1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/CodeGen/BackendUtil.h"
10 #include "clang/Basic/CodeGenOptions.h"
11 #include "clang/Basic/Diagnostic.h"
12 #include "clang/Basic/LangOptions.h"
13 #include "clang/Basic/TargetOptions.h"
14 #include "clang/Frontend/FrontendDiagnostic.h"
15 #include "clang/Frontend/Utils.h"
16 #include "clang/Lex/HeaderSearchOptions.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/StackSafetyAnalysis.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/Bitcode/BitcodeWriter.h"
27 #include "llvm/Bitcode/BitcodeWriterPass.h"
28 #include "llvm/CodeGen/RegAllocRegistry.h"
29 #include "llvm/CodeGen/SchedulerRegistry.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/LegacyPassManager.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/ModuleSummaryIndex.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/LTO/LTOBackend.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Passes/PassBuilder.h"
42 #include "llvm/Passes/PassPlugin.h"
43 #include "llvm/Passes/StandardInstrumentations.h"
44 #include "llvm/Support/BuryPointer.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/MemoryBuffer.h"
47 #include "llvm/Support/PrettyStackTrace.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/TimeProfiler.h"
50 #include "llvm/Support/Timer.h"
51 #include "llvm/Support/ToolOutputFile.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/Transforms/Coroutines.h"
56 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
57 #include "llvm/Transforms/Coroutines/CoroEarly.h"
58 #include "llvm/Transforms/Coroutines/CoroElide.h"
59 #include "llvm/Transforms/Coroutines/CoroSplit.h"
60 #include "llvm/Transforms/IPO.h"
61 #include "llvm/Transforms/IPO/AlwaysInliner.h"
62 #include "llvm/Transforms/IPO/LowerTypeTests.h"
63 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
65 #include "llvm/Transforms/InstCombine/InstCombine.h"
66 #include "llvm/Transforms/Instrumentation.h"
67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
73 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
77 #include "llvm/Transforms/ObjCARC.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/EarlyCSE.h"
80 #include "llvm/Transforms/Scalar/GVN.h"
81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
82 #include "llvm/Transforms/Utils.h"
83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
84 #include "llvm/Transforms/Utils/Debugify.h"
85 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
86 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
87 #include "llvm/Transforms/Utils/SymbolRewriter.h"
88 #include <memory>
89 using namespace clang;
90 using namespace llvm;
91 
92 #define HANDLE_EXTENSION(Ext)                                                  \
93   llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
94 #include "llvm/Support/Extension.def"
95 
96 namespace {
97 
98 // Default filename used for profile generation.
99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
100 
101 class EmitAssemblyHelper {
102   DiagnosticsEngine &Diags;
103   const HeaderSearchOptions &HSOpts;
104   const CodeGenOptions &CodeGenOpts;
105   const clang::TargetOptions &TargetOpts;
106   const LangOptions &LangOpts;
107   Module *TheModule;
108 
109   Timer CodeGenerationTime;
110 
111   std::unique_ptr<raw_pwrite_stream> OS;
112 
113   TargetIRAnalysis getTargetIRAnalysis() const {
114     if (TM)
115       return TM->getTargetIRAnalysis();
116 
117     return TargetIRAnalysis();
118   }
119 
120   void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
121 
122   /// Generates the TargetMachine.
123   /// Leaves TM unchanged if it is unable to create the target machine.
124   /// Some of our clang tests specify triples which are not built
125   /// into clang. This is okay because these tests check the generated
126   /// IR, and they require DataLayout which depends on the triple.
127   /// In this case, we allow this method to fail and not report an error.
128   /// When MustCreateTM is used, we print an error if we are unable to load
129   /// the requested target.
130   void CreateTargetMachine(bool MustCreateTM);
131 
132   /// Add passes necessary to emit assembly or LLVM IR.
133   ///
134   /// \return True on success.
135   bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
136                      raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
137 
138   std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
139     std::error_code EC;
140     auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
141                                                      llvm::sys::fs::OF_None);
142     if (EC) {
143       Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
144       F.reset();
145     }
146     return F;
147   }
148 
149 public:
150   EmitAssemblyHelper(DiagnosticsEngine &_Diags,
151                      const HeaderSearchOptions &HeaderSearchOpts,
152                      const CodeGenOptions &CGOpts,
153                      const clang::TargetOptions &TOpts,
154                      const LangOptions &LOpts, Module *M)
155       : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
156         TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
157         CodeGenerationTime("codegen", "Code Generation Time") {}
158 
159   ~EmitAssemblyHelper() {
160     if (CodeGenOpts.DisableFree)
161       BuryPointer(std::move(TM));
162   }
163 
164   std::unique_ptr<TargetMachine> TM;
165 
166   void EmitAssembly(BackendAction Action,
167                     std::unique_ptr<raw_pwrite_stream> OS);
168 
169   void EmitAssemblyWithNewPassManager(BackendAction Action,
170                                       std::unique_ptr<raw_pwrite_stream> OS);
171 };
172 
173 // We need this wrapper to access LangOpts and CGOpts from extension functions
174 // that we add to the PassManagerBuilder.
175 class PassManagerBuilderWrapper : public PassManagerBuilder {
176 public:
177   PassManagerBuilderWrapper(const Triple &TargetTriple,
178                             const CodeGenOptions &CGOpts,
179                             const LangOptions &LangOpts)
180       : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
181         LangOpts(LangOpts) {}
182   const Triple &getTargetTriple() const { return TargetTriple; }
183   const CodeGenOptions &getCGOpts() const { return CGOpts; }
184   const LangOptions &getLangOpts() const { return LangOpts; }
185 
186 private:
187   const Triple &TargetTriple;
188   const CodeGenOptions &CGOpts;
189   const LangOptions &LangOpts;
190 };
191 }
192 
193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
194   if (Builder.OptLevel > 0)
195     PM.add(createObjCARCAPElimPass());
196 }
197 
198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
199   if (Builder.OptLevel > 0)
200     PM.add(createObjCARCExpandPass());
201 }
202 
203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
204   if (Builder.OptLevel > 0)
205     PM.add(createObjCARCOptPass());
206 }
207 
208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
209                                      legacy::PassManagerBase &PM) {
210   PM.add(createAddDiscriminatorsPass());
211 }
212 
213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
214                                   legacy::PassManagerBase &PM) {
215   PM.add(createBoundsCheckingLegacyPass());
216 }
217 
218 static SanitizerCoverageOptions
219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
220   SanitizerCoverageOptions Opts;
221   Opts.CoverageType =
222       static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
223   Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
224   Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
225   Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
226   Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
227   Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
228   Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
229   Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
230   Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
231   Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
232   Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
233   Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
234   Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
235   Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
236   return Opts;
237 }
238 
239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
240                                      legacy::PassManagerBase &PM) {
241   const PassManagerBuilderWrapper &BuilderWrapper =
242       static_cast<const PassManagerBuilderWrapper &>(Builder);
243   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
244   auto Opts = getSancovOptsFromCGOpts(CGOpts);
245   PM.add(createModuleSanitizerCoverageLegacyPassPass(
246       Opts, CGOpts.SanitizeCoverageAllowlistFiles,
247       CGOpts.SanitizeCoverageIgnorelistFiles));
248 }
249 
250 // Check if ASan should use GC-friendly instrumentation for globals.
251 // First of all, there is no point if -fdata-sections is off (expect for MachO,
252 // where this is not a factor). Also, on ELF this feature requires an assembler
253 // extension that only works with -integrated-as at the moment.
254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
255   if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
256     return false;
257   switch (T.getObjectFormat()) {
258   case Triple::MachO:
259   case Triple::COFF:
260     return true;
261   case Triple::ELF:
262     return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
263   case Triple::GOFF:
264     llvm::report_fatal_error("ASan not implemented for GOFF");
265   case Triple::XCOFF:
266     llvm::report_fatal_error("ASan not implemented for XCOFF.");
267   case Triple::Wasm:
268   case Triple::UnknownObjectFormat:
269     break;
270   }
271   return false;
272 }
273 
274 static void addMemProfilerPasses(const PassManagerBuilder &Builder,
275                                  legacy::PassManagerBase &PM) {
276   PM.add(createMemProfilerFunctionPass());
277   PM.add(createModuleMemProfilerLegacyPassPass());
278 }
279 
280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
281                                       legacy::PassManagerBase &PM) {
282   const PassManagerBuilderWrapper &BuilderWrapper =
283       static_cast<const PassManagerBuilderWrapper&>(Builder);
284   const Triple &T = BuilderWrapper.getTargetTriple();
285   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
286   bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
287   bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
288   bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
289   bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
290   llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor();
291   PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
292                                             UseAfterScope));
293   PM.add(createModuleAddressSanitizerLegacyPassPass(
294       /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator,
295       DestructorKind));
296 }
297 
298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
299                                             legacy::PassManagerBase &PM) {
300   PM.add(createAddressSanitizerFunctionPass(
301       /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
302   PM.add(createModuleAddressSanitizerLegacyPassPass(
303       /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
304       /*UseOdrIndicator*/ false));
305 }
306 
307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
308                                             legacy::PassManagerBase &PM) {
309   const PassManagerBuilderWrapper &BuilderWrapper =
310       static_cast<const PassManagerBuilderWrapper &>(Builder);
311   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
312   bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
313   PM.add(
314       createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover));
315 }
316 
317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
318                                             legacy::PassManagerBase &PM) {
319   PM.add(createHWAddressSanitizerLegacyPassPass(
320       /*CompileKernel*/ true, /*Recover*/ true));
321 }
322 
323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
324                                              legacy::PassManagerBase &PM,
325                                              bool CompileKernel) {
326   const PassManagerBuilderWrapper &BuilderWrapper =
327       static_cast<const PassManagerBuilderWrapper&>(Builder);
328   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
329   int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
330   bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
331   PM.add(createMemorySanitizerLegacyPassPass(
332       MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
333 
334   // MemorySanitizer inserts complex instrumentation that mostly follows
335   // the logic of the original code, but operates on "shadow" values.
336   // It can benefit from re-running some general purpose optimization passes.
337   if (Builder.OptLevel > 0) {
338     PM.add(createEarlyCSEPass());
339     PM.add(createReassociatePass());
340     PM.add(createLICMPass());
341     PM.add(createGVNPass());
342     PM.add(createInstructionCombiningPass());
343     PM.add(createDeadStoreEliminationPass());
344   }
345 }
346 
347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
348                                    legacy::PassManagerBase &PM) {
349   addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
350 }
351 
352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
353                                          legacy::PassManagerBase &PM) {
354   addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
355 }
356 
357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
358                                    legacy::PassManagerBase &PM) {
359   PM.add(createThreadSanitizerLegacyPassPass());
360 }
361 
362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
363                                      legacy::PassManagerBase &PM) {
364   const PassManagerBuilderWrapper &BuilderWrapper =
365       static_cast<const PassManagerBuilderWrapper&>(Builder);
366   const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
367   PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles));
368 }
369 
370 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder,
371                                             legacy::PassManagerBase &PM) {
372   PM.add(createEntryExitInstrumenterPass());
373 }
374 
375 static void
376 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder,
377                                           legacy::PassManagerBase &PM) {
378   PM.add(createPostInlineEntryExitInstrumenterPass());
379 }
380 
381 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
382                                          const CodeGenOptions &CodeGenOpts) {
383   TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
384 
385   switch (CodeGenOpts.getVecLib()) {
386   case CodeGenOptions::Accelerate:
387     TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
388     break;
389   case CodeGenOptions::LIBMVEC:
390     switch(TargetTriple.getArch()) {
391       default:
392         break;
393       case llvm::Triple::x86_64:
394         TLII->addVectorizableFunctionsFromVecLib
395                 (TargetLibraryInfoImpl::LIBMVEC_X86);
396         break;
397     }
398     break;
399   case CodeGenOptions::MASSV:
400     TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
401     break;
402   case CodeGenOptions::SVML:
403     TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
404     break;
405   case CodeGenOptions::Darwin_libsystem_m:
406     TLII->addVectorizableFunctionsFromVecLib(
407         TargetLibraryInfoImpl::DarwinLibSystemM);
408     break;
409   default:
410     break;
411   }
412   return TLII;
413 }
414 
415 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
416                                   legacy::PassManager *MPM) {
417   llvm::SymbolRewriter::RewriteDescriptorList DL;
418 
419   llvm::SymbolRewriter::RewriteMapParser MapParser;
420   for (const auto &MapFile : Opts.RewriteMapFiles)
421     MapParser.parse(MapFile, &DL);
422 
423   MPM->add(createRewriteSymbolsPass(DL));
424 }
425 
426 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
427   switch (CodeGenOpts.OptimizationLevel) {
428   default:
429     llvm_unreachable("Invalid optimization level!");
430   case 0:
431     return CodeGenOpt::None;
432   case 1:
433     return CodeGenOpt::Less;
434   case 2:
435     return CodeGenOpt::Default; // O2/Os/Oz
436   case 3:
437     return CodeGenOpt::Aggressive;
438   }
439 }
440 
441 static Optional<llvm::CodeModel::Model>
442 getCodeModel(const CodeGenOptions &CodeGenOpts) {
443   unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
444                            .Case("tiny", llvm::CodeModel::Tiny)
445                            .Case("small", llvm::CodeModel::Small)
446                            .Case("kernel", llvm::CodeModel::Kernel)
447                            .Case("medium", llvm::CodeModel::Medium)
448                            .Case("large", llvm::CodeModel::Large)
449                            .Case("default", ~1u)
450                            .Default(~0u);
451   assert(CodeModel != ~0u && "invalid code model!");
452   if (CodeModel == ~1u)
453     return None;
454   return static_cast<llvm::CodeModel::Model>(CodeModel);
455 }
456 
457 static CodeGenFileType getCodeGenFileType(BackendAction Action) {
458   if (Action == Backend_EmitObj)
459     return CGFT_ObjectFile;
460   else if (Action == Backend_EmitMCNull)
461     return CGFT_Null;
462   else {
463     assert(Action == Backend_EmitAssembly && "Invalid action!");
464     return CGFT_AssemblyFile;
465   }
466 }
467 
468 static bool initTargetOptions(DiagnosticsEngine &Diags,
469                               llvm::TargetOptions &Options,
470                               const CodeGenOptions &CodeGenOpts,
471                               const clang::TargetOptions &TargetOpts,
472                               const LangOptions &LangOpts,
473                               const HeaderSearchOptions &HSOpts) {
474   switch (LangOpts.getThreadModel()) {
475   case LangOptions::ThreadModelKind::POSIX:
476     Options.ThreadModel = llvm::ThreadModel::POSIX;
477     break;
478   case LangOptions::ThreadModelKind::Single:
479     Options.ThreadModel = llvm::ThreadModel::Single;
480     break;
481   }
482 
483   // Set float ABI type.
484   assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
485           CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
486          "Invalid Floating Point ABI!");
487   Options.FloatABIType =
488       llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
489           .Case("soft", llvm::FloatABI::Soft)
490           .Case("softfp", llvm::FloatABI::Soft)
491           .Case("hard", llvm::FloatABI::Hard)
492           .Default(llvm::FloatABI::Default);
493 
494   // Set FP fusion mode.
495   switch (LangOpts.getDefaultFPContractMode()) {
496   case LangOptions::FPM_Off:
497     // Preserve any contraction performed by the front-end.  (Strict performs
498     // splitting of the muladd intrinsic in the backend.)
499     Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
500     break;
501   case LangOptions::FPM_On:
502   case LangOptions::FPM_FastHonorPragmas:
503     Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
504     break;
505   case LangOptions::FPM_Fast:
506     Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
507     break;
508   }
509 
510   Options.BinutilsVersion =
511       llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
512   Options.UseInitArray = CodeGenOpts.UseInitArray;
513   Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
514   Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
515   Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
516 
517   // Set EABI version.
518   Options.EABIVersion = TargetOpts.EABIVersion;
519 
520   if (LangOpts.hasSjLjExceptions())
521     Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
522   if (LangOpts.hasSEHExceptions())
523     Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
524   if (LangOpts.hasDWARFExceptions())
525     Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
526   if (LangOpts.hasWasmExceptions())
527     Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
528 
529   Options.NoInfsFPMath = LangOpts.NoHonorInfs;
530   Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
531   Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
532   Options.UnsafeFPMath = LangOpts.UnsafeFPMath;
533   Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
534 
535   Options.BBSections =
536       llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
537           .Case("all", llvm::BasicBlockSection::All)
538           .Case("labels", llvm::BasicBlockSection::Labels)
539           .StartsWith("list=", llvm::BasicBlockSection::List)
540           .Case("none", llvm::BasicBlockSection::None)
541           .Default(llvm::BasicBlockSection::None);
542 
543   if (Options.BBSections == llvm::BasicBlockSection::List) {
544     ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
545         MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
546     if (!MBOrErr) {
547       Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
548           << MBOrErr.getError().message();
549       return false;
550     }
551     Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
552   }
553 
554   Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
555   Options.FunctionSections = CodeGenOpts.FunctionSections;
556   Options.DataSections = CodeGenOpts.DataSections;
557   Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
558   Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
559   Options.UniqueBasicBlockSectionNames =
560       CodeGenOpts.UniqueBasicBlockSectionNames;
561   Options.TLSSize = CodeGenOpts.TLSSize;
562   Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
563   Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
564   Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
565   Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
566   Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
567   Options.EmitAddrsig = CodeGenOpts.Addrsig;
568   Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
569   Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
570   Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI;
571   Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling;
572   Options.ValueTrackingVariableLocations =
573       CodeGenOpts.ValueTrackingVariableLocations;
574   Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex;
575 
576   Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
577   Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
578   Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
579   Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
580   Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
581   Options.MCOptions.MCIncrementalLinkerCompatible =
582       CodeGenOpts.IncrementalLinkerCompatible;
583   Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
584   Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
585   Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
586   Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
587   Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
588   Options.MCOptions.ABIName = TargetOpts.ABI;
589   for (const auto &Entry : HSOpts.UserEntries)
590     if (!Entry.IsFramework &&
591         (Entry.Group == frontend::IncludeDirGroup::Quoted ||
592          Entry.Group == frontend::IncludeDirGroup::Angled ||
593          Entry.Group == frontend::IncludeDirGroup::System))
594       Options.MCOptions.IASSearchPaths.push_back(
595           Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
596   Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
597   Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
598   Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
599 
600   return true;
601 }
602 
603 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts,
604                                             const LangOptions &LangOpts) {
605   if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
606     return None;
607   // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
608   // LLVM's -default-gcov-version flag is set to something invalid.
609   GCOVOptions Options;
610   Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
611   Options.EmitData = CodeGenOpts.EmitGcovArcs;
612   llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
613   Options.NoRedZone = CodeGenOpts.DisableRedZone;
614   Options.Filter = CodeGenOpts.ProfileFilterFiles;
615   Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
616   Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
617   return Options;
618 }
619 
620 static Optional<InstrProfOptions>
621 getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
622                     const LangOptions &LangOpts) {
623   if (!CodeGenOpts.hasProfileClangInstr())
624     return None;
625   InstrProfOptions Options;
626   Options.NoRedZone = CodeGenOpts.DisableRedZone;
627   Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
628   Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
629   return Options;
630 }
631 
632 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
633                                       legacy::FunctionPassManager &FPM) {
634   // Handle disabling of all LLVM passes, where we want to preserve the
635   // internal module before any optimization.
636   if (CodeGenOpts.DisableLLVMPasses)
637     return;
638 
639   // Figure out TargetLibraryInfo.  This needs to be added to MPM and FPM
640   // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
641   // are inserted before PMBuilder ones - they'd get the default-constructed
642   // TLI with an unknown target otherwise.
643   Triple TargetTriple(TheModule->getTargetTriple());
644   std::unique_ptr<TargetLibraryInfoImpl> TLII(
645       createTLII(TargetTriple, CodeGenOpts));
646 
647   // If we reached here with a non-empty index file name, then the index file
648   // was empty and we are not performing ThinLTO backend compilation (used in
649   // testing in a distributed build environment). Drop any the type test
650   // assume sequences inserted for whole program vtables so that codegen doesn't
651   // complain.
652   if (!CodeGenOpts.ThinLTOIndexFile.empty())
653     MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr,
654                                      /*ImportSummary=*/nullptr,
655                                      /*DropTypeTests=*/true));
656 
657   PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
658 
659   // At O0 and O1 we only run the always inliner which is more efficient. At
660   // higher optimization levels we run the normal inliner.
661   if (CodeGenOpts.OptimizationLevel <= 1) {
662     bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 &&
663                                       !CodeGenOpts.DisableLifetimeMarkers) ||
664                                      LangOpts.Coroutines);
665     PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
666   } else {
667     // We do not want to inline hot callsites for SamplePGO module-summary build
668     // because profile annotation will happen again in ThinLTO backend, and we
669     // want the IR of the hot path to match the profile.
670     PMBuilder.Inliner = createFunctionInliningPass(
671         CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
672         (!CodeGenOpts.SampleProfileFile.empty() &&
673          CodeGenOpts.PrepareForThinLTO));
674   }
675 
676   PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
677   PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
678   PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
679   PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
680   // Only enable CGProfilePass when using integrated assembler, since
681   // non-integrated assemblers don't recognize .cgprofile section.
682   PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
683 
684   PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
685   // Loop interleaving in the loop vectorizer has historically been set to be
686   // enabled when loop unrolling is enabled.
687   PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
688   PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
689   PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
690   PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
691   PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
692 
693   MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
694 
695   if (TM)
696     TM->adjustPassManager(PMBuilder);
697 
698   if (CodeGenOpts.DebugInfoForProfiling ||
699       !CodeGenOpts.SampleProfileFile.empty())
700     PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
701                            addAddDiscriminatorsPass);
702 
703   // In ObjC ARC mode, add the main ARC optimization passes.
704   if (LangOpts.ObjCAutoRefCount) {
705     PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
706                            addObjCARCExpandPass);
707     PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
708                            addObjCARCAPElimPass);
709     PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
710                            addObjCARCOptPass);
711   }
712 
713   if (LangOpts.Coroutines)
714     addCoroutinePassesToExtensionPoints(PMBuilder);
715 
716   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
717     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
718                            addMemProfilerPasses);
719     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
720                            addMemProfilerPasses);
721   }
722 
723   if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
724     PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
725                            addBoundsCheckingPass);
726     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
727                            addBoundsCheckingPass);
728   }
729 
730   if (CodeGenOpts.hasSanitizeCoverage()) {
731     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
732                            addSanitizerCoveragePass);
733     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
734                            addSanitizerCoveragePass);
735   }
736 
737   if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
738     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
739                            addAddressSanitizerPasses);
740     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
741                            addAddressSanitizerPasses);
742   }
743 
744   if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
745     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
746                            addKernelAddressSanitizerPasses);
747     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
748                            addKernelAddressSanitizerPasses);
749   }
750 
751   if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
752     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
753                            addHWAddressSanitizerPasses);
754     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
755                            addHWAddressSanitizerPasses);
756   }
757 
758   if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
759     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
760                            addKernelHWAddressSanitizerPasses);
761     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
762                            addKernelHWAddressSanitizerPasses);
763   }
764 
765   if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
766     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
767                            addMemorySanitizerPass);
768     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
769                            addMemorySanitizerPass);
770   }
771 
772   if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
773     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
774                            addKernelMemorySanitizerPass);
775     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
776                            addKernelMemorySanitizerPass);
777   }
778 
779   if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
780     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
781                            addThreadSanitizerPass);
782     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
783                            addThreadSanitizerPass);
784   }
785 
786   if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
787     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
788                            addDataFlowSanitizerPass);
789     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
790                            addDataFlowSanitizerPass);
791   }
792 
793   if (CodeGenOpts.InstrumentFunctions ||
794       CodeGenOpts.InstrumentFunctionEntryBare ||
795       CodeGenOpts.InstrumentFunctionsAfterInlining ||
796       CodeGenOpts.InstrumentForProfiling) {
797     PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
798                            addEntryExitInstrumentationPass);
799     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
800                            addEntryExitInstrumentationPass);
801     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
802                            addPostInlineEntryExitInstrumentationPass);
803     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
804                            addPostInlineEntryExitInstrumentationPass);
805   }
806 
807   // Set up the per-function pass manager.
808   FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
809   if (CodeGenOpts.VerifyModule)
810     FPM.add(createVerifierPass());
811 
812   // Set up the per-module pass manager.
813   if (!CodeGenOpts.RewriteMapFiles.empty())
814     addSymbolRewriterPass(CodeGenOpts, &MPM);
815 
816   if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) {
817     MPM.add(createGCOVProfilerPass(*Options));
818     if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
819       MPM.add(createStripSymbolsPass(true));
820   }
821 
822   if (Optional<InstrProfOptions> Options =
823           getInstrProfOptions(CodeGenOpts, LangOpts))
824     MPM.add(createInstrProfilingLegacyPass(*Options, false));
825 
826   bool hasIRInstr = false;
827   if (CodeGenOpts.hasProfileIRInstr()) {
828     PMBuilder.EnablePGOInstrGen = true;
829     hasIRInstr = true;
830   }
831   if (CodeGenOpts.hasProfileCSIRInstr()) {
832     assert(!CodeGenOpts.hasProfileCSIRUse() &&
833            "Cannot have both CSProfileUse pass and CSProfileGen pass at the "
834            "same time");
835     assert(!hasIRInstr &&
836            "Cannot have both ProfileGen pass and CSProfileGen pass at the "
837            "same time");
838     PMBuilder.EnablePGOCSInstrGen = true;
839     hasIRInstr = true;
840   }
841   if (hasIRInstr) {
842     if (!CodeGenOpts.InstrProfileOutput.empty())
843       PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
844     else
845       PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName);
846   }
847   if (CodeGenOpts.hasProfileIRUse()) {
848     PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
849     PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
850   }
851 
852   if (!CodeGenOpts.SampleProfileFile.empty())
853     PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
854 
855   PMBuilder.populateFunctionPassManager(FPM);
856   PMBuilder.populateModulePassManager(MPM);
857 }
858 
859 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
860   SmallVector<const char *, 16> BackendArgs;
861   BackendArgs.push_back("clang"); // Fake program name.
862   if (!CodeGenOpts.DebugPass.empty()) {
863     BackendArgs.push_back("-debug-pass");
864     BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
865   }
866   if (!CodeGenOpts.LimitFloatPrecision.empty()) {
867     BackendArgs.push_back("-limit-float-precision");
868     BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
869   }
870   // Check for the default "clang" invocation that won't set any cl::opt values.
871   // Skip trying to parse the command line invocation to avoid the issues
872   // described below.
873   if (BackendArgs.size() == 1)
874     return;
875   BackendArgs.push_back(nullptr);
876   // FIXME: The command line parser below is not thread-safe and shares a global
877   // state, so this call might crash or overwrite the options of another Clang
878   // instance in the same process.
879   llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
880                                     BackendArgs.data());
881 }
882 
883 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
884   // Create the TargetMachine for generating code.
885   std::string Error;
886   std::string Triple = TheModule->getTargetTriple();
887   const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
888   if (!TheTarget) {
889     if (MustCreateTM)
890       Diags.Report(diag::err_fe_unable_to_create_target) << Error;
891     return;
892   }
893 
894   Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
895   std::string FeaturesStr =
896       llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
897   llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
898   CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
899 
900   llvm::TargetOptions Options;
901   if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
902                          HSOpts))
903     return;
904   TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
905                                           Options, RM, CM, OptLevel));
906 }
907 
908 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
909                                        BackendAction Action,
910                                        raw_pwrite_stream &OS,
911                                        raw_pwrite_stream *DwoOS) {
912   // Add LibraryInfo.
913   llvm::Triple TargetTriple(TheModule->getTargetTriple());
914   std::unique_ptr<TargetLibraryInfoImpl> TLII(
915       createTLII(TargetTriple, CodeGenOpts));
916   CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
917 
918   // Normal mode, emit a .s or .o file by running the code generator. Note,
919   // this also adds codegenerator level optimization passes.
920   CodeGenFileType CGFT = getCodeGenFileType(Action);
921 
922   // Add ObjC ARC final-cleanup optimizations. This is done as part of the
923   // "codegen" passes so that it isn't run multiple times when there is
924   // inlining happening.
925   if (CodeGenOpts.OptimizationLevel > 0)
926     CodeGenPasses.add(createObjCARCContractPass());
927 
928   if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
929                               /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
930     Diags.Report(diag::err_fe_unable_to_interface_with_target);
931     return false;
932   }
933 
934   return true;
935 }
936 
937 void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
938                                       std::unique_ptr<raw_pwrite_stream> OS) {
939   TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
940 
941   setCommandLineOpts(CodeGenOpts);
942 
943   bool UsesCodeGen = (Action != Backend_EmitNothing &&
944                       Action != Backend_EmitBC &&
945                       Action != Backend_EmitLL);
946   CreateTargetMachine(UsesCodeGen);
947 
948   if (UsesCodeGen && !TM)
949     return;
950   if (TM)
951     TheModule->setDataLayout(TM->createDataLayout());
952 
953   DebugifyCustomPassManager PerModulePasses;
954   DebugInfoPerPassMap DIPreservationMap;
955   if (CodeGenOpts.EnableDIPreservationVerify) {
956     PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
957     PerModulePasses.setDIPreservationMap(DIPreservationMap);
958 
959     if (!CodeGenOpts.DIBugsReportFilePath.empty())
960       PerModulePasses.setOrigDIVerifyBugsReportFilePath(
961           CodeGenOpts.DIBugsReportFilePath);
962   }
963   PerModulePasses.add(
964       createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
965 
966   legacy::FunctionPassManager PerFunctionPasses(TheModule);
967   PerFunctionPasses.add(
968       createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
969 
970   CreatePasses(PerModulePasses, PerFunctionPasses);
971 
972   legacy::PassManager CodeGenPasses;
973   CodeGenPasses.add(
974       createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
975 
976   std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
977 
978   switch (Action) {
979   case Backend_EmitNothing:
980     break;
981 
982   case Backend_EmitBC:
983     if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
984       if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
985         ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
986         if (!ThinLinkOS)
987           return;
988       }
989       TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
990                                CodeGenOpts.EnableSplitLTOUnit);
991       PerModulePasses.add(createWriteThinLTOBitcodePass(
992           *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
993     } else {
994       // Emit a module summary by default for Regular LTO except for ld64
995       // targets
996       bool EmitLTOSummary =
997           (CodeGenOpts.PrepareForLTO &&
998            !CodeGenOpts.DisableLLVMPasses &&
999            llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1000                llvm::Triple::Apple);
1001       if (EmitLTOSummary) {
1002         if (!TheModule->getModuleFlag("ThinLTO"))
1003           TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1004         TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1005                                  uint32_t(1));
1006       }
1007 
1008       PerModulePasses.add(createBitcodeWriterPass(
1009           *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
1010     }
1011     break;
1012 
1013   case Backend_EmitLL:
1014     PerModulePasses.add(
1015         createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1016     break;
1017 
1018   default:
1019     if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1020       DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1021       if (!DwoOS)
1022         return;
1023     }
1024     if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1025                        DwoOS ? &DwoOS->os() : nullptr))
1026       return;
1027   }
1028 
1029   // Before executing passes, print the final values of the LLVM options.
1030   cl::PrintOptionValues();
1031 
1032   // Run passes. For now we do all passes at once, but eventually we
1033   // would like to have the option of streaming code generation.
1034 
1035   {
1036     PrettyStackTraceString CrashInfo("Per-function optimization");
1037     llvm::TimeTraceScope TimeScope("PerFunctionPasses");
1038 
1039     PerFunctionPasses.doInitialization();
1040     for (Function &F : *TheModule)
1041       if (!F.isDeclaration())
1042         PerFunctionPasses.run(F);
1043     PerFunctionPasses.doFinalization();
1044   }
1045 
1046   {
1047     PrettyStackTraceString CrashInfo("Per-module optimization passes");
1048     llvm::TimeTraceScope TimeScope("PerModulePasses");
1049     PerModulePasses.run(*TheModule);
1050   }
1051 
1052   {
1053     PrettyStackTraceString CrashInfo("Code generation");
1054     llvm::TimeTraceScope TimeScope("CodeGenPasses");
1055     CodeGenPasses.run(*TheModule);
1056   }
1057 
1058   if (ThinLinkOS)
1059     ThinLinkOS->keep();
1060   if (DwoOS)
1061     DwoOS->keep();
1062 }
1063 
1064 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
1065   switch (Opts.OptimizationLevel) {
1066   default:
1067     llvm_unreachable("Invalid optimization level!");
1068 
1069   case 0:
1070     return PassBuilder::OptimizationLevel::O0;
1071 
1072   case 1:
1073     return PassBuilder::OptimizationLevel::O1;
1074 
1075   case 2:
1076     switch (Opts.OptimizeSize) {
1077     default:
1078       llvm_unreachable("Invalid optimization level for size!");
1079 
1080     case 0:
1081       return PassBuilder::OptimizationLevel::O2;
1082 
1083     case 1:
1084       return PassBuilder::OptimizationLevel::Os;
1085 
1086     case 2:
1087       return PassBuilder::OptimizationLevel::Oz;
1088     }
1089 
1090   case 3:
1091     return PassBuilder::OptimizationLevel::O3;
1092   }
1093 }
1094 
1095 static void addSanitizers(const Triple &TargetTriple,
1096                           const CodeGenOptions &CodeGenOpts,
1097                           const LangOptions &LangOpts, PassBuilder &PB) {
1098   PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM,
1099                                          PassBuilder::OptimizationLevel Level) {
1100     if (CodeGenOpts.hasSanitizeCoverage()) {
1101       auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
1102       MPM.addPass(ModuleSanitizerCoveragePass(
1103           SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
1104           CodeGenOpts.SanitizeCoverageIgnorelistFiles));
1105     }
1106 
1107     auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1108       if (LangOpts.Sanitize.has(Mask)) {
1109         int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
1110         bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1111 
1112         MPM.addPass(
1113             MemorySanitizerPass({TrackOrigins, Recover, CompileKernel}));
1114         FunctionPassManager FPM;
1115         FPM.addPass(
1116             MemorySanitizerPass({TrackOrigins, Recover, CompileKernel}));
1117         if (Level != PassBuilder::OptimizationLevel::O0) {
1118           // MemorySanitizer inserts complex instrumentation that mostly
1119           // follows the logic of the original code, but operates on
1120           // "shadow" values. It can benefit from re-running some
1121           // general purpose optimization passes.
1122           FPM.addPass(EarlyCSEPass());
1123           // TODO: Consider add more passes like in
1124           // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible
1125           // difference on size. It's not clear if the rest is still
1126           // usefull. InstCombinePass breakes
1127           // compiler-rt/test/msan/select_origin.cpp.
1128         }
1129         MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1130       }
1131     };
1132     MSanPass(SanitizerKind::Memory, false);
1133     MSanPass(SanitizerKind::KernelMemory, true);
1134 
1135     if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
1136       MPM.addPass(ThreadSanitizerPass());
1137       MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
1138     }
1139 
1140     auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1141       if (LangOpts.Sanitize.has(Mask)) {
1142         bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1143         bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
1144         bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
1145         bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
1146         llvm::AsanDtorKind DestructorKind =
1147             CodeGenOpts.getSanitizeAddressDtor();
1148         MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
1149         MPM.addPass(ModuleAddressSanitizerPass(
1150             CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator,
1151             DestructorKind));
1152         MPM.addPass(createModuleToFunctionPassAdaptor(
1153             AddressSanitizerPass(CompileKernel, Recover, UseAfterScope)));
1154       }
1155     };
1156     ASanPass(SanitizerKind::Address, false);
1157     ASanPass(SanitizerKind::KernelAddress, true);
1158 
1159     auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1160       if (LangOpts.Sanitize.has(Mask)) {
1161         bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1162         MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover));
1163       }
1164     };
1165     HWASanPass(SanitizerKind::HWAddress, false);
1166     HWASanPass(SanitizerKind::KernelHWAddress, true);
1167 
1168     if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
1169       MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
1170     }
1171   });
1172 }
1173 
1174 /// A clean version of `EmitAssembly` that uses the new pass manager.
1175 ///
1176 /// Not all features are currently supported in this system, but where
1177 /// necessary it falls back to the legacy pass manager to at least provide
1178 /// basic functionality.
1179 ///
1180 /// This API is planned to have its functionality finished and then to replace
1181 /// `EmitAssembly` at some point in the future when the default switches.
1182 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
1183     BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
1184   TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
1185   setCommandLineOpts(CodeGenOpts);
1186 
1187   bool RequiresCodeGen = (Action != Backend_EmitNothing &&
1188                           Action != Backend_EmitBC &&
1189                           Action != Backend_EmitLL);
1190   CreateTargetMachine(RequiresCodeGen);
1191 
1192   if (RequiresCodeGen && !TM)
1193     return;
1194   if (TM)
1195     TheModule->setDataLayout(TM->createDataLayout());
1196 
1197   Optional<PGOOptions> PGOOpt;
1198 
1199   if (CodeGenOpts.hasProfileIRInstr())
1200     // -fprofile-generate.
1201     PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
1202                             ? std::string(DefaultProfileGenName)
1203                             : CodeGenOpts.InstrProfileOutput,
1204                         "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
1205                         CodeGenOpts.DebugInfoForProfiling);
1206   else if (CodeGenOpts.hasProfileIRUse()) {
1207     // -fprofile-use.
1208     auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
1209                                                     : PGOOptions::NoCSAction;
1210     PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
1211                         CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
1212                         CSAction, CodeGenOpts.DebugInfoForProfiling);
1213   } else if (!CodeGenOpts.SampleProfileFile.empty())
1214     // -fprofile-sample-use
1215     PGOOpt = PGOOptions(
1216         CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
1217         PGOOptions::SampleUse, PGOOptions::NoCSAction,
1218         CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
1219   else if (CodeGenOpts.PseudoProbeForProfiling)
1220     // -fpseudo-probe-for-profiling
1221     PGOOpt =
1222         PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction,
1223                    CodeGenOpts.DebugInfoForProfiling, true);
1224   else if (CodeGenOpts.DebugInfoForProfiling)
1225     // -fdebug-info-for-profiling
1226     PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
1227                         PGOOptions::NoCSAction, true);
1228 
1229   // Check to see if we want to generate a CS profile.
1230   if (CodeGenOpts.hasProfileCSIRInstr()) {
1231     assert(!CodeGenOpts.hasProfileCSIRUse() &&
1232            "Cannot have both CSProfileUse pass and CSProfileGen pass at "
1233            "the same time");
1234     if (PGOOpt.hasValue()) {
1235       assert(PGOOpt->Action != PGOOptions::IRInstr &&
1236              PGOOpt->Action != PGOOptions::SampleUse &&
1237              "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
1238              " pass");
1239       PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
1240                                      ? std::string(DefaultProfileGenName)
1241                                      : CodeGenOpts.InstrProfileOutput;
1242       PGOOpt->CSAction = PGOOptions::CSIRInstr;
1243     } else
1244       PGOOpt = PGOOptions("",
1245                           CodeGenOpts.InstrProfileOutput.empty()
1246                               ? std::string(DefaultProfileGenName)
1247                               : CodeGenOpts.InstrProfileOutput,
1248                           "", PGOOptions::NoAction, PGOOptions::CSIRInstr,
1249                           CodeGenOpts.DebugInfoForProfiling);
1250   }
1251 
1252   PipelineTuningOptions PTO;
1253   PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
1254   // For historical reasons, loop interleaving is set to mirror setting for loop
1255   // unrolling.
1256   PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
1257   PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
1258   PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
1259   PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
1260   // Only enable CGProfilePass when using integrated assembler, since
1261   // non-integrated assemblers don't recognize .cgprofile section.
1262   PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
1263   PTO.Coroutines = LangOpts.Coroutines;
1264 
1265   LoopAnalysisManager LAM;
1266   FunctionAnalysisManager FAM;
1267   CGSCCAnalysisManager CGAM;
1268   ModuleAnalysisManager MAM;
1269 
1270   bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
1271   PassInstrumentationCallbacks PIC;
1272   PrintPassOptions PrintPassOpts;
1273   PrintPassOpts.Indent = DebugPassStructure;
1274   PrintPassOpts.SkipAnalyses = DebugPassStructure;
1275   StandardInstrumentations SI(CodeGenOpts.DebugPassManager ||
1276                                   DebugPassStructure,
1277                               /*VerifyEach*/ false, PrintPassOpts);
1278   SI.registerCallbacks(PIC, &FAM);
1279   PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
1280 
1281   // Attempt to load pass plugins and register their callbacks with PB.
1282   for (auto &PluginFN : CodeGenOpts.PassPlugins) {
1283     auto PassPlugin = PassPlugin::Load(PluginFN);
1284     if (PassPlugin) {
1285       PassPlugin->registerPassBuilderCallbacks(PB);
1286     } else {
1287       Diags.Report(diag::err_fe_unable_to_load_plugin)
1288           << PluginFN << toString(PassPlugin.takeError());
1289     }
1290   }
1291 #define HANDLE_EXTENSION(Ext)                                                  \
1292   get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
1293 #include "llvm/Support/Extension.def"
1294 
1295   // Register the AA manager first so that our version is the one used.
1296   FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
1297 
1298   // Register the target library analysis directly and give it a customized
1299   // preset TLI.
1300   Triple TargetTriple(TheModule->getTargetTriple());
1301   std::unique_ptr<TargetLibraryInfoImpl> TLII(
1302       createTLII(TargetTriple, CodeGenOpts));
1303   FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
1304 
1305   // Register all the basic analyses with the managers.
1306   PB.registerModuleAnalyses(MAM);
1307   PB.registerCGSCCAnalyses(CGAM);
1308   PB.registerFunctionAnalyses(FAM);
1309   PB.registerLoopAnalyses(LAM);
1310   PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
1311 
1312   ModulePassManager MPM;
1313 
1314   if (!CodeGenOpts.DisableLLVMPasses) {
1315     // Map our optimization levels into one of the distinct levels used to
1316     // configure the pipeline.
1317     PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
1318 
1319     bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
1320     bool IsLTO = CodeGenOpts.PrepareForLTO;
1321 
1322     if (LangOpts.ObjCAutoRefCount) {
1323       PB.registerPipelineStartEPCallback(
1324           [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1325             if (Level != PassBuilder::OptimizationLevel::O0)
1326               MPM.addPass(
1327                   createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
1328           });
1329       PB.registerPipelineEarlySimplificationEPCallback(
1330           [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1331             if (Level != PassBuilder::OptimizationLevel::O0)
1332               MPM.addPass(ObjCARCAPElimPass());
1333           });
1334       PB.registerScalarOptimizerLateEPCallback(
1335           [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1336             if (Level != PassBuilder::OptimizationLevel::O0)
1337               FPM.addPass(ObjCARCOptPass());
1338           });
1339     }
1340 
1341     // If we reached here with a non-empty index file name, then the index
1342     // file was empty and we are not performing ThinLTO backend compilation
1343     // (used in testing in a distributed build environment).
1344     bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
1345     // If so drop any the type test assume sequences inserted for whole program
1346     // vtables so that codegen doesn't complain.
1347     if (IsThinLTOPostLink)
1348       PB.registerPipelineStartEPCallback(
1349           [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1350             MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
1351                                            /*ImportSummary=*/nullptr,
1352                                            /*DropTypeTests=*/true));
1353           });
1354 
1355     if (CodeGenOpts.InstrumentFunctions ||
1356         CodeGenOpts.InstrumentFunctionEntryBare ||
1357         CodeGenOpts.InstrumentFunctionsAfterInlining ||
1358         CodeGenOpts.InstrumentForProfiling) {
1359       PB.registerPipelineStartEPCallback(
1360           [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1361             MPM.addPass(createModuleToFunctionPassAdaptor(
1362                 EntryExitInstrumenterPass(/*PostInlining=*/false)));
1363           });
1364       PB.registerOptimizerLastEPCallback(
1365           [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1366             MPM.addPass(createModuleToFunctionPassAdaptor(
1367                 EntryExitInstrumenterPass(/*PostInlining=*/true)));
1368           });
1369     }
1370 
1371     // Register callbacks to schedule sanitizer passes at the appropriate part
1372     // of the pipeline.
1373     if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1374       PB.registerScalarOptimizerLateEPCallback(
1375           [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1376             FPM.addPass(BoundsCheckingPass());
1377           });
1378 
1379     // Don't add sanitizers if we are here from ThinLTO PostLink. That already
1380     // done on PreLink stage.
1381     if (!IsThinLTOPostLink)
1382       addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
1383 
1384     if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts))
1385       PB.registerPipelineStartEPCallback(
1386           [Options](ModulePassManager &MPM,
1387                     PassBuilder::OptimizationLevel Level) {
1388             MPM.addPass(GCOVProfilerPass(*Options));
1389           });
1390     if (Optional<InstrProfOptions> Options =
1391             getInstrProfOptions(CodeGenOpts, LangOpts))
1392       PB.registerPipelineStartEPCallback(
1393           [Options](ModulePassManager &MPM,
1394                     PassBuilder::OptimizationLevel Level) {
1395             MPM.addPass(InstrProfiling(*Options, false));
1396           });
1397 
1398     if (CodeGenOpts.OptimizationLevel == 0) {
1399       MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO);
1400     } else if (IsThinLTO) {
1401       MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level);
1402     } else if (IsLTO) {
1403       MPM = PB.buildLTOPreLinkDefaultPipeline(Level);
1404     } else {
1405       MPM = PB.buildPerModuleDefaultPipeline(Level);
1406     }
1407 
1408     if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1409       MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
1410       MPM.addPass(ModuleMemProfilerPass());
1411     }
1412   }
1413 
1414   // FIXME: We still use the legacy pass manager to do code generation. We
1415   // create that pass manager here and use it as needed below.
1416   legacy::PassManager CodeGenPasses;
1417   bool NeedCodeGen = false;
1418   std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1419 
1420   // Append any output we need to the pass manager.
1421   switch (Action) {
1422   case Backend_EmitNothing:
1423     break;
1424 
1425   case Backend_EmitBC:
1426     if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1427       if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1428         ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1429         if (!ThinLinkOS)
1430           return;
1431       }
1432       TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1433                                CodeGenOpts.EnableSplitLTOUnit);
1434       MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1435                                                            : nullptr));
1436     } else {
1437       // Emit a module summary by default for Regular LTO except for ld64
1438       // targets
1439       bool EmitLTOSummary =
1440           (CodeGenOpts.PrepareForLTO &&
1441            !CodeGenOpts.DisableLLVMPasses &&
1442            llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1443                llvm::Triple::Apple);
1444       if (EmitLTOSummary) {
1445         if (!TheModule->getModuleFlag("ThinLTO"))
1446           TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1447         TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1448                                  uint32_t(1));
1449       }
1450       MPM.addPass(
1451           BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
1452     }
1453     break;
1454 
1455   case Backend_EmitLL:
1456     MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1457     break;
1458 
1459   case Backend_EmitAssembly:
1460   case Backend_EmitMCNull:
1461   case Backend_EmitObj:
1462     NeedCodeGen = true;
1463     CodeGenPasses.add(
1464         createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1465     if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1466       DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1467       if (!DwoOS)
1468         return;
1469     }
1470     if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1471                        DwoOS ? &DwoOS->os() : nullptr))
1472       // FIXME: Should we handle this error differently?
1473       return;
1474     break;
1475   }
1476 
1477   // Before executing passes, print the final values of the LLVM options.
1478   cl::PrintOptionValues();
1479 
1480   // Now that we have all of the passes ready, run them.
1481   {
1482     PrettyStackTraceString CrashInfo("Optimizer");
1483     MPM.run(*TheModule, MAM);
1484   }
1485 
1486   // Now if needed, run the legacy PM for codegen.
1487   if (NeedCodeGen) {
1488     PrettyStackTraceString CrashInfo("Code generation");
1489     CodeGenPasses.run(*TheModule);
1490   }
1491 
1492   if (ThinLinkOS)
1493     ThinLinkOS->keep();
1494   if (DwoOS)
1495     DwoOS->keep();
1496 }
1497 
1498 static void runThinLTOBackend(
1499     DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M,
1500     const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts,
1501     const clang::TargetOptions &TOpts, const LangOptions &LOpts,
1502     std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile,
1503     std::string ProfileRemapping, BackendAction Action) {
1504   StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1505       ModuleToDefinedGVSummaries;
1506   CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1507 
1508   setCommandLineOpts(CGOpts);
1509 
1510   // We can simply import the values mentioned in the combined index, since
1511   // we should only invoke this using the individual indexes written out
1512   // via a WriteIndexesThinBackend.
1513   FunctionImporter::ImportMapTy ImportList;
1514   if (!lto::initImportList(*M, *CombinedIndex, ImportList))
1515     return;
1516 
1517   auto AddStream = [&](size_t Task) {
1518     return std::make_unique<lto::NativeObjectStream>(std::move(OS));
1519   };
1520   lto::Config Conf;
1521   if (CGOpts.SaveTempsFilePrefix != "") {
1522     if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1523                                     /* UseInputModulePath */ false)) {
1524       handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1525         errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1526                << '\n';
1527       });
1528     }
1529   }
1530   Conf.CPU = TOpts.CPU;
1531   Conf.CodeModel = getCodeModel(CGOpts);
1532   Conf.MAttrs = TOpts.Features;
1533   Conf.RelocModel = CGOpts.RelocationModel;
1534   Conf.CGOptLevel = getCGOptLevel(CGOpts);
1535   Conf.OptLevel = CGOpts.OptimizationLevel;
1536   initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1537   Conf.SampleProfile = std::move(SampleProfile);
1538   Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1539   // For historical reasons, loop interleaving is set to mirror setting for loop
1540   // unrolling.
1541   Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1542   Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1543   Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1544   // Only enable CGProfilePass when using integrated assembler, since
1545   // non-integrated assemblers don't recognize .cgprofile section.
1546   Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1547 
1548   // Context sensitive profile.
1549   if (CGOpts.hasProfileCSIRInstr()) {
1550     Conf.RunCSIRInstr = true;
1551     Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1552   } else if (CGOpts.hasProfileCSIRUse()) {
1553     Conf.RunCSIRInstr = false;
1554     Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1555   }
1556 
1557   Conf.ProfileRemapping = std::move(ProfileRemapping);
1558   Conf.UseNewPM = !CGOpts.LegacyPassManager;
1559   Conf.DebugPassManager = CGOpts.DebugPassManager;
1560   Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1561   Conf.RemarksFilename = CGOpts.OptRecordFile;
1562   Conf.RemarksPasses = CGOpts.OptRecordPasses;
1563   Conf.RemarksFormat = CGOpts.OptRecordFormat;
1564   Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1565   Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1566   switch (Action) {
1567   case Backend_EmitNothing:
1568     Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1569       return false;
1570     };
1571     break;
1572   case Backend_EmitLL:
1573     Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1574       M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1575       return false;
1576     };
1577     break;
1578   case Backend_EmitBC:
1579     Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1580       WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1581       return false;
1582     };
1583     break;
1584   default:
1585     Conf.CGFileType = getCodeGenFileType(Action);
1586     break;
1587   }
1588   if (Error E =
1589           thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1590                       ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1591                       /* ModuleMap */ nullptr, CGOpts.CmdArgs)) {
1592     handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1593       errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1594     });
1595   }
1596 }
1597 
1598 void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
1599                               const HeaderSearchOptions &HeaderOpts,
1600                               const CodeGenOptions &CGOpts,
1601                               const clang::TargetOptions &TOpts,
1602                               const LangOptions &LOpts,
1603                               StringRef TDesc, Module *M,
1604                               BackendAction Action,
1605                               std::unique_ptr<raw_pwrite_stream> OS) {
1606 
1607   llvm::TimeTraceScope TimeScope("Backend");
1608 
1609   std::unique_ptr<llvm::Module> EmptyModule;
1610   if (!CGOpts.ThinLTOIndexFile.empty()) {
1611     // If we are performing a ThinLTO importing compile, load the function index
1612     // into memory and pass it into runThinLTOBackend, which will run the
1613     // function importer and invoke LTO passes.
1614     Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr =
1615         llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1616                                            /*IgnoreEmptyThinLTOIndexFile*/true);
1617     if (!IndexOrErr) {
1618       logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1619                             "Error loading index file '" +
1620                             CGOpts.ThinLTOIndexFile + "': ");
1621       return;
1622     }
1623     std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1624     // A null CombinedIndex means we should skip ThinLTO compilation
1625     // (LLVM will optionally ignore empty index files, returning null instead
1626     // of an error).
1627     if (CombinedIndex) {
1628       if (!CombinedIndex->skipModuleByDistributedBackend()) {
1629         runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
1630                           TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
1631                           CGOpts.ProfileRemappingFile, Action);
1632         return;
1633       }
1634       // Distributed indexing detected that nothing from the module is needed
1635       // for the final linking. So we can skip the compilation. We sill need to
1636       // output an empty object file to make sure that a linker does not fail
1637       // trying to read it. Also for some features, like CFI, we must skip
1638       // the compilation as CombinedIndex does not contain all required
1639       // information.
1640       EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1641       EmptyModule->setTargetTriple(M->getTargetTriple());
1642       M = EmptyModule.get();
1643     }
1644   }
1645 
1646   EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1647 
1648   if (!CGOpts.LegacyPassManager)
1649     AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1650   else
1651     AsmHelper.EmitAssembly(Action, std::move(OS));
1652 
1653   // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1654   // DataLayout.
1655   if (AsmHelper.TM) {
1656     std::string DLDesc = M->getDataLayout().getStringRepresentation();
1657     if (DLDesc != TDesc) {
1658       unsigned DiagID = Diags.getCustomDiagID(
1659           DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1660                                     "expected target description '%1'");
1661       Diags.Report(DiagID) << DLDesc << TDesc;
1662     }
1663   }
1664 }
1665 
1666 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1667 // __LLVM,__bitcode section.
1668 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1669                          llvm::MemoryBufferRef Buf) {
1670   if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1671     return;
1672   llvm::EmbedBitcodeInModule(
1673       *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1674       CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1675       CGOpts.CmdArgs);
1676 }
1677