrapper &>(Builder); 229 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 230 auto Opts = getSancovOptsFromCGOpts(CGOpts); 231 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 232 } 233 234 // Check if ASan should use GC-friendly instrumentation for globals. 235 // First of all, there is no point if -fdata-sections is off (expect for MachO, 236 // where this is not a factor). Also, on ELF this feature requires an assembler 237 // extension that only works with -integrated-as at the moment. 238 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 239 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 240 return false; 241 switch (T.getObjectFormat()) { 242 case Triple::MachO: 243 case Triple::COFF: 244 return true; 245 case Triple::ELF: 246 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 247 case Triple::XCOFF: 248 llvm::report_fatal_error("ASan not implemented for XCOFF."); 249 case Triple::Wasm: 250 case Triple::UnknownObjectFormat: 251 break; 252 } 253 return false; 254 } 255 256 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 257 legacy::PassManagerBase &PM) { 258 const PassManagerBuilderWrapper &BuilderWrapper = 259 static_cast<const PassManagerBuilderWrapper&>(Builder); 260 const Triple &T = BuilderWrapper.getTargetTriple(); 261 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 262 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 263 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 264 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 265 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 266 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 267 UseAfterScope)); 268 PM.add(createModuleAddressSanitizerLegacyPassPass( 269 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 270 } 271 272 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createAddressSanitizerFunctionPass( 275 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 276 PM.add(createModuleAddressSanitizerLegacyPassPass( 277 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 278 /*UseOdrIndicator*/ false)); 279 } 280 281 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 282 legacy::PassManagerBase &PM) { 283 const PassManagerBuilderWrapper &BuilderWrapper = 284 static_cast<const PassManagerBuilderWrapper &>(Builder); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 287 PM.add( 288 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 289 } 290 291 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 292 legacy::PassManagerBase &PM) { 293 PM.add(createHWAddressSanitizerLegacyPassPass( 294 /*CompileKernel*/ true, /*Recover*/ true)); 295 } 296 297 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 298 legacy::PassManagerBase &PM, 299 bool CompileKernel) { 300 const PassManagerBuilderWrapper &BuilderWrapper = 301 static_cast<const PassManagerBuilderWrapper&>(Builder); 302 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 303 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 304 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 305 PM.add(createMemorySanitizerLegacyPassPass( 306 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 307 308 // MemorySanitizer inserts complex instrumentation that mostly follows 309 // the logic of the original code, but operates on "shadow" values. 310 // It can benefit from re-running some general purpose optimization passes. 311 if (Builder.OptLevel > 0) { 312 PM.add(createEarlyCSEPass()); 313 PM.add(createReassociatePass()); 314 PM.add(createLICMPass()); 315 PM.add(createGVNPass()); 316 PM.add(createInstructionCombiningPass()); 317 PM.add(createDeadStoreEliminationPass()); 318 } 319 } 320 321 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 324 } 325 326 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 329 } 330 331 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 PM.add(createThreadSanitizerLegacyPassPass()); 334 } 335 336 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 337 legacy::PassManagerBase &PM) { 338 const PassManagerBuilderWrapper &BuilderWrapper = 339 static_cast<const PassManagerBuilderWrapper&>(Builder); 340 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 341 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 342 } 343 344 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 345 const CodeGenOptions &CodeGenOpts) { 346 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 347 348 switch (CodeGenOpts.getVecLib()) { 349 case CodeGenOptions::Accelerate: 350 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 351 break; 352 case CodeGenOptions::MASSV: 353 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 354 break; 355 case CodeGenOptions::SVML: 356 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 357 break; 358 default: 359 break; 360 } 361 return TLII; 362 } 363 364 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 365 legacy::PassManager *MPM) { 366 llvm::SymbolRewriter::RewriteDescriptorList DL; 367 368 llvm::SymbolRewriter::RewriteMapParser MapParser; 369 for (const auto &MapFile : Opts.RewriteMapFiles) 370 MapParser.parse(MapFile, &DL); 371 372 MPM->add(createRewriteSymbolsPass(DL)); 373 } 374 375 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 376 switch (CodeGenOpts.OptimizationLevel) { 377 default: 378 llvm_unreachable("Invalid optimization level!"); 379 case 0: 380 return CodeGenOpt::None; 381 case 1: 382 return CodeGenOpt::Less; 383 case 2: 384 return CodeGenOpt::Default; // O2/Os/Oz 385 case 3: 386 return CodeGenOpt::Aggressive; 387 } 388 } 389 390 static Optional<llvm::CodeModel::Model> 391 getCodeModel(const CodeGenOptions &CodeGenOpts) { 392 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 393 .Case("tiny", llvm::CodeModel::Tiny) 394 .Case("small", llvm::CodeModel::Small) 395 .Case("kernel", llvm::CodeModel::Kernel) 396 .Case("medium", llvm::CodeModel::Medium) 397 .Case("large", llvm::CodeModel::Large) 398 .Case("default", ~1u) 399 .Default(~0u); 400 assert(CodeModel != ~0u && "invalid code model!"); 401 if (CodeModel == ~1u) 402 return None; 403 return static_cast<llvm::CodeModel::Model>(CodeModel); 404 } 405 406 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 407 if (Action == Backend_EmitObj) 408 return CGFT_ObjectFile; 409 else if (Action == Backend_EmitMCNull) 410 return CGFT_Null; 411 else { 412 assert(Action == Backend_EmitAssembly && "Invalid action!"); 413 return CGFT_AssemblyFile; 414 } 415 } 416 417 static void initTargetOptions(llvm::TargetOptions &Options, 418 const CodeGenOptions &CodeGenOpts, 419 const clang::TargetOptions &TargetOpts, 420 const LangOptions &LangOpts, 421 const HeaderSearchOptions &HSOpts) { 422 Options.ThreadModel = 423 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 424 .Case("posix", llvm::ThreadModel::POSIX) 425 .Case("single", llvm::ThreadModel::Single); 426 427 // Set float ABI type. 428 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 429 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 430 "Invalid Floating Point ABI!"); 431 Options.FloatABIType = 432 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 433 .Case("soft", llvm::FloatABI::Soft) 434 .Case("softfp", llvm::FloatABI::Soft) 435 .Case("hard", llvm::FloatABI::Hard) 436 .Default(llvm::FloatABI::Default); 437 438 // Set FP fusion mode. 439 switch (LangOpts.getDefaultFPContractMode()) { 440 case LangOptions::FPC_Off: 441 // Preserve any contraction performed by the front-end. (Strict performs 442 // splitting of the muladd intrinsic in the backend.) 443 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 444 break; 445 case LangOptions::FPC_On: 446 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 447 break; 448 case LangOptions::FPC_Fast: 449 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 450 break; 451 } 452 453 Options.UseInitArray = CodeGenOpts.UseInitArray; 454 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 455 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 456 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 457 458 // Set EABI version. 459 Options.EABIVersion = TargetOpts.EABIVersion; 460 461 if (LangOpts.SjLjExceptions) 462 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 463 if (LangOpts.SEHExceptions) 464 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 465 if (LangOpts.DWARFExceptions) 466 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 467 if (LangOpts.WasmExceptions) 468 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 469 470 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 471 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 472 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 473 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 474 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 475 Options.FunctionSections = CodeGenOpts.FunctionSections; 476 Options.DataSections = CodeGenOpts.DataSections; 477 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 478 Options.TLSSize = CodeGenOpts.TLSSize; 479 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 480 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 481 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 482 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 483 Options.EmitAddrsig = CodeGenOpts.Addrsig; 484 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 485 486 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 487 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 488 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 489 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 490 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 491 Options.MCOptions.MCIncrementalLinkerCompatible = 492 CodeGenOpts.IncrementalLinkerCompatible; 493 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 494 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 495 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 496 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 497 Options.MCOptions.ABIName = TargetOpts.ABI; 498 for (const auto &Entry : HSOpts.UserEntries) 499 if (!Entry.IsFramework && 500 (Entry.Group == frontend::IncludeDirGroup::Quoted || 501 Entry.Group == frontend::IncludeDirGroup::Angled || 502 Entry.Group == frontend::IncludeDirGroup::System)) 503 Options.MCOptions.IASSearchPaths.push_back( 504 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 505 } 506 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 507 if (CodeGenOpts.DisableGCov) 508 return None; 509 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 510 return None; 511 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 512 // LLVM's -default-gcov-version flag is set to something invalid. 513 GCOVOptions Options; 514 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 515 Options.EmitData = CodeGenOpts.EmitGcovArcs; 516 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 517 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 518 Options.NoRedZone = CodeGenOpts.DisableRedZone; 519 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 520 Options.Filter = CodeGenOpts.ProfileFilterFiles; 521 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 522 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 523 return Options; 524 } 525 526 static Optional<InstrProfOptions> 527 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 528 const LangOptions &LangOpts) { 529 if (!CodeGenOpts.hasProfileClangInstr()) 530 return None; 531 InstrProfOptions Options; 532 Options.NoRedZone = CodeGenOpts.DisableRedZone; 533 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 534 535 // TODO: Surface the option to emit atomic profile counter increments at 536 // the driver level. 537 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 538 return Options; 539 } 540 541 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 542 legacy::FunctionPassManager &FPM) { 543 // Handle disabling of all LLVM passes, where we want to preserve the 544 // internal module before any optimization. 545 if (CodeGenOpts.DisableLLVMPasses) 546 return; 547 548 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 549 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 550 // are inserted before PMBuilder ones - they'd get the default-constructed 551 // TLI with an unknown target otherwise. 552 Triple TargetTriple(TheModule->getTargetTriple()); 553 std::unique_ptr<TargetLibraryInfoImpl> TLII( 554 createTLII(TargetTriple, CodeGenOpts)); 555 556 // If we reached here with a non-empty index file name, then the index file 557 // was empty and we are not performing ThinLTO backend compilation (used in 558 // testing in a distributed build environment). Drop any the type test 559 // assume sequences inserted for whole program vtables so that codegen doesn't 560 // complain. 561 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 562 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 563 /*ImportSummary=*/nullptr, 564 /*DropTypeTests=*/true)); 565 566 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 567 568 // At O0 and O1 we only run the always inliner which is more efficient. At 569 // higher optimization levels we run the normal inliner. 570 if (CodeGenOpts.OptimizationLevel <= 1) { 571 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 572 !CodeGenOpts.DisableLifetimeMarkers); 573 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 574 } else { 575 // We do not want to inline hot callsites for SamplePGO module-summary build 576 // because profile annotation will happen again in ThinLTO backend, and we 577 // want the IR of the hot path to match the profile. 578 PMBuilder.Inliner = createFunctionInliningPass( 579 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 580 (!CodeGenOpts.SampleProfileFile.empty() && 581 CodeGenOpts.PrepareForThinLTO)); 582 } 583 584 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 585 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 586 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 587 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 588 589 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 590 // Loop interleaving in the loop vectorizer has historically been set to be 591 // enabled when loop unrolling is enabled. 592 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 593 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 594 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 595 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 596 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 597 598 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 599 600 if (TM) 601 TM->adjustPassManager(PMBuilder); 602 603 if (CodeGenOpts.DebugInfoForProfiling || 604 !CodeGenOpts.SampleProfileFile.empty()) 605 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 606 addAddDiscriminatorsPass); 607 608 // In ObjC ARC mode, add the main ARC optimization passes. 609 if (LangOpts.ObjCAutoRefCount) { 610 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 611 addObjCARCExpandPass); 612 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 613 addObjCARCAPElimPass); 614 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 615 addObjCARCOptPass); 616 } 617 618 if (LangOpts.Coroutines) 619 addCoroutinePassesToExtensionPoints(PMBuilder); 620 621 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 622 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 623 addBoundsCheckingPass); 624 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 625 addBoundsCheckingPass); 626 } 627 628 if (CodeGenOpts.SanitizeCoverageType || 629 CodeGenOpts.SanitizeCoverageIndirectCalls || 630 CodeGenOpts.SanitizeCoverageTraceCmp) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addSanitizerCoveragePass); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addSanitizerCoveragePass); 635 } 636 637 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 639 addAddressSanitizerPasses); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addAddressSanitizerPasses); 642 } 643 644 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addKernelAddressSanitizerPasses); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addKernelAddressSanitizerPasses); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addHWAddressSanitizerPasses); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addHWAddressSanitizerPasses); 656 } 657 658 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addKernelHWAddressSanitizerPasses); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addKernelHWAddressSanitizerPasses); 663 } 664 665 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addMemorySanitizerPass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addMemorySanitizerPass); 670 } 671 672 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addKernelMemorySanitizerPass); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addKernelMemorySanitizerPass); 677 } 678 679 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 680 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 681 addThreadSanitizerPass); 682 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 683 addThreadSanitizerPass); 684 } 685 686 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 687 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 688 addDataFlowSanitizerPass); 689 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 690 addDataFlowSanitizerPass); 691 } 692 693 // Set up the per-function pass manager. 694 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 695 if (CodeGenOpts.VerifyModule) 696 FPM.add(createVerifierPass()); 697 698 // Set up the per-module pass manager. 699 if (!CodeGenOpts.RewriteMapFiles.empty()) 700 addSymbolRewriterPass(CodeGenOpts, &MPM); 701 702 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 703 MPM.add(createGCOVProfilerPass(*Options)); 704 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 705 MPM.add(createStripSymbolsPass(true)); 706 } 707 708 if (Optional<InstrProfOptions> Options = 709 getInstrProfOptions(CodeGenOpts, LangOpts)) 710 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 711 712 bool hasIRInstr = false; 713 if (CodeGenOpts.hasProfileIRInstr()) { 714 PMBuilder.EnablePGOInstrGen = true; 715 hasIRInstr = true; 716 } 717 if (CodeGenOpts.hasProfileCSIRInstr()) { 718 assert(!CodeGenOpts.hasProfileCSIRUse() && 719 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 720 "same time"); 721 assert(!hasIRInstr && 722 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 723 "same time"); 724 PMBuilder.EnablePGOCSInstrGen = true; 725 hasIRInstr = true; 726 } 727 if (hasIRInstr) { 728 if (!CodeGenOpts.InstrProfileOutput.empty()) 729 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 730 else 731 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 732 } 733 if (CodeGenOpts.hasProfileIRUse()) { 734 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 735 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 736 } 737 738 if (!CodeGenOpts.SampleProfileFile.empty()) 739 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 740 741 PMBuilder.populateFunctionPassManager(FPM); 742 PMBuilder.populateModulePassManager(MPM); 743 } 744 745 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 746 SmallVector<const char *, 16> BackendArgs; 747 BackendArgs.push_back("clang"); // Fake program name. 748 if (!CodeGenOpts.DebugPass.empty()) { 749 BackendArgs.push_back("-debug-pass"); 750 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 751 } 752 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 753 BackendArgs.push_back("-limit-float-precision"); 754 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 755 } 756 BackendArgs.push_back(nullptr); 757 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 758 BackendArgs.data()); 759 } 760 761 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 762 // Create the TargetMachine for generating code. 763 std::string Error; 764 std::string Triple = TheModule->getTargetTriple(); 765 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 766 if (!TheTarget) { 767 if (MustCreateTM) 768 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 769 return; 770 } 771 772 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 773 std::string FeaturesStr = 774 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 775 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 776 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 777 778 llvm::TargetOptions Options; 779 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 780 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 781 Options, RM, CM, OptLevel)); 782 } 783 784 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 785 BackendAction Action, 786 raw_pwrite_stream &OS, 787 raw_pwrite_stream *DwoOS) { 788 // Add LibraryInfo. 789 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 790 std::unique_ptr<TargetLibraryInfoImpl> TLII( 791 createTLII(TargetTriple, CodeGenOpts)); 792 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 793 794 // Normal mode, emit a .s or .o file by running the code generator. Note, 795 // this also adds codegenerator level optimization passes. 796 CodeGenFileType CGFT = getCodeGenFileType(Action); 797 798 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 799 // "codegen" passes so that it isn't run multiple times when there is 800 // inlining happening. 801 if (CodeGenOpts.OptimizationLevel > 0) 802 CodeGenPasses.add(createObjCARCContractPass()); 803 804 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 805 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 806 Diags.Report(diag::err_fe_unable_to_interface_with_target); 807 return false; 808 } 809 810 return true; 811 } 812 813 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 814 std::unique_ptr<raw_pwrite_stream> OS) { 815 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 816 817 setCommandLineOpts(CodeGenOpts); 818 819 bool UsesCodeGen = (Action != Backend_EmitNothing && 820 Action != Backend_EmitBC && 821 Action != Backend_EmitLL); 822 CreateTargetMachine(UsesCodeGen); 823 824 if (UsesCodeGen && !TM) 825 return; 826 if (TM) 827 TheModule->setDataLayout(TM->createDataLayout()); 828 829 legacy::PassManager PerModulePasses; 830 PerModulePasses.add( 831 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 832 833 legacy::FunctionPassManager PerFunctionPasses(TheModule); 834 PerFunctionPasses.add( 835 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 836 837 CreatePasses(PerModulePasses, PerFunctionPasses); 838 839 legacy::PassManager CodeGenPasses; 840 CodeGenPasses.add( 841 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 842 843 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 844 845 switch (Action) { 846 case Backend_EmitNothing: 847 break; 848 849 case Backend_EmitBC: 850 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 851 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 852 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 853 if (!ThinLinkOS) 854 return; 855 } 856 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 857 CodeGenOpts.EnableSplitLTOUnit); 858 PerModulePasses.add(createWriteThinLTOBitcodePass( 859 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 860 } else { 861 // Emit a module summary by default for Regular LTO except for ld64 862 // targets 863 bool EmitLTOSummary = 864 (CodeGenOpts.PrepareForLTO && 865 !CodeGenOpts.DisableLLVMPasses && 866 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 867 llvm::Triple::Apple); 868 if (EmitLTOSummary) { 869 if (!TheModule->getModuleFlag("ThinLTO")) 870 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 871 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 872 uint32_t(1)); 873 } 874 875 PerModulePasses.add(createBitcodeWriterPass( 876 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 877 } 878 break; 879 880 case Backend_EmitLL: 881 PerModulePasses.add( 882 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 883 break; 884 885 default: 886 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 887 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 888 if (!DwoOS) 889 return; 890 } 891 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 892 DwoOS ? &DwoOS->os() : nullptr)) 893 return; 894 } 895 896 // Before executing passes, print the final values of the LLVM options. 897 cl::PrintOptionValues(); 898 899 // Run passes. For now we do all passes at once, but eventually we 900 // would like to have the option of streaming code generation. 901 902 { 903 PrettyStackTraceString CrashInfo("Per-function optimization"); 904 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 905 906 PerFunctionPasses.doInitialization(); 907 for (Function &F : *TheModule) 908 if (!F.isDeclaration()) 909 PerFunctionPasses.run(F); 910 PerFunctionPasses.doFinalization(); 911 } 912 913 { 914 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 915 llvm::TimeTraceScope TimeScope("PerModulePasses"); 916 PerModulePasses.run(*TheModule); 917 } 918 919 { 920 PrettyStackTraceString CrashInfo("Code generation"); 921 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 922 CodeGenPasses.run(*TheModule); 923 } 924 925 if (ThinLinkOS) 926 ThinLinkOS->keep(); 927 if (DwoOS) 928 DwoOS->keep(); 929 } 930 931 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 932 switch (Opts.OptimizationLevel) { 933 default: 934 llvm_unreachable("Invalid optimization level!"); 935 936 case 1: 937 return PassBuilder::OptimizationLevel::O1; 938 939 case 2: 940 switch (Opts.OptimizeSize) { 941 default: 942 llvm_unreachable("Invalid optimization level for size!"); 943 944 case 0: 945 return PassBuilder::OptimizationLevel::O2; 946 947 case 1: 948 return PassBuilder::OptimizationLevel::Os; 949 950 case 2: 951 return PassBuilder::OptimizationLevel::Oz; 952 } 953 954 case 3: 955 return PassBuilder::OptimizationLevel::O3; 956 } 957 } 958 959 static void addSanitizersAtO0(ModulePassManager &MPM, 960 const Triple &TargetTriple, 961 const LangOptions &LangOpts, 962 const CodeGenOptions &CodeGenOpts) { 963 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 964 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 965 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 966 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 967 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 968 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 969 MPM.addPass( 970 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 971 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 972 }; 973 974 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 975 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 976 } 977 978 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 979 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 980 } 981 982 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 983 MPM.addPass(MemorySanitizerPass({})); 984 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 985 } 986 987 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 988 MPM.addPass(createModuleToFunctionPassAdaptor( 989 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 990 } 991 992 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 993 MPM.addPass(ThreadSanitizerPass()); 994 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 995 } 996 } 997 998 /// A clean version of `EmitAssembly` that uses the new pass manager. 999 /// 1000 /// Not all features are currently supported in this system, but where 1001 /// necessary it falls back to the legacy pass manager to at least provide 1002 /// basic functionality. 1003 /// 1004 /// This API is planned to have its functionality finished and then to replace 1005 /// `EmitAssembly` at some point in the future when the default switches. 1006 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1007 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1008 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1009 setCommandLineOpts(CodeGenOpts); 1010 1011 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1012 Action != Backend_EmitBC && 1013 Action != Backend_EmitLL); 1014 CreateTargetMachine(RequiresCodeGen); 1015 1016 if (RequiresCodeGen && !TM) 1017 return; 1018 if (TM) 1019 TheModule->setDataLayout(TM->createDataLayout()); 1020 1021 Optional<PGOOptions> PGOOpt; 1022 1023 if (CodeGenOpts.hasProfileIRInstr()) 1024 // -fprofile-generate. 1025 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1026 ? std::string(DefaultProfileGenName) 1027 : CodeGenOpts.InstrProfileOutput, 1028 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1029 CodeGenOpts.DebugInfoForProfiling); 1030 else if (CodeGenOpts.hasProfileIRUse()) { 1031 // -fprofile-use. 1032 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1033 : PGOOptions::NoCSAction; 1034 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1035 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1036 CSAction, CodeGenOpts.DebugInfoForProfiling); 1037 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1038 // -fprofile-sample-use 1039 PGOOpt = 1040 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1041 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1042 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1043 else if (CodeGenOpts.DebugInfoForProfiling) 1044 // -fdebug-info-for-profiling 1045 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1046 PGOOptions::NoCSAction, true); 1047 1048 // Check to see if we want to generate a CS profile. 1049 if (CodeGenOpts.hasProfileCSIRInstr()) { 1050 assert(!CodeGenOpts.hasProfileCSIRUse() && 1051 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1052 "the same time"); 1053 if (PGOOpt.hasValue()) { 1054 assert(PGOOpt->Action != PGOOptions::IRInstr && 1055 PGOOpt->Action != PGOOptions::SampleUse && 1056 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1057 " pass"); 1058 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1059 ? std::string(DefaultProfileGenName) 1060 : CodeGenOpts.InstrProfileOutput; 1061 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1062 } else 1063 PGOOpt = PGOOptions("", 1064 CodeGenOpts.InstrProfileOutput.empty() 1065 ? std::string(DefaultProfileGenName) 1066 : CodeGenOpts.InstrProfileOutput, 1067 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1068 CodeGenOpts.DebugInfoForProfiling); 1069 } 1070 1071 PipelineTuningOptions PTO; 1072 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1073 // For historical reasons, loop interleaving is set to mirror setting for loop 1074 // unrolling. 1075 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1076 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1077 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1078 1079 PassInstrumentationCallbacks PIC; 1080 StandardInstrumentations SI; 1081 SI.registerCallbacks(PIC); 1082 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1083 1084 // Attempt to load pass plugins and register their callbacks with PB. 1085 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1086 auto PassPlugin = PassPlugin::Load(PluginFN); 1087 if (PassPlugin) { 1088 PassPlugin->registerPassBuilderCallbacks(PB); 1089 } else { 1090 Diags.Report(diag::err_fe_unable_to_load_plugin) 1091 << PluginFN << toString(PassPlugin.takeError()); 1092 } 1093 } 1094 #define HANDLE_EXTENSION(Ext) \ 1095 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1096 #include "llvm/Support/Extension.def" 1097 1098 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1099 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1100 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1101 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1102 1103 // Register the AA manager first so that our version is the one used. 1104 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1105 1106 // Register the target library analysis directly and give it a customized 1107 // preset TLI. 1108 Triple TargetTriple(TheModule->getTargetTriple()); 1109 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1110 createTLII(TargetTriple, CodeGenOpts)); 1111 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1112 1113 // Register all the basic analyses with the managers. 1114 PB.registerModuleAnalyses(MAM); 1115 PB.registerCGSCCAnalyses(CGAM); 1116 PB.registerFunctionAnalyses(FAM); 1117 PB.registerLoopAnalyses(LAM); 1118 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1119 1120 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1121 1122 if (!CodeGenOpts.DisableLLVMPasses) { 1123 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1124 bool IsLTO = CodeGenOpts.PrepareForLTO; 1125 1126 if (CodeGenOpts.OptimizationLevel == 0) { 1127 // If we reached here with a non-empty index file name, then the index 1128 // file was empty and we are not performing ThinLTO backend compilation 1129 // (used in testing in a distributed build environment). Drop any the type 1130 // test assume sequences inserted for whole program vtables so that 1131 // codegen doesn't complain. 1132 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1133 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1134 /*ImportSummary=*/nullptr, 1135 /*DropTypeTests=*/true)); 1136 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1137 MPM.addPass(GCOVProfilerPass(*Options)); 1138 if (Optional<InstrProfOptions> Options = 1139 getInstrProfOptions(CodeGenOpts, LangOpts)) 1140 MPM.addPass(InstrProfiling(*Options, false)); 1141 1142 // Build a minimal pipeline based on the semantics required by Clang, 1143 // which is just that always inlining occurs. Further, disable generating 1144 // lifetime intrinsics to avoid enabling further optimizations during 1145 // code generation. 1146 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1147 1148 // At -O0, we can still do PGO. Add all the requested passes for 1149 // instrumentation PGO, if requested. 1150 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1151 PGOOpt->Action == PGOOptions::IRUse)) 1152 PB.addPGOInstrPassesForO0( 1153 MPM, CodeGenOpts.DebugPassManager, 1154 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1155 /* IsCS */ false, PGOOpt->ProfileFile, 1156 PGOOpt->ProfileRemappingFile); 1157 1158 // At -O0 we directly run necessary sanitizer passes. 1159 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1160 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1161 1162 // Lastly, add semantically necessary passes for LTO. 1163 if (IsLTO || IsThinLTO) { 1164 MPM.addPass(CanonicalizeAliasesPass()); 1165 MPM.addPass(NameAnonGlobalPass()); 1166 } 1167 } else { 1168 // Map our optimization levels into one of the distinct levels used to 1169 // configure the pipeline. 1170 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1171 1172 // If we reached here with a non-empty index file name, then the index 1173 // file was empty and we are not performing ThinLTO backend compilation 1174 // (used in testing in a distributed build environment). Drop any the type 1175 // test assume sequences inserted for whole program vtables so that 1176 // codegen doesn't complain. 1177 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1178 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1179 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1180 /*ImportSummary=*/nullptr, 1181 /*DropTypeTests=*/true)); 1182 }); 1183 1184 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1185 MPM.addPass(createModuleToFunctionPassAdaptor( 1186 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1187 }); 1188 1189 // Register callbacks to schedule sanitizer passes at the appropriate part of 1190 // the pipeline. 1191 // FIXME: either handle asan/the remaining sanitizers or error out 1192 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1193 PB.registerScalarOptimizerLateEPCallback( 1194 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1195 FPM.addPass(BoundsCheckingPass()); 1196 }); 1197 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1198 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1199 MPM.addPass(MemorySanitizerPass({})); 1200 }); 1201 PB.registerOptimizerLastEPCallback( 1202 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1203 FPM.addPass(MemorySanitizerPass({})); 1204 }); 1205 } 1206 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1207 PB.registerPipelineStartEPCallback( 1208 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1209 PB.registerOptimizerLastEPCallback( 1210 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1211 FPM.addPass(ThreadSanitizerPass()); 1212 }); 1213 } 1214 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1215 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1216 MPM.addPass( 1217 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1218 }); 1219 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1220 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1221 PB.registerOptimizerLastEPCallback( 1222 [Recover, UseAfterScope](FunctionPassManager &FPM, 1223 PassBuilder::OptimizationLevel Level) { 1224 FPM.addPass(AddressSanitizerPass( 1225 /*CompileKernel=*/false, Recover, UseAfterScope)); 1226 }); 1227 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1228 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1229 PB.registerPipelineStartEPCallback( 1230 [Recover, ModuleUseAfterScope, 1231 UseOdrIndicator](ModulePassManager &MPM) { 1232 MPM.addPass(ModuleAddressSanitizerPass( 1233 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1234 UseOdrIndicator)); 1235 }); 1236 } 1237 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1238 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1239 MPM.addPass(GCOVProfilerPass(*Options)); 1240 }); 1241 if (Optional<InstrProfOptions> Options = 1242 getInstrProfOptions(CodeGenOpts, LangOpts)) 1243 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1244 MPM.addPass(InstrProfiling(*Options, false)); 1245 }); 1246 1247 if (IsThinLTO) { 1248 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1249 Level, CodeGenOpts.DebugPassManager); 1250 MPM.addPass(CanonicalizeAliasesPass()); 1251 MPM.addPass(NameAnonGlobalPass()); 1252 } else if (IsLTO) { 1253 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1254 CodeGenOpts.DebugPassManager); 1255 MPM.addPass(CanonicalizeAliasesPass()); 1256 MPM.addPass(NameAnonGlobalPass()); 1257 } else { 1258 MPM = PB.buildPerModuleDefaultPipeline(Level, 1259 CodeGenOpts.DebugPassManager); 1260 } 1261 } 1262 1263 if (CodeGenOpts.SanitizeCoverageType || 1264 CodeGenOpts.SanitizeCoverageIndirectCalls || 1265 CodeGenOpts.SanitizeCoverageTraceCmp) { 1266 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1267 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1268 } 1269 1270 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1271 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1272 MPM.addPass(HWAddressSanitizerPass( 1273 /*CompileKernel=*/false, Recover)); 1274 } 1275 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1276 MPM.addPass(HWAddressSanitizerPass( 1277 /*CompileKernel=*/true, /*Recover=*/true)); 1278 } 1279 1280 if (CodeGenOpts.OptimizationLevel == 0) { 1281 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1282 } 1283 } 1284 1285 // FIXME: We still use the legacy pass manager to do code generation. We 1286 // create that pass manager here and use it as needed below. 1287 legacy::PassManager CodeGenPasses; 1288 bool NeedCodeGen = false; 1289 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1290 1291 // Append any output we need to the pass manager. 1292 switch (Action) { 1293 case Backend_EmitNothing: 1294 break; 1295 1296 case Backend_EmitBC: 1297 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1298 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1299 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1300 if (!ThinLinkOS) 1301 return; 1302 } 1303 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1304 CodeGenOpts.EnableSplitLTOUnit); 1305 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1306 : nullptr)); 1307 } else { 1308 // Emit a module summary by default for Regular LTO except for ld64 1309 // targets 1310 bool EmitLTOSummary = 1311 (CodeGenOpts.PrepareForLTO && 1312 !CodeGenOpts.DisableLLVMPasses && 1313 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1314 llvm::Triple::Apple); 1315 if (EmitLTOSummary) { 1316 if (!TheModule->getModuleFlag("ThinLTO")) 1317 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1318 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1319 uint32_t(1)); 1320 } 1321 MPM.addPass( 1322 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1323 } 1324 break; 1325 1326 case Backend_EmitLL: 1327 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1328 break; 1329 1330 case Backend_EmitAssembly: 1331 case Backend_EmitMCNull: 1332 case Backend_EmitObj: 1333 NeedCodeGen = true; 1334 CodeGenPasses.add( 1335 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1336 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1337 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1338 if (!DwoOS) 1339 return; 1340 } 1341 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1342 DwoOS ? &DwoOS->os() : nullptr)) 1343 // FIXME: Should we handle this error differently? 1344 return; 1345 break; 1346 } 1347 1348 // Before executing passes, print the final values of the LLVM options. 1349 cl::PrintOptionValues(); 1350 1351 // Now that we have all of the passes ready, run them. 1352 { 1353 PrettyStackTraceString CrashInfo("Optimizer"); 1354 MPM.run(*TheModule, MAM); 1355 } 1356 1357 // Now if needed, run the legacy PM for codegen. 1358 if (NeedCodeGen) { 1359 PrettyStackTraceString CrashInfo("Code generation"); 1360 CodeGenPasses.run(*TheModule); 1361 } 1362 1363 if (ThinLinkOS) 1364 ThinLinkOS->keep(); 1365 if (DwoOS) 1366 DwoOS->keep(); 1367 } 1368 1369 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1370 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1371 if (!BMsOrErr) 1372 return BMsOrErr.takeError(); 1373 1374 // The bitcode file may contain multiple modules, we want the one that is 1375 // marked as being the ThinLTO module. 1376 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1377 return *Bm; 1378 1379 return make_error<StringError>("Could not find module summary", 1380 inconvertibleErrorCode()); 1381 } 1382 1383 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1384 for (BitcodeModule &BM : BMs) { 1385 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1386 if (LTOInfo && LTOInfo->IsThinLTO) 1387 return &BM; 1388 } 1389 return nullptr; 1390 } 1391 1392 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1393 const HeaderSearchOptions &HeaderOpts, 1394 const CodeGenOptions &CGOpts, 1395 const clang::TargetOptions &TOpts, 1396 const LangOptions &LOpts, 1397 std::unique_ptr<raw_pwrite_stream> OS, 1398 std::string SampleProfile, 1399 std::string ProfileRemapping, 1400 BackendAction Action) { 1401 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1402 ModuleToDefinedGVSummaries; 1403 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1404 1405 setCommandLineOpts(CGOpts); 1406 1407 // We can simply import the values mentioned in the combined index, since 1408 // we should only invoke this using the individual indexes written out 1409 // via a WriteIndexesThinBackend. 1410 FunctionImporter::ImportMapTy ImportList; 1411 for (auto &GlobalList : *CombinedIndex) { 1412 // Ignore entries for undefined references. 1413 if (GlobalList.second.SummaryList.empty()) 1414 continue; 1415 1416 auto GUID = GlobalList.first; 1417 for (auto &Summary : GlobalList.second.SummaryList) { 1418 // Skip the summaries for the importing module. These are included to 1419 // e.g. record required linkage changes. 1420 if (Summary->modulePath() == M->getModuleIdentifier()) 1421 continue; 1422 // Add an entry to provoke importing by thinBackend. 1423 ImportList[Summary->modulePath()].insert(GUID); 1424 } 1425 } 1426 1427 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1428 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1429 1430 for (auto &I : ImportList) { 1431 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1432 llvm::MemoryBuffer::getFile(I.first()); 1433 if (!MBOrErr) { 1434 errs() << "Error loading imported file '" << I.first() 1435 << "': " << MBOrErr.getError().message() << "\n"; 1436 return; 1437 } 1438 1439 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1440 if (!BMOrErr) { 1441 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1442 errs() << "Error loading imported file '" << I.first() 1443 << "': " << EIB.message() << '\n'; 1444 }); 1445 return; 1446 } 1447 ModuleMap.insert({I.first(), *BMOrErr}); 1448 1449 OwnedImports.push_back(std::move(*MBOrErr)); 1450 } 1451 auto AddStream = [&](size_t Task) { 1452 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1453 }; 1454 lto::Config Conf; 1455 if (CGOpts.SaveTempsFilePrefix != "") { 1456 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1457 /* UseInputModulePath */ false)) { 1458 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1459 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1460 << '\n'; 1461 }); 1462 } 1463 } 1464 Conf.CPU = TOpts.CPU; 1465 Conf.CodeModel = getCodeModel(CGOpts); 1466 Conf.MAttrs = TOpts.Features; 1467 Conf.RelocModel = CGOpts.RelocationModel; 1468 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1469 Conf.OptLevel = CGOpts.OptimizationLevel; 1470 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1471 Conf.SampleProfile = std::move(SampleProfile); 1472 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1473 // For historical reasons, loop interleaving is set to mirror setting for loop 1474 // unrolling. 1475 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1476 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1477 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1478 1479 // Context sensitive profile. 1480 if (CGOpts.hasProfileCSIRInstr()) { 1481 Conf.RunCSIRInstr = true; 1482 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1483 } else if (CGOpts.hasProfileCSIRUse()) { 1484 Conf.RunCSIRInstr = false; 1485 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1486 } 1487 1488 Conf.ProfileRemapping = std::move(ProfileRemapping); 1489 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1490 Conf.DebugPassManager = CGOpts.DebugPassManager; 1491 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1492 Conf.RemarksFilename = CGOpts.OptRecordFile; 1493 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1494 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1495 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1496 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1497 switch (Action) { 1498 case Backend_EmitNothing: 1499 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1500 return false; 1501 }; 1502 break; 1503 case Backend_EmitLL: 1504 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1505 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1506 return false; 1507 }; 1508 break; 1509 case Backend_EmitBC: 1510 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1511 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1512 return false; 1513 }; 1514 break; 1515 default: 1516 Conf.CGFileType = getCodeGenFileType(Action); 1517 break; 1518 } 1519 if (Error E = thinBackend( 1520 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1521 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1522 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1523 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1524 }); 1525 } 1526 } 1527 1528 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1529 const HeaderSearchOptions &HeaderOpts, 1530 const CodeGenOptions &CGOpts, 1531 const clang::TargetOptions &TOpts, 1532 const LangOptions &LOpts, 1533 const llvm::DataLayout &TDesc, Module *M, 1534 BackendAction Action, 1535 std::unique_ptr<raw_pwrite_stream> OS) { 1536 1537 llvm::TimeTraceScope TimeScope("Backend"); 1538 1539 std::unique_ptr<llvm::Module> EmptyModule; 1540 if (!CGOpts.ThinLTOIndexFile.empty()) { 1541 // If we are performing a ThinLTO importing compile, load the function index 1542 // into memory and pass it into runThinLTOBackend, which will run the 1543 // function importer and invoke LTO passes. 1544 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1545 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1546 /*IgnoreEmptyThinLTOIndexFile*/true); 1547 if (!IndexOrErr) { 1548 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1549 "Error loading index file '" + 1550 CGOpts.ThinLTOIndexFile + "': "); 1551 return; 1552 } 1553 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1554 // A null CombinedIndex means we should skip ThinLTO compilation 1555 // (LLVM will optionally ignore empty index files, returning null instead 1556 // of an error). 1557 if (CombinedIndex) { 1558 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1559 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1560 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1561 CGOpts.ProfileRemappingFile, Action); 1562 return; 1563 } 1564 // Distributed indexing detected that nothing from the module is needed 1565 // for the final linking. So we can skip the compilation. We sill need to 1566 // output an empty object file to make sure that a linker does not fail 1567 // trying to read it. Also for some features, like CFI, we must skip 1568 // the compilation as CombinedIndex does not contain all required 1569 // information. 1570 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1571 EmptyModule->setTargetTriple(M->getTargetTriple()); 1572 M = EmptyModule.get(); 1573 } 1574 } 1575 1576 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1577 1578 if (CGOpts.ExperimentalNewPassManager) 1579 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1580 else 1581 AsmHelper.EmitAssembly(Action, std::move(OS)); 1582 1583 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1584 // DataLayout. 1585 if (AsmHelper.TM) { 1586 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1587 if (DLDesc != TDesc.getStringRepresentation()) { 1588 unsigned DiagID = Diags.getCustomDiagID( 1589 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1590 "expected target description '%1'"); 1591 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1592 } 1593 } 1594 } 1595 1596 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1597 // __LLVM,__bitcode section. 1598 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1599 llvm::MemoryBufferRef Buf) { 1600 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1601 return; 1602 llvm::EmbedBitcodeInModule( 1603 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1604 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1605 &CGOpts.CmdArgs); 1606 } 1607