1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 70 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 72 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 73 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 74 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 75 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 76 #include "llvm/Transforms/ObjCARC.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/GVN.h" 79 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 80 #include "llvm/Transforms/Utils.h" 81 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 82 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 83 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 84 #include "llvm/Transforms/Utils/SymbolRewriter.h" 85 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 86 #include <memory> 87 using namespace clang; 88 using namespace llvm; 89 90 #define HANDLE_EXTENSION(Ext) \ 91 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 92 #include "llvm/Support/Extension.def" 93 94 namespace { 95 96 // Default filename used for profile generation. 97 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 98 99 class EmitAssemblyHelper { 100 DiagnosticsEngine &Diags; 101 const HeaderSearchOptions &HSOpts; 102 const CodeGenOptions &CodeGenOpts; 103 const clang::TargetOptions &TargetOpts; 104 const LangOptions &LangOpts; 105 Module *TheModule; 106 107 Timer CodeGenerationTime; 108 109 std::unique_ptr<raw_pwrite_stream> OS; 110 111 TargetIRAnalysis getTargetIRAnalysis() const { 112 if (TM) 113 return TM->getTargetIRAnalysis(); 114 115 return TargetIRAnalysis(); 116 } 117 118 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 119 120 /// Generates the TargetMachine. 121 /// Leaves TM unchanged if it is unable to create the target machine. 122 /// Some of our clang tests specify triples which are not built 123 /// into clang. This is okay because these tests check the generated 124 /// IR, and they require DataLayout which depends on the triple. 125 /// In this case, we allow this method to fail and not report an error. 126 /// When MustCreateTM is used, we print an error if we are unable to load 127 /// the requested target. 128 void CreateTargetMachine(bool MustCreateTM); 129 130 /// Add passes necessary to emit assembly or LLVM IR. 131 /// 132 /// \return True on success. 133 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 134 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 135 136 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 137 std::error_code EC; 138 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 139 llvm::sys::fs::OF_None); 140 if (EC) { 141 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 142 F.reset(); 143 } 144 return F; 145 } 146 147 public: 148 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 149 const HeaderSearchOptions &HeaderSearchOpts, 150 const CodeGenOptions &CGOpts, 151 const clang::TargetOptions &TOpts, 152 const LangOptions &LOpts, Module *M) 153 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 154 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 155 CodeGenerationTime("codegen", "Code Generation Time") {} 156 157 ~EmitAssemblyHelper() { 158 if (CodeGenOpts.DisableFree) 159 BuryPointer(std::move(TM)); 160 } 161 162 std::unique_ptr<TargetMachine> TM; 163 164 void EmitAssembly(BackendAction Action, 165 std::unique_ptr<raw_pwrite_stream> OS); 166 167 void EmitAssemblyWithNewPassManager(BackendAction Action, 168 std::unique_ptr<raw_pwrite_stream> OS); 169 }; 170 171 // We need this wrapper to access LangOpts and CGOpts from extension functions 172 // that we add to the PassManagerBuilder. 173 class PassManagerBuilderWrapper : public PassManagerBuilder { 174 public: 175 PassManagerBuilderWrapper(const Triple &TargetTriple, 176 const CodeGenOptions &CGOpts, 177 const LangOptions &LangOpts) 178 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 179 LangOpts(LangOpts) {} 180 const Triple &getTargetTriple() const { return TargetTriple; } 181 const CodeGenOptions &getCGOpts() const { return CGOpts; } 182 const LangOptions &getLangOpts() const { return LangOpts; } 183 184 private: 185 const Triple &TargetTriple; 186 const CodeGenOptions &CGOpts; 187 const LangOptions &LangOpts; 188 }; 189 } 190 191 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 192 if (Builder.OptLevel > 0) 193 PM.add(createObjCARCAPElimPass()); 194 } 195 196 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 197 if (Builder.OptLevel > 0) 198 PM.add(createObjCARCExpandPass()); 199 } 200 201 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 202 if (Builder.OptLevel > 0) 203 PM.add(createObjCARCOptPass()); 204 } 205 206 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 207 legacy::PassManagerBase &PM) { 208 PM.add(createAddDiscriminatorsPass()); 209 } 210 211 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 212 legacy::PassManagerBase &PM) { 213 PM.add(createBoundsCheckingLegacyPass()); 214 } 215 216 static SanitizerCoverageOptions 217 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 218 SanitizerCoverageOptions Opts; 219 Opts.CoverageType = 220 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 221 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 222 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 223 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 224 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 225 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 226 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 227 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 228 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 229 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 230 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 231 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 232 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 233 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 234 return Opts; 235 } 236 237 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 238 legacy::PassManagerBase &PM) { 239 const PassManagerBuilderWrapper &BuilderWrapper = 240 static_cast<const PassManagerBuilderWrapper &>(Builder); 241 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 242 auto Opts = getSancovOptsFromCGOpts(CGOpts); 243 PM.add(createModuleSanitizerCoverageLegacyPassPass( 244 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 245 CGOpts.SanitizeCoverageBlocklistFiles)); 246 } 247 248 // Check if ASan should use GC-friendly instrumentation for globals. 249 // First of all, there is no point if -fdata-sections is off (expect for MachO, 250 // where this is not a factor). Also, on ELF this feature requires an assembler 251 // extension that only works with -integrated-as at the moment. 252 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 253 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 254 return false; 255 switch (T.getObjectFormat()) { 256 case Triple::MachO: 257 case Triple::COFF: 258 return true; 259 case Triple::ELF: 260 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 261 case Triple::GOFF: 262 llvm::report_fatal_error("ASan not implemented for GOFF"); 263 case Triple::XCOFF: 264 llvm::report_fatal_error("ASan not implemented for XCOFF."); 265 case Triple::Wasm: 266 case Triple::UnknownObjectFormat: 267 break; 268 } 269 return false; 270 } 271 272 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 273 legacy::PassManagerBase &PM) { 274 PM.add(createMemProfilerFunctionPass()); 275 PM.add(createModuleMemProfilerLegacyPassPass()); 276 } 277 278 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 279 legacy::PassManagerBase &PM) { 280 const PassManagerBuilderWrapper &BuilderWrapper = 281 static_cast<const PassManagerBuilderWrapper&>(Builder); 282 const Triple &T = BuilderWrapper.getTargetTriple(); 283 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 284 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 285 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 286 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 287 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 288 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 289 UseAfterScope)); 290 PM.add(createModuleAddressSanitizerLegacyPassPass( 291 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 292 } 293 294 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 295 legacy::PassManagerBase &PM) { 296 PM.add(createAddressSanitizerFunctionPass( 297 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 298 PM.add(createModuleAddressSanitizerLegacyPassPass( 299 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 300 /*UseOdrIndicator*/ false)); 301 } 302 303 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 304 legacy::PassManagerBase &PM) { 305 const PassManagerBuilderWrapper &BuilderWrapper = 306 static_cast<const PassManagerBuilderWrapper &>(Builder); 307 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 308 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 309 PM.add( 310 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 311 } 312 313 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 314 legacy::PassManagerBase &PM) { 315 PM.add(createHWAddressSanitizerLegacyPassPass( 316 /*CompileKernel*/ true, /*Recover*/ true)); 317 } 318 319 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 320 legacy::PassManagerBase &PM, 321 bool CompileKernel) { 322 const PassManagerBuilderWrapper &BuilderWrapper = 323 static_cast<const PassManagerBuilderWrapper&>(Builder); 324 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 325 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 326 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 327 PM.add(createMemorySanitizerLegacyPassPass( 328 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 329 330 // MemorySanitizer inserts complex instrumentation that mostly follows 331 // the logic of the original code, but operates on "shadow" values. 332 // It can benefit from re-running some general purpose optimization passes. 333 if (Builder.OptLevel > 0) { 334 PM.add(createEarlyCSEPass()); 335 PM.add(createReassociatePass()); 336 PM.add(createLICMPass()); 337 PM.add(createGVNPass()); 338 PM.add(createInstructionCombiningPass()); 339 PM.add(createDeadStoreEliminationPass()); 340 } 341 } 342 343 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 344 legacy::PassManagerBase &PM) { 345 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 346 } 347 348 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 349 legacy::PassManagerBase &PM) { 350 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 351 } 352 353 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 354 legacy::PassManagerBase &PM) { 355 PM.add(createThreadSanitizerLegacyPassPass()); 356 } 357 358 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 359 legacy::PassManagerBase &PM) { 360 const PassManagerBuilderWrapper &BuilderWrapper = 361 static_cast<const PassManagerBuilderWrapper&>(Builder); 362 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 363 PM.add( 364 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 365 } 366 367 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 368 const CodeGenOptions &CodeGenOpts) { 369 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 370 371 switch (CodeGenOpts.getVecLib()) { 372 case CodeGenOptions::Accelerate: 373 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 374 break; 375 case CodeGenOptions::LIBMVEC: 376 switch(TargetTriple.getArch()) { 377 default: 378 break; 379 case llvm::Triple::x86_64: 380 TLII->addVectorizableFunctionsFromVecLib 381 (TargetLibraryInfoImpl::LIBMVEC_X86); 382 break; 383 } 384 break; 385 case CodeGenOptions::MASSV: 386 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 387 break; 388 case CodeGenOptions::SVML: 389 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 390 break; 391 default: 392 break; 393 } 394 return TLII; 395 } 396 397 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 398 legacy::PassManager *MPM) { 399 llvm::SymbolRewriter::RewriteDescriptorList DL; 400 401 llvm::SymbolRewriter::RewriteMapParser MapParser; 402 for (const auto &MapFile : Opts.RewriteMapFiles) 403 MapParser.parse(MapFile, &DL); 404 405 MPM->add(createRewriteSymbolsPass(DL)); 406 } 407 408 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 409 switch (CodeGenOpts.OptimizationLevel) { 410 default: 411 llvm_unreachable("Invalid optimization level!"); 412 case 0: 413 return CodeGenOpt::None; 414 case 1: 415 return CodeGenOpt::Less; 416 case 2: 417 return CodeGenOpt::Default; // O2/Os/Oz 418 case 3: 419 return CodeGenOpt::Aggressive; 420 } 421 } 422 423 static Optional<llvm::CodeModel::Model> 424 getCodeModel(const CodeGenOptions &CodeGenOpts) { 425 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 426 .Case("tiny", llvm::CodeModel::Tiny) 427 .Case("small", llvm::CodeModel::Small) 428 .Case("kernel", llvm::CodeModel::Kernel) 429 .Case("medium", llvm::CodeModel::Medium) 430 .Case("large", llvm::CodeModel::Large) 431 .Case("default", ~1u) 432 .Default(~0u); 433 assert(CodeModel != ~0u && "invalid code model!"); 434 if (CodeModel == ~1u) 435 return None; 436 return static_cast<llvm::CodeModel::Model>(CodeModel); 437 } 438 439 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 440 if (Action == Backend_EmitObj) 441 return CGFT_ObjectFile; 442 else if (Action == Backend_EmitMCNull) 443 return CGFT_Null; 444 else { 445 assert(Action == Backend_EmitAssembly && "Invalid action!"); 446 return CGFT_AssemblyFile; 447 } 448 } 449 450 static bool initTargetOptions(DiagnosticsEngine &Diags, 451 llvm::TargetOptions &Options, 452 const CodeGenOptions &CodeGenOpts, 453 const clang::TargetOptions &TargetOpts, 454 const LangOptions &LangOpts, 455 const HeaderSearchOptions &HSOpts) { 456 Options.ThreadModel = 457 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 458 .Case("posix", llvm::ThreadModel::POSIX) 459 .Case("single", llvm::ThreadModel::Single); 460 461 // Set float ABI type. 462 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 463 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 464 "Invalid Floating Point ABI!"); 465 Options.FloatABIType = 466 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 467 .Case("soft", llvm::FloatABI::Soft) 468 .Case("softfp", llvm::FloatABI::Soft) 469 .Case("hard", llvm::FloatABI::Hard) 470 .Default(llvm::FloatABI::Default); 471 472 // Set FP fusion mode. 473 switch (LangOpts.getDefaultFPContractMode()) { 474 case LangOptions::FPM_Off: 475 // Preserve any contraction performed by the front-end. (Strict performs 476 // splitting of the muladd intrinsic in the backend.) 477 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 478 break; 479 case LangOptions::FPM_On: 480 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 481 break; 482 case LangOptions::FPM_Fast: 483 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 484 break; 485 } 486 487 Options.UseInitArray = CodeGenOpts.UseInitArray; 488 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 489 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 490 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 491 492 // Set EABI version. 493 Options.EABIVersion = TargetOpts.EABIVersion; 494 495 if (LangOpts.SjLjExceptions) 496 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 497 if (LangOpts.SEHExceptions) 498 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 499 if (LangOpts.DWARFExceptions) 500 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 501 if (LangOpts.WasmExceptions) 502 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 503 504 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 505 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 506 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 507 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 508 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 509 510 Options.BBSections = 511 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 512 .Case("all", llvm::BasicBlockSection::All) 513 .Case("labels", llvm::BasicBlockSection::Labels) 514 .StartsWith("list=", llvm::BasicBlockSection::List) 515 .Case("none", llvm::BasicBlockSection::None) 516 .Default(llvm::BasicBlockSection::None); 517 518 if (Options.BBSections == llvm::BasicBlockSection::List) { 519 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 520 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 521 if (!MBOrErr) { 522 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 523 << MBOrErr.getError().message(); 524 return false; 525 } 526 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 527 } 528 529 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 530 Options.FunctionSections = CodeGenOpts.FunctionSections; 531 Options.DataSections = CodeGenOpts.DataSections; 532 Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility; 533 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 534 Options.UniqueBasicBlockSectionNames = 535 CodeGenOpts.UniqueBasicBlockSectionNames; 536 Options.StackProtectorGuard = 537 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 538 .StackProtectorGuard) 539 .Case("tls", llvm::StackProtectorGuards::TLS) 540 .Case("global", llvm::StackProtectorGuards::Global) 541 .Default(llvm::StackProtectorGuards::None); 542 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 543 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 544 Options.TLSSize = CodeGenOpts.TLSSize; 545 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 546 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 547 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 548 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 549 Options.EmitAddrsig = CodeGenOpts.Addrsig; 550 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 551 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 552 Options.ValueTrackingVariableLocations = 553 CodeGenOpts.ValueTrackingVariableLocations; 554 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 555 556 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 557 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 558 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 559 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 560 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 561 Options.MCOptions.MCIncrementalLinkerCompatible = 562 CodeGenOpts.IncrementalLinkerCompatible; 563 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 564 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 565 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 566 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 567 Options.MCOptions.ABIName = TargetOpts.ABI; 568 for (const auto &Entry : HSOpts.UserEntries) 569 if (!Entry.IsFramework && 570 (Entry.Group == frontend::IncludeDirGroup::Quoted || 571 Entry.Group == frontend::IncludeDirGroup::Angled || 572 Entry.Group == frontend::IncludeDirGroup::System)) 573 Options.MCOptions.IASSearchPaths.push_back( 574 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 575 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 576 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 577 578 return true; 579 } 580 581 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 582 const LangOptions &LangOpts) { 583 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 584 return None; 585 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 586 // LLVM's -default-gcov-version flag is set to something invalid. 587 GCOVOptions Options; 588 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 589 Options.EmitData = CodeGenOpts.EmitGcovArcs; 590 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 591 Options.NoRedZone = CodeGenOpts.DisableRedZone; 592 Options.Filter = CodeGenOpts.ProfileFilterFiles; 593 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 594 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 595 return Options; 596 } 597 598 static Optional<InstrProfOptions> 599 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 600 const LangOptions &LangOpts) { 601 if (!CodeGenOpts.hasProfileClangInstr()) 602 return None; 603 InstrProfOptions Options; 604 Options.NoRedZone = CodeGenOpts.DisableRedZone; 605 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 606 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 607 return Options; 608 } 609 610 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 611 legacy::FunctionPassManager &FPM) { 612 // Handle disabling of all LLVM passes, where we want to preserve the 613 // internal module before any optimization. 614 if (CodeGenOpts.DisableLLVMPasses) 615 return; 616 617 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 618 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 619 // are inserted before PMBuilder ones - they'd get the default-constructed 620 // TLI with an unknown target otherwise. 621 Triple TargetTriple(TheModule->getTargetTriple()); 622 std::unique_ptr<TargetLibraryInfoImpl> TLII( 623 createTLII(TargetTriple, CodeGenOpts)); 624 625 // If we reached here with a non-empty index file name, then the index file 626 // was empty and we are not performing ThinLTO backend compilation (used in 627 // testing in a distributed build environment). Drop any the type test 628 // assume sequences inserted for whole program vtables so that codegen doesn't 629 // complain. 630 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 631 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 632 /*ImportSummary=*/nullptr, 633 /*DropTypeTests=*/true)); 634 635 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 636 637 // At O0 and O1 we only run the always inliner which is more efficient. At 638 // higher optimization levels we run the normal inliner. 639 if (CodeGenOpts.OptimizationLevel <= 1) { 640 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 641 !CodeGenOpts.DisableLifetimeMarkers) || 642 LangOpts.Coroutines); 643 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 644 } else { 645 // We do not want to inline hot callsites for SamplePGO module-summary build 646 // because profile annotation will happen again in ThinLTO backend, and we 647 // want the IR of the hot path to match the profile. 648 PMBuilder.Inliner = createFunctionInliningPass( 649 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 650 (!CodeGenOpts.SampleProfileFile.empty() && 651 CodeGenOpts.PrepareForThinLTO)); 652 } 653 654 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 655 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 656 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 657 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 658 // Only enable CGProfilePass when using integrated assembler, since 659 // non-integrated assemblers don't recognize .cgprofile section. 660 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 661 662 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 663 // Loop interleaving in the loop vectorizer has historically been set to be 664 // enabled when loop unrolling is enabled. 665 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 666 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 667 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 668 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 669 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 670 671 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 672 673 if (TM) 674 TM->adjustPassManager(PMBuilder); 675 676 if (CodeGenOpts.DebugInfoForProfiling || 677 !CodeGenOpts.SampleProfileFile.empty()) 678 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 679 addAddDiscriminatorsPass); 680 681 // In ObjC ARC mode, add the main ARC optimization passes. 682 if (LangOpts.ObjCAutoRefCount) { 683 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 684 addObjCARCExpandPass); 685 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 686 addObjCARCAPElimPass); 687 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 688 addObjCARCOptPass); 689 } 690 691 if (LangOpts.Coroutines) 692 addCoroutinePassesToExtensionPoints(PMBuilder); 693 694 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 695 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 696 addMemProfilerPasses); 697 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 698 addMemProfilerPasses); 699 } 700 701 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 702 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 703 addBoundsCheckingPass); 704 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 705 addBoundsCheckingPass); 706 } 707 708 if (CodeGenOpts.SanitizeCoverageType || 709 CodeGenOpts.SanitizeCoverageIndirectCalls || 710 CodeGenOpts.SanitizeCoverageTraceCmp) { 711 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 712 addSanitizerCoveragePass); 713 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 714 addSanitizerCoveragePass); 715 } 716 717 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 718 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 719 addAddressSanitizerPasses); 720 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 721 addAddressSanitizerPasses); 722 } 723 724 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 725 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 726 addKernelAddressSanitizerPasses); 727 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 728 addKernelAddressSanitizerPasses); 729 } 730 731 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 732 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 733 addHWAddressSanitizerPasses); 734 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 735 addHWAddressSanitizerPasses); 736 } 737 738 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 739 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 740 addKernelHWAddressSanitizerPasses); 741 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 742 addKernelHWAddressSanitizerPasses); 743 } 744 745 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 746 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 747 addMemorySanitizerPass); 748 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 749 addMemorySanitizerPass); 750 } 751 752 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 753 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 754 addKernelMemorySanitizerPass); 755 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 756 addKernelMemorySanitizerPass); 757 } 758 759 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 760 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 761 addThreadSanitizerPass); 762 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 763 addThreadSanitizerPass); 764 } 765 766 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 767 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 768 addDataFlowSanitizerPass); 769 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 770 addDataFlowSanitizerPass); 771 } 772 773 // Set up the per-function pass manager. 774 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 775 if (CodeGenOpts.VerifyModule) 776 FPM.add(createVerifierPass()); 777 778 // Set up the per-module pass manager. 779 if (!CodeGenOpts.RewriteMapFiles.empty()) 780 addSymbolRewriterPass(CodeGenOpts, &MPM); 781 782 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 783 // with unique names. 784 if (CodeGenOpts.UniqueInternalLinkageNames) { 785 MPM.add(createUniqueInternalLinkageNamesPass()); 786 } 787 788 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 789 MPM.add(createGCOVProfilerPass(*Options)); 790 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 791 MPM.add(createStripSymbolsPass(true)); 792 } 793 794 if (Optional<InstrProfOptions> Options = 795 getInstrProfOptions(CodeGenOpts, LangOpts)) 796 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 797 798 bool hasIRInstr = false; 799 if (CodeGenOpts.hasProfileIRInstr()) { 800 PMBuilder.EnablePGOInstrGen = true; 801 hasIRInstr = true; 802 } 803 if (CodeGenOpts.hasProfileCSIRInstr()) { 804 assert(!CodeGenOpts.hasProfileCSIRUse() && 805 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 806 "same time"); 807 assert(!hasIRInstr && 808 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 809 "same time"); 810 PMBuilder.EnablePGOCSInstrGen = true; 811 hasIRInstr = true; 812 } 813 if (hasIRInstr) { 814 if (!CodeGenOpts.InstrProfileOutput.empty()) 815 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 816 else 817 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 818 } 819 if (CodeGenOpts.hasProfileIRUse()) { 820 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 821 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 822 } 823 824 if (!CodeGenOpts.SampleProfileFile.empty()) 825 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 826 827 PMBuilder.populateFunctionPassManager(FPM); 828 PMBuilder.populateModulePassManager(MPM); 829 } 830 831 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 832 SmallVector<const char *, 16> BackendArgs; 833 BackendArgs.push_back("clang"); // Fake program name. 834 if (!CodeGenOpts.DebugPass.empty()) { 835 BackendArgs.push_back("-debug-pass"); 836 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 837 } 838 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 839 BackendArgs.push_back("-limit-float-precision"); 840 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 841 } 842 BackendArgs.push_back(nullptr); 843 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 844 BackendArgs.data()); 845 } 846 847 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 848 // Create the TargetMachine for generating code. 849 std::string Error; 850 std::string Triple = TheModule->getTargetTriple(); 851 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 852 if (!TheTarget) { 853 if (MustCreateTM) 854 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 855 return; 856 } 857 858 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 859 std::string FeaturesStr = 860 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 861 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 862 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 863 864 llvm::TargetOptions Options; 865 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 866 HSOpts)) 867 return; 868 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 869 Options, RM, CM, OptLevel)); 870 } 871 872 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 873 BackendAction Action, 874 raw_pwrite_stream &OS, 875 raw_pwrite_stream *DwoOS) { 876 // Add LibraryInfo. 877 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 878 std::unique_ptr<TargetLibraryInfoImpl> TLII( 879 createTLII(TargetTriple, CodeGenOpts)); 880 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 881 882 // Normal mode, emit a .s or .o file by running the code generator. Note, 883 // this also adds codegenerator level optimization passes. 884 CodeGenFileType CGFT = getCodeGenFileType(Action); 885 886 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 887 // "codegen" passes so that it isn't run multiple times when there is 888 // inlining happening. 889 if (CodeGenOpts.OptimizationLevel > 0) 890 CodeGenPasses.add(createObjCARCContractPass()); 891 892 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 893 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 894 Diags.Report(diag::err_fe_unable_to_interface_with_target); 895 return false; 896 } 897 898 return true; 899 } 900 901 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 902 std::unique_ptr<raw_pwrite_stream> OS) { 903 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 904 905 setCommandLineOpts(CodeGenOpts); 906 907 bool UsesCodeGen = (Action != Backend_EmitNothing && 908 Action != Backend_EmitBC && 909 Action != Backend_EmitLL); 910 CreateTargetMachine(UsesCodeGen); 911 912 if (UsesCodeGen && !TM) 913 return; 914 if (TM) 915 TheModule->setDataLayout(TM->createDataLayout()); 916 917 legacy::PassManager PerModulePasses; 918 PerModulePasses.add( 919 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 920 921 legacy::FunctionPassManager PerFunctionPasses(TheModule); 922 PerFunctionPasses.add( 923 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 924 925 CreatePasses(PerModulePasses, PerFunctionPasses); 926 927 legacy::PassManager CodeGenPasses; 928 CodeGenPasses.add( 929 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 930 931 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 932 933 switch (Action) { 934 case Backend_EmitNothing: 935 break; 936 937 case Backend_EmitBC: 938 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 939 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 940 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 941 if (!ThinLinkOS) 942 return; 943 } 944 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 945 CodeGenOpts.EnableSplitLTOUnit); 946 PerModulePasses.add(createWriteThinLTOBitcodePass( 947 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 948 } else { 949 // Emit a module summary by default for Regular LTO except for ld64 950 // targets 951 bool EmitLTOSummary = 952 (CodeGenOpts.PrepareForLTO && 953 !CodeGenOpts.DisableLLVMPasses && 954 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 955 llvm::Triple::Apple); 956 if (EmitLTOSummary) { 957 if (!TheModule->getModuleFlag("ThinLTO")) 958 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 959 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 960 uint32_t(1)); 961 } 962 963 PerModulePasses.add(createBitcodeWriterPass( 964 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 965 } 966 break; 967 968 case Backend_EmitLL: 969 PerModulePasses.add( 970 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 971 break; 972 973 default: 974 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 975 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 976 if (!DwoOS) 977 return; 978 } 979 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 980 DwoOS ? &DwoOS->os() : nullptr)) 981 return; 982 } 983 984 // Before executing passes, print the final values of the LLVM options. 985 cl::PrintOptionValues(); 986 987 // Run passes. For now we do all passes at once, but eventually we 988 // would like to have the option of streaming code generation. 989 990 { 991 PrettyStackTraceString CrashInfo("Per-function optimization"); 992 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 993 994 PerFunctionPasses.doInitialization(); 995 for (Function &F : *TheModule) 996 if (!F.isDeclaration()) 997 PerFunctionPasses.run(F); 998 PerFunctionPasses.doFinalization(); 999 } 1000 1001 { 1002 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1003 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1004 PerModulePasses.run(*TheModule); 1005 } 1006 1007 { 1008 PrettyStackTraceString CrashInfo("Code generation"); 1009 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1010 CodeGenPasses.run(*TheModule); 1011 } 1012 1013 if (ThinLinkOS) 1014 ThinLinkOS->keep(); 1015 if (DwoOS) 1016 DwoOS->keep(); 1017 } 1018 1019 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1020 switch (Opts.OptimizationLevel) { 1021 default: 1022 llvm_unreachable("Invalid optimization level!"); 1023 1024 case 0: 1025 return PassBuilder::OptimizationLevel::O0; 1026 1027 case 1: 1028 return PassBuilder::OptimizationLevel::O1; 1029 1030 case 2: 1031 switch (Opts.OptimizeSize) { 1032 default: 1033 llvm_unreachable("Invalid optimization level for size!"); 1034 1035 case 0: 1036 return PassBuilder::OptimizationLevel::O2; 1037 1038 case 1: 1039 return PassBuilder::OptimizationLevel::Os; 1040 1041 case 2: 1042 return PassBuilder::OptimizationLevel::Oz; 1043 } 1044 1045 case 3: 1046 return PassBuilder::OptimizationLevel::O3; 1047 } 1048 } 1049 1050 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1051 const LangOptions &LangOpts, 1052 const CodeGenOptions &CodeGenOpts) { 1053 if (!LangOpts.Coroutines) 1054 return; 1055 1056 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1057 1058 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1059 CGPM.addPass(CoroSplitPass()); 1060 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1061 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1062 1063 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1064 } 1065 1066 /// A clean version of `EmitAssembly` that uses the new pass manager. 1067 /// 1068 /// Not all features are currently supported in this system, but where 1069 /// necessary it falls back to the legacy pass manager to at least provide 1070 /// basic functionality. 1071 /// 1072 /// This API is planned to have its functionality finished and then to replace 1073 /// `EmitAssembly` at some point in the future when the default switches. 1074 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1075 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1076 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1077 setCommandLineOpts(CodeGenOpts); 1078 1079 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1080 Action != Backend_EmitBC && 1081 Action != Backend_EmitLL); 1082 CreateTargetMachine(RequiresCodeGen); 1083 1084 if (RequiresCodeGen && !TM) 1085 return; 1086 if (TM) 1087 TheModule->setDataLayout(TM->createDataLayout()); 1088 1089 Optional<PGOOptions> PGOOpt; 1090 1091 if (CodeGenOpts.hasProfileIRInstr()) 1092 // -fprofile-generate. 1093 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1094 ? std::string(DefaultProfileGenName) 1095 : CodeGenOpts.InstrProfileOutput, 1096 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1097 CodeGenOpts.DebugInfoForProfiling); 1098 else if (CodeGenOpts.hasProfileIRUse()) { 1099 // -fprofile-use. 1100 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1101 : PGOOptions::NoCSAction; 1102 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1103 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1104 CSAction, CodeGenOpts.DebugInfoForProfiling); 1105 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1106 // -fprofile-sample-use 1107 PGOOpt = 1108 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1109 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1110 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1111 else if (CodeGenOpts.DebugInfoForProfiling) 1112 // -fdebug-info-for-profiling 1113 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1114 PGOOptions::NoCSAction, true); 1115 1116 // Check to see if we want to generate a CS profile. 1117 if (CodeGenOpts.hasProfileCSIRInstr()) { 1118 assert(!CodeGenOpts.hasProfileCSIRUse() && 1119 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1120 "the same time"); 1121 if (PGOOpt.hasValue()) { 1122 assert(PGOOpt->Action != PGOOptions::IRInstr && 1123 PGOOpt->Action != PGOOptions::SampleUse && 1124 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1125 " pass"); 1126 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1127 ? std::string(DefaultProfileGenName) 1128 : CodeGenOpts.InstrProfileOutput; 1129 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1130 } else 1131 PGOOpt = PGOOptions("", 1132 CodeGenOpts.InstrProfileOutput.empty() 1133 ? std::string(DefaultProfileGenName) 1134 : CodeGenOpts.InstrProfileOutput, 1135 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1136 CodeGenOpts.DebugInfoForProfiling); 1137 } 1138 1139 PipelineTuningOptions PTO; 1140 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1141 // For historical reasons, loop interleaving is set to mirror setting for loop 1142 // unrolling. 1143 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1144 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1145 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1146 // Only enable CGProfilePass when using integrated assembler, since 1147 // non-integrated assemblers don't recognize .cgprofile section. 1148 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1149 PTO.Coroutines = LangOpts.Coroutines; 1150 1151 PassInstrumentationCallbacks PIC; 1152 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1153 SI.registerCallbacks(PIC); 1154 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1155 1156 // Attempt to load pass plugins and register their callbacks with PB. 1157 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1158 auto PassPlugin = PassPlugin::Load(PluginFN); 1159 if (PassPlugin) { 1160 PassPlugin->registerPassBuilderCallbacks(PB); 1161 } else { 1162 Diags.Report(diag::err_fe_unable_to_load_plugin) 1163 << PluginFN << toString(PassPlugin.takeError()); 1164 } 1165 } 1166 #define HANDLE_EXTENSION(Ext) \ 1167 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1168 #include "llvm/Support/Extension.def" 1169 1170 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1171 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1172 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1173 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1174 1175 // Register the AA manager first so that our version is the one used. 1176 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1177 1178 // Register the target library analysis directly and give it a customized 1179 // preset TLI. 1180 Triple TargetTriple(TheModule->getTargetTriple()); 1181 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1182 createTLII(TargetTriple, CodeGenOpts)); 1183 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1184 1185 // Register all the basic analyses with the managers. 1186 PB.registerModuleAnalyses(MAM); 1187 PB.registerCGSCCAnalyses(CGAM); 1188 PB.registerFunctionAnalyses(FAM); 1189 PB.registerLoopAnalyses(LAM); 1190 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1191 1192 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1193 1194 if (!CodeGenOpts.DisableLLVMPasses) { 1195 // Map our optimization levels into one of the distinct levels used to 1196 // configure the pipeline. 1197 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1198 1199 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1200 bool IsLTO = CodeGenOpts.PrepareForLTO; 1201 1202 // If we reached here with a non-empty index file name, then the index 1203 // file was empty and we are not performing ThinLTO backend compilation 1204 // (used in testing in a distributed build environment). Drop any the type 1205 // test assume sequences inserted for whole program vtables so that 1206 // codegen doesn't complain. 1207 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1208 PB.registerPipelineStartEPCallback( 1209 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1210 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1211 /*ImportSummary=*/nullptr, 1212 /*DropTypeTests=*/true)); 1213 }); 1214 1215 if (Level != PassBuilder::OptimizationLevel::O0) { 1216 PB.registerPipelineStartEPCallback( 1217 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1218 MPM.addPass(createModuleToFunctionPassAdaptor( 1219 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1220 }); 1221 } 1222 1223 // Register callbacks to schedule sanitizer passes at the appropriate part 1224 // of the pipeline. 1225 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1226 PB.registerScalarOptimizerLateEPCallback( 1227 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1228 FPM.addPass(BoundsCheckingPass()); 1229 }); 1230 1231 if (CodeGenOpts.SanitizeCoverageType || 1232 CodeGenOpts.SanitizeCoverageIndirectCalls || 1233 CodeGenOpts.SanitizeCoverageTraceCmp) { 1234 PB.registerOptimizerLastEPCallback( 1235 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1236 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1237 MPM.addPass(ModuleSanitizerCoveragePass( 1238 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1239 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1240 }); 1241 } 1242 1243 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1244 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1245 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1246 PB.registerOptimizerLastEPCallback( 1247 [TrackOrigins, Recover](ModulePassManager &MPM, 1248 PassBuilder::OptimizationLevel Level) { 1249 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1250 MPM.addPass(createModuleToFunctionPassAdaptor( 1251 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1252 }); 1253 } 1254 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1255 PB.registerOptimizerLastEPCallback( 1256 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1257 MPM.addPass(ThreadSanitizerPass()); 1258 MPM.addPass( 1259 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1260 }); 1261 } 1262 1263 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1264 if (LangOpts.Sanitize.has(Mask)) { 1265 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1266 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1267 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1268 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1269 PB.registerOptimizerLastEPCallback( 1270 [CompileKernel, Recover, UseAfterScope, ModuleUseAfterScope, 1271 UseOdrIndicator](ModulePassManager &MPM, 1272 PassBuilder::OptimizationLevel Level) { 1273 MPM.addPass( 1274 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1275 MPM.addPass(ModuleAddressSanitizerPass(CompileKernel, Recover, 1276 ModuleUseAfterScope, 1277 UseOdrIndicator)); 1278 MPM.addPass(createModuleToFunctionPassAdaptor( 1279 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1280 }); 1281 } 1282 }; 1283 ASanPass(SanitizerKind::Address, false); 1284 ASanPass(SanitizerKind::KernelAddress, true); 1285 1286 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1287 if (LangOpts.Sanitize.has(Mask)) { 1288 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1289 PB.registerOptimizerLastEPCallback( 1290 [CompileKernel, Recover](ModulePassManager &MPM, 1291 PassBuilder::OptimizationLevel Level) { 1292 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1293 }); 1294 } 1295 }; 1296 HWASanPass(SanitizerKind::HWAddress, false); 1297 HWASanPass(SanitizerKind::KernelHWAddress, true); 1298 1299 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1300 PB.registerOptimizerLastEPCallback( 1301 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1302 MPM.addPass( 1303 DataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 1304 }); 1305 } 1306 1307 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1308 PB.registerPipelineStartEPCallback( 1309 [Options](ModulePassManager &MPM, 1310 PassBuilder::OptimizationLevel Level) { 1311 MPM.addPass(GCOVProfilerPass(*Options)); 1312 }); 1313 if (Optional<InstrProfOptions> Options = 1314 getInstrProfOptions(CodeGenOpts, LangOpts)) 1315 PB.registerPipelineStartEPCallback( 1316 [Options](ModulePassManager &MPM, 1317 PassBuilder::OptimizationLevel Level) { 1318 MPM.addPass(InstrProfiling(*Options, false)); 1319 }); 1320 1321 if (CodeGenOpts.OptimizationLevel == 0) { 1322 // Build a minimal pipeline based on the semantics required by Clang, 1323 // which is just that always inlining occurs. Further, disable generating 1324 // lifetime intrinsics to avoid enabling further optimizations during 1325 // code generation. 1326 // However, we need to insert lifetime intrinsics to avoid invalid access 1327 // caused by multithreaded coroutines. 1328 PB.registerPipelineStartEPCallback( 1329 [this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1330 MPM.addPass(AlwaysInlinerPass( 1331 /*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1332 }); 1333 1334 // At -O0, we can still do PGO. Add all the requested passes for 1335 // instrumentation PGO, if requested. 1336 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1337 PGOOpt->Action == PGOOptions::IRUse)) 1338 PB.addPGOInstrPassesForO0( 1339 MPM, 1340 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1341 /* IsCS */ false, PGOOpt->ProfileFile, 1342 PGOOpt->ProfileRemappingFile); 1343 1344 PB.runRegisteredEPCallbacks(MPM, Level, CodeGenOpts.DebugPassManager); 1345 1346 // FIXME: the backends do not handle matrix intrinsics currently. Make 1347 // sure they are also lowered in O0. A lightweight version of the pass 1348 // should run in the backend pipeline on demand. 1349 if (LangOpts.MatrixTypes) 1350 MPM.addPass( 1351 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1352 1353 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1354 } else if (IsThinLTO) { 1355 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1356 } else if (IsLTO) { 1357 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1358 } else { 1359 MPM = PB.buildPerModuleDefaultPipeline(Level); 1360 } 1361 1362 // Lastly, add semantically necessary passes for LTO. 1363 if (IsLTO || IsThinLTO) { 1364 MPM.addPass(CanonicalizeAliasesPass()); 1365 MPM.addPass(NameAnonGlobalPass()); 1366 } 1367 1368 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1369 // symbols with unique names. 1370 if (CodeGenOpts.UniqueInternalLinkageNames) 1371 MPM.addPass(UniqueInternalLinkageNamesPass()); 1372 1373 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1374 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1375 MPM.addPass(ModuleMemProfilerPass()); 1376 } 1377 } 1378 1379 // FIXME: We still use the legacy pass manager to do code generation. We 1380 // create that pass manager here and use it as needed below. 1381 legacy::PassManager CodeGenPasses; 1382 bool NeedCodeGen = false; 1383 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1384 1385 // Append any output we need to the pass manager. 1386 switch (Action) { 1387 case Backend_EmitNothing: 1388 break; 1389 1390 case Backend_EmitBC: 1391 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1392 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1393 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1394 if (!ThinLinkOS) 1395 return; 1396 } 1397 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1398 CodeGenOpts.EnableSplitLTOUnit); 1399 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1400 : nullptr)); 1401 } else { 1402 // Emit a module summary by default for Regular LTO except for ld64 1403 // targets 1404 bool EmitLTOSummary = 1405 (CodeGenOpts.PrepareForLTO && 1406 !CodeGenOpts.DisableLLVMPasses && 1407 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1408 llvm::Triple::Apple); 1409 if (EmitLTOSummary) { 1410 if (!TheModule->getModuleFlag("ThinLTO")) 1411 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1412 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1413 uint32_t(1)); 1414 } 1415 MPM.addPass( 1416 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1417 } 1418 break; 1419 1420 case Backend_EmitLL: 1421 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1422 break; 1423 1424 case Backend_EmitAssembly: 1425 case Backend_EmitMCNull: 1426 case Backend_EmitObj: 1427 NeedCodeGen = true; 1428 CodeGenPasses.add( 1429 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1430 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1431 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1432 if (!DwoOS) 1433 return; 1434 } 1435 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1436 DwoOS ? &DwoOS->os() : nullptr)) 1437 // FIXME: Should we handle this error differently? 1438 return; 1439 break; 1440 } 1441 1442 // Before executing passes, print the final values of the LLVM options. 1443 cl::PrintOptionValues(); 1444 1445 // Now that we have all of the passes ready, run them. 1446 { 1447 PrettyStackTraceString CrashInfo("Optimizer"); 1448 MPM.run(*TheModule, MAM); 1449 } 1450 1451 // Now if needed, run the legacy PM for codegen. 1452 if (NeedCodeGen) { 1453 PrettyStackTraceString CrashInfo("Code generation"); 1454 CodeGenPasses.run(*TheModule); 1455 } 1456 1457 if (ThinLinkOS) 1458 ThinLinkOS->keep(); 1459 if (DwoOS) 1460 DwoOS->keep(); 1461 } 1462 1463 static void runThinLTOBackend( 1464 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1465 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1466 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1467 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1468 std::string ProfileRemapping, BackendAction Action) { 1469 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1470 ModuleToDefinedGVSummaries; 1471 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1472 1473 setCommandLineOpts(CGOpts); 1474 1475 // We can simply import the values mentioned in the combined index, since 1476 // we should only invoke this using the individual indexes written out 1477 // via a WriteIndexesThinBackend. 1478 FunctionImporter::ImportMapTy ImportList; 1479 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1480 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1481 if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap, 1482 OwnedImports)) 1483 return; 1484 1485 auto AddStream = [&](size_t Task) { 1486 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1487 }; 1488 lto::Config Conf; 1489 if (CGOpts.SaveTempsFilePrefix != "") { 1490 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1491 /* UseInputModulePath */ false)) { 1492 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1493 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1494 << '\n'; 1495 }); 1496 } 1497 } 1498 Conf.CPU = TOpts.CPU; 1499 Conf.CodeModel = getCodeModel(CGOpts); 1500 Conf.MAttrs = TOpts.Features; 1501 Conf.RelocModel = CGOpts.RelocationModel; 1502 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1503 Conf.OptLevel = CGOpts.OptimizationLevel; 1504 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1505 Conf.SampleProfile = std::move(SampleProfile); 1506 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1507 // For historical reasons, loop interleaving is set to mirror setting for loop 1508 // unrolling. 1509 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1510 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1511 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1512 // Only enable CGProfilePass when using integrated assembler, since 1513 // non-integrated assemblers don't recognize .cgprofile section. 1514 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1515 1516 // Context sensitive profile. 1517 if (CGOpts.hasProfileCSIRInstr()) { 1518 Conf.RunCSIRInstr = true; 1519 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1520 } else if (CGOpts.hasProfileCSIRUse()) { 1521 Conf.RunCSIRInstr = false; 1522 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1523 } 1524 1525 Conf.ProfileRemapping = std::move(ProfileRemapping); 1526 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1527 Conf.DebugPassManager = CGOpts.DebugPassManager; 1528 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1529 Conf.RemarksFilename = CGOpts.OptRecordFile; 1530 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1531 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1532 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1533 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1534 switch (Action) { 1535 case Backend_EmitNothing: 1536 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1537 return false; 1538 }; 1539 break; 1540 case Backend_EmitLL: 1541 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1542 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1543 return false; 1544 }; 1545 break; 1546 case Backend_EmitBC: 1547 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1548 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1549 return false; 1550 }; 1551 break; 1552 default: 1553 Conf.CGFileType = getCodeGenFileType(Action); 1554 break; 1555 } 1556 if (Error E = 1557 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1558 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1559 ModuleMap, CGOpts.CmdArgs)) { 1560 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1561 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1562 }); 1563 } 1564 } 1565 1566 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1567 const HeaderSearchOptions &HeaderOpts, 1568 const CodeGenOptions &CGOpts, 1569 const clang::TargetOptions &TOpts, 1570 const LangOptions &LOpts, 1571 const llvm::DataLayout &TDesc, Module *M, 1572 BackendAction Action, 1573 std::unique_ptr<raw_pwrite_stream> OS) { 1574 1575 llvm::TimeTraceScope TimeScope("Backend"); 1576 1577 std::unique_ptr<llvm::Module> EmptyModule; 1578 if (!CGOpts.ThinLTOIndexFile.empty()) { 1579 // If we are performing a ThinLTO importing compile, load the function index 1580 // into memory and pass it into runThinLTOBackend, which will run the 1581 // function importer and invoke LTO passes. 1582 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1583 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1584 /*IgnoreEmptyThinLTOIndexFile*/true); 1585 if (!IndexOrErr) { 1586 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1587 "Error loading index file '" + 1588 CGOpts.ThinLTOIndexFile + "': "); 1589 return; 1590 } 1591 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1592 // A null CombinedIndex means we should skip ThinLTO compilation 1593 // (LLVM will optionally ignore empty index files, returning null instead 1594 // of an error). 1595 if (CombinedIndex) { 1596 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1597 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1598 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1599 CGOpts.ProfileRemappingFile, Action); 1600 return; 1601 } 1602 // Distributed indexing detected that nothing from the module is needed 1603 // for the final linking. So we can skip the compilation. We sill need to 1604 // output an empty object file to make sure that a linker does not fail 1605 // trying to read it. Also for some features, like CFI, we must skip 1606 // the compilation as CombinedIndex does not contain all required 1607 // information. 1608 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1609 EmptyModule->setTargetTriple(M->getTargetTriple()); 1610 M = EmptyModule.get(); 1611 } 1612 } 1613 1614 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1615 1616 if (CGOpts.ExperimentalNewPassManager) 1617 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1618 else 1619 AsmHelper.EmitAssembly(Action, std::move(OS)); 1620 1621 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1622 // DataLayout. 1623 if (AsmHelper.TM) { 1624 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1625 if (DLDesc != TDesc.getStringRepresentation()) { 1626 unsigned DiagID = Diags.getCustomDiagID( 1627 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1628 "expected target description '%1'"); 1629 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1630 } 1631 } 1632 } 1633 1634 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1635 // __LLVM,__bitcode section. 1636 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1637 llvm::MemoryBufferRef Buf) { 1638 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1639 return; 1640 llvm::EmbedBitcodeInModule( 1641 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1642 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1643 CGOpts.CmdArgs); 1644 } 1645