1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeWriterPass.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/CodeGen/RegAllocRegistry.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSummaryIndex.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/MC/SubtargetFeature.h" 33 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/PrettyStackTrace.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/Timer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 44 #include "llvm/Transforms/Instrumentation.h" 45 #include "llvm/Transforms/ObjCARC.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils/SymbolRewriter.h" 49 #include <memory> 50 using namespace clang; 51 using namespace llvm; 52 53 namespace { 54 55 class EmitAssemblyHelper { 56 DiagnosticsEngine &Diags; 57 const CodeGenOptions &CodeGenOpts; 58 const clang::TargetOptions &TargetOpts; 59 const LangOptions &LangOpts; 60 Module *TheModule; 61 62 Timer CodeGenerationTime; 63 64 mutable legacy::PassManager *CodeGenPasses; 65 mutable legacy::PassManager *PerModulePasses; 66 mutable legacy::FunctionPassManager *PerFunctionPasses; 67 68 private: 69 TargetIRAnalysis getTargetIRAnalysis() const { 70 if (TM) 71 return TM->getTargetIRAnalysis(); 72 73 return TargetIRAnalysis(); 74 } 75 76 legacy::PassManager *getCodeGenPasses() const { 77 if (!CodeGenPasses) { 78 CodeGenPasses = new legacy::PassManager(); 79 CodeGenPasses->add( 80 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 81 } 82 return CodeGenPasses; 83 } 84 85 legacy::PassManager *getPerModulePasses() const { 86 if (!PerModulePasses) { 87 PerModulePasses = new legacy::PassManager(); 88 PerModulePasses->add( 89 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 90 } 91 return PerModulePasses; 92 } 93 94 legacy::FunctionPassManager *getPerFunctionPasses() const { 95 if (!PerFunctionPasses) { 96 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 97 PerFunctionPasses->add( 98 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 99 } 100 return PerFunctionPasses; 101 } 102 103 /// Set LLVM command line options passed through -backend-option. 104 void setCommandLineOpts(); 105 106 void CreatePasses(ModuleSummaryIndex *ModuleSummary); 107 108 /// Generates the TargetMachine. 109 /// Returns Null if it is unable to create the target machine. 110 /// Some of our clang tests specify triples which are not built 111 /// into clang. This is okay because these tests check the generated 112 /// IR, and they require DataLayout which depends on the triple. 113 /// In this case, we allow this method to fail and not report an error. 114 /// When MustCreateTM is used, we print an error if we are unable to load 115 /// the requested target. 116 TargetMachine *CreateTargetMachine(bool MustCreateTM); 117 118 /// Add passes necessary to emit assembly or LLVM IR. 119 /// 120 /// \return True on success. 121 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 122 123 public: 124 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 125 const clang::TargetOptions &TOpts, 126 const LangOptions &LOpts, Module *M) 127 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 128 TheModule(M), CodeGenerationTime("Code Generation Time"), 129 CodeGenPasses(nullptr), PerModulePasses(nullptr), 130 PerFunctionPasses(nullptr) {} 131 132 ~EmitAssemblyHelper() { 133 delete CodeGenPasses; 134 delete PerModulePasses; 135 delete PerFunctionPasses; 136 if (CodeGenOpts.DisableFree) 137 BuryPointer(std::move(TM)); 138 } 139 140 std::unique_ptr<TargetMachine> TM; 141 142 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 143 }; 144 145 // We need this wrapper to access LangOpts and CGOpts from extension functions 146 // that we add to the PassManagerBuilder. 147 class PassManagerBuilderWrapper : public PassManagerBuilder { 148 public: 149 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 150 const LangOptions &LangOpts) 151 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 152 const CodeGenOptions &getCGOpts() const { return CGOpts; } 153 const LangOptions &getLangOpts() const { return LangOpts; } 154 private: 155 const CodeGenOptions &CGOpts; 156 const LangOptions &LangOpts; 157 }; 158 159 } 160 161 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCAPElimPass()); 164 } 165 166 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 167 if (Builder.OptLevel > 0) 168 PM.add(createObjCARCExpandPass()); 169 } 170 171 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 172 if (Builder.OptLevel > 0) 173 PM.add(createObjCARCOptPass()); 174 } 175 176 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 PM.add(createAddDiscriminatorsPass()); 179 } 180 181 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 182 legacy::PassManagerBase &PM) { 183 PM.add(createBoundsCheckingPass()); 184 } 185 186 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 187 legacy::PassManagerBase &PM) { 188 const PassManagerBuilderWrapper &BuilderWrapper = 189 static_cast<const PassManagerBuilderWrapper&>(Builder); 190 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 191 SanitizerCoverageOptions Opts; 192 Opts.CoverageType = 193 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 194 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 195 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 196 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 197 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 198 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 199 PM.add(createSanitizerCoverageModulePass(Opts)); 200 } 201 202 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 203 legacy::PassManagerBase &PM) { 204 const PassManagerBuilderWrapper &BuilderWrapper = 205 static_cast<const PassManagerBuilderWrapper&>(Builder); 206 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 207 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 208 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/false, Recover)); 209 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 210 } 211 212 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 213 legacy::PassManagerBase &PM) { 214 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/true, 215 /*Recover*/true)); 216 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 217 /*Recover*/true)); 218 } 219 220 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 221 legacy::PassManagerBase &PM) { 222 const PassManagerBuilderWrapper &BuilderWrapper = 223 static_cast<const PassManagerBuilderWrapper&>(Builder); 224 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 225 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 226 227 // MemorySanitizer inserts complex instrumentation that mostly follows 228 // the logic of the original code, but operates on "shadow" values. 229 // It can benefit from re-running some general purpose optimization passes. 230 if (Builder.OptLevel > 0) { 231 PM.add(createEarlyCSEPass()); 232 PM.add(createReassociatePass()); 233 PM.add(createLICMPass()); 234 PM.add(createGVNPass()); 235 PM.add(createInstructionCombiningPass()); 236 PM.add(createDeadStoreEliminationPass()); 237 } 238 } 239 240 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 PM.add(createThreadSanitizerPass()); 243 } 244 245 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 246 legacy::PassManagerBase &PM) { 247 const PassManagerBuilderWrapper &BuilderWrapper = 248 static_cast<const PassManagerBuilderWrapper&>(Builder); 249 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 250 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 251 } 252 253 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 254 legacy::PassManagerBase &PM) { 255 const PassManagerBuilderWrapper &BuilderWrapper = 256 static_cast<const PassManagerBuilderWrapper&>(Builder); 257 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 258 EfficiencySanitizerOptions Opts; 259 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 260 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 261 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 262 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 263 PM.add(createEfficiencySanitizerPass(Opts)); 264 } 265 266 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 267 const CodeGenOptions &CodeGenOpts) { 268 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 269 if (!CodeGenOpts.SimplifyLibCalls) 270 TLII->disableAllFunctions(); 271 else { 272 // Disable individual libc/libm calls in TargetLibraryInfo. 273 LibFunc::Func F; 274 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 275 if (TLII->getLibFunc(FuncName, F)) 276 TLII->setUnavailable(F); 277 } 278 279 switch (CodeGenOpts.getVecLib()) { 280 case CodeGenOptions::Accelerate: 281 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 282 break; 283 default: 284 break; 285 } 286 return TLII; 287 } 288 289 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 290 legacy::PassManager *MPM) { 291 llvm::SymbolRewriter::RewriteDescriptorList DL; 292 293 llvm::SymbolRewriter::RewriteMapParser MapParser; 294 for (const auto &MapFile : Opts.RewriteMapFiles) 295 MapParser.parse(MapFile, &DL); 296 297 MPM->add(createRewriteSymbolsPass(DL)); 298 } 299 300 void EmitAssemblyHelper::CreatePasses(ModuleSummaryIndex *ModuleSummary) { 301 if (CodeGenOpts.DisableLLVMPasses) 302 return; 303 304 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 305 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 306 307 // Handle disabling of LLVM optimization, where we want to preserve the 308 // internal module before any optimization. 309 if (CodeGenOpts.DisableLLVMOpts) { 310 OptLevel = 0; 311 Inlining = CodeGenOpts.NoInlining; 312 } 313 314 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 315 316 // Figure out TargetLibraryInfo. 317 Triple TargetTriple(TheModule->getTargetTriple()); 318 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 319 320 switch (Inlining) { 321 case CodeGenOptions::NoInlining: 322 break; 323 case CodeGenOptions::NormalInlining: { 324 PMBuilder.Inliner = 325 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 326 break; 327 } 328 case CodeGenOptions::OnlyAlwaysInlining: 329 // Respect always_inline. 330 if (OptLevel == 0) 331 // Do not insert lifetime intrinsics at -O0. 332 PMBuilder.Inliner = createAlwaysInlinerPass(false); 333 else 334 PMBuilder.Inliner = createAlwaysInlinerPass(); 335 break; 336 } 337 338 PMBuilder.OptLevel = OptLevel; 339 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 340 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 341 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 342 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 343 344 PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; 345 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 346 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 347 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 348 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 349 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 350 351 legacy::PassManager *MPM = getPerModulePasses(); 352 353 // If we are performing a ThinLTO importing compile, invoke the LTO 354 // pipeline and pass down the in-memory module summary index. 355 if (ModuleSummary) { 356 PMBuilder.ModuleSummary = ModuleSummary; 357 PMBuilder.populateThinLTOPassManager(*MPM); 358 return; 359 } 360 361 // Add target-specific passes that need to run as early as possible. 362 if (TM) 363 PMBuilder.addExtension( 364 PassManagerBuilder::EP_EarlyAsPossible, 365 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 366 TM->addEarlyAsPossiblePasses(PM); 367 }); 368 369 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 370 addAddDiscriminatorsPass); 371 372 // In ObjC ARC mode, add the main ARC optimization passes. 373 if (LangOpts.ObjCAutoRefCount) { 374 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 375 addObjCARCExpandPass); 376 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 377 addObjCARCAPElimPass); 378 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 379 addObjCARCOptPass); 380 } 381 382 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 383 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 384 addBoundsCheckingPass); 385 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 386 addBoundsCheckingPass); 387 } 388 389 if (CodeGenOpts.SanitizeCoverageType || 390 CodeGenOpts.SanitizeCoverageIndirectCalls || 391 CodeGenOpts.SanitizeCoverageTraceCmp) { 392 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 393 addSanitizerCoveragePass); 394 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 395 addSanitizerCoveragePass); 396 } 397 398 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 399 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 400 addAddressSanitizerPasses); 401 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 402 addAddressSanitizerPasses); 403 } 404 405 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 406 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 407 addKernelAddressSanitizerPasses); 408 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 409 addKernelAddressSanitizerPasses); 410 } 411 412 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 413 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 414 addMemorySanitizerPass); 415 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 416 addMemorySanitizerPass); 417 } 418 419 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 420 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 421 addThreadSanitizerPass); 422 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 423 addThreadSanitizerPass); 424 } 425 426 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 427 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 428 addDataFlowSanitizerPass); 429 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 430 addDataFlowSanitizerPass); 431 } 432 433 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 434 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 435 addEfficiencySanitizerPass); 436 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 437 addEfficiencySanitizerPass); 438 } 439 440 // Set up the per-function pass manager. 441 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 442 if (CodeGenOpts.VerifyModule) 443 FPM->add(createVerifierPass()); 444 PMBuilder.populateFunctionPassManager(*FPM); 445 446 // Set up the per-module pass manager. 447 if (!CodeGenOpts.RewriteMapFiles.empty()) 448 addSymbolRewriterPass(CodeGenOpts, MPM); 449 450 if (!CodeGenOpts.DisableGCov && 451 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 452 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 453 // LLVM's -default-gcov-version flag is set to something invalid. 454 GCOVOptions Options; 455 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 456 Options.EmitData = CodeGenOpts.EmitGcovArcs; 457 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 458 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 459 Options.NoRedZone = CodeGenOpts.DisableRedZone; 460 Options.FunctionNamesInData = 461 !CodeGenOpts.CoverageNoFunctionNamesInData; 462 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 463 MPM->add(createGCOVProfilerPass(Options)); 464 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 465 MPM->add(createStripSymbolsPass(true)); 466 } 467 468 if (CodeGenOpts.hasProfileClangInstr()) { 469 InstrProfOptions Options; 470 Options.NoRedZone = CodeGenOpts.DisableRedZone; 471 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 472 MPM->add(createInstrProfilingLegacyPass(Options)); 473 } 474 if (CodeGenOpts.hasProfileIRInstr()) { 475 if (!CodeGenOpts.InstrProfileOutput.empty()) 476 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 477 else 478 PMBuilder.PGOInstrGen = "default.profraw"; 479 } 480 if (CodeGenOpts.hasProfileIRUse()) 481 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 482 483 if (!CodeGenOpts.SampleProfileFile.empty()) 484 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 485 486 PMBuilder.populateModulePassManager(*MPM); 487 } 488 489 void EmitAssemblyHelper::setCommandLineOpts() { 490 SmallVector<const char *, 16> BackendArgs; 491 BackendArgs.push_back("clang"); // Fake program name. 492 if (!CodeGenOpts.DebugPass.empty()) { 493 BackendArgs.push_back("-debug-pass"); 494 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 495 } 496 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 497 BackendArgs.push_back("-limit-float-precision"); 498 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 499 } 500 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 501 BackendArgs.push_back(BackendOption.c_str()); 502 BackendArgs.push_back(nullptr); 503 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 504 BackendArgs.data()); 505 } 506 507 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 508 // Create the TargetMachine for generating code. 509 std::string Error; 510 std::string Triple = TheModule->getTargetTriple(); 511 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 512 if (!TheTarget) { 513 if (MustCreateTM) 514 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 515 return nullptr; 516 } 517 518 unsigned CodeModel = 519 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 520 .Case("small", llvm::CodeModel::Small) 521 .Case("kernel", llvm::CodeModel::Kernel) 522 .Case("medium", llvm::CodeModel::Medium) 523 .Case("large", llvm::CodeModel::Large) 524 .Case("default", llvm::CodeModel::Default) 525 .Default(~0u); 526 assert(CodeModel != ~0u && "invalid code model!"); 527 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 528 529 std::string FeaturesStr = 530 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 531 532 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 533 llvm::Optional<llvm::Reloc::Model> RM; 534 if (CodeGenOpts.RelocationModel == "static") { 535 RM = llvm::Reloc::Static; 536 } else if (CodeGenOpts.RelocationModel == "pic") { 537 RM = llvm::Reloc::PIC_; 538 } else { 539 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 540 "Invalid PIC model!"); 541 RM = llvm::Reloc::DynamicNoPIC; 542 } 543 544 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 545 switch (CodeGenOpts.OptimizationLevel) { 546 default: break; 547 case 0: OptLevel = CodeGenOpt::None; break; 548 case 3: OptLevel = CodeGenOpt::Aggressive; break; 549 } 550 551 llvm::TargetOptions Options; 552 553 if (!TargetOpts.Reciprocals.empty()) 554 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 555 556 Options.ThreadModel = 557 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 558 .Case("posix", llvm::ThreadModel::POSIX) 559 .Case("single", llvm::ThreadModel::Single); 560 561 // Set float ABI type. 562 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 563 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 564 "Invalid Floating Point ABI!"); 565 Options.FloatABIType = 566 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 567 .Case("soft", llvm::FloatABI::Soft) 568 .Case("softfp", llvm::FloatABI::Soft) 569 .Case("hard", llvm::FloatABI::Hard) 570 .Default(llvm::FloatABI::Default); 571 572 // Set FP fusion mode. 573 switch (CodeGenOpts.getFPContractMode()) { 574 case CodeGenOptions::FPC_Off: 575 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 576 break; 577 case CodeGenOptions::FPC_On: 578 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 579 break; 580 case CodeGenOptions::FPC_Fast: 581 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 582 break; 583 } 584 585 Options.UseInitArray = CodeGenOpts.UseInitArray; 586 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 587 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 588 589 // Set EABI version. 590 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion) 591 .Case("4", llvm::EABI::EABI4) 592 .Case("5", llvm::EABI::EABI5) 593 .Case("gnu", llvm::EABI::GNU) 594 .Default(llvm::EABI::Default); 595 596 if (LangOpts.SjLjExceptions) 597 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 598 599 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 600 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 601 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 602 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 603 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 604 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 605 Options.FunctionSections = CodeGenOpts.FunctionSections; 606 Options.DataSections = CodeGenOpts.DataSections; 607 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 608 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 609 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 610 611 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 612 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 613 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 614 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 615 Options.MCOptions.MCIncrementalLinkerCompatible = 616 CodeGenOpts.IncrementalLinkerCompatible; 617 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 618 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 619 Options.MCOptions.ABIName = TargetOpts.ABI; 620 621 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 622 FeaturesStr, Options, 623 RM, CM, OptLevel); 624 625 return TM; 626 } 627 628 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 629 raw_pwrite_stream &OS) { 630 631 // Create the code generator passes. 632 legacy::PassManager *PM = getCodeGenPasses(); 633 634 // Add LibraryInfo. 635 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 636 std::unique_ptr<TargetLibraryInfoImpl> TLII( 637 createTLII(TargetTriple, CodeGenOpts)); 638 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 639 640 // Normal mode, emit a .s or .o file by running the code generator. Note, 641 // this also adds codegenerator level optimization passes. 642 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 643 if (Action == Backend_EmitObj) 644 CGFT = TargetMachine::CGFT_ObjectFile; 645 else if (Action == Backend_EmitMCNull) 646 CGFT = TargetMachine::CGFT_Null; 647 else 648 assert(Action == Backend_EmitAssembly && "Invalid action!"); 649 650 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 651 // "codegen" passes so that it isn't run multiple times when there is 652 // inlining happening. 653 if (CodeGenOpts.OptimizationLevel > 0) 654 PM->add(createObjCARCContractPass()); 655 656 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 657 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 658 Diags.Report(diag::err_fe_unable_to_interface_with_target); 659 return false; 660 } 661 662 return true; 663 } 664 665 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 666 raw_pwrite_stream *OS) { 667 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 668 669 setCommandLineOpts(); 670 671 bool UsesCodeGen = (Action != Backend_EmitNothing && 672 Action != Backend_EmitBC && 673 Action != Backend_EmitLL); 674 if (!TM) 675 TM.reset(CreateTargetMachine(UsesCodeGen)); 676 677 if (UsesCodeGen && !TM) 678 return; 679 if (TM) 680 TheModule->setDataLayout(TM->createDataLayout()); 681 682 // If we are performing a ThinLTO importing compile, load the function 683 // index into memory and pass it into CreatePasses, which will add it 684 // to the PassManagerBuilder and invoke LTO passes. 685 std::unique_ptr<ModuleSummaryIndex> ModuleSummary; 686 if (!CodeGenOpts.ThinLTOIndexFile.empty()) { 687 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 688 llvm::getModuleSummaryIndexForFile( 689 CodeGenOpts.ThinLTOIndexFile, [&](const DiagnosticInfo &DI) { 690 TheModule->getContext().diagnose(DI); 691 }); 692 if (std::error_code EC = IndexOrErr.getError()) { 693 std::string Error = EC.message(); 694 errs() << "Error loading index file '" << CodeGenOpts.ThinLTOIndexFile 695 << "': " << Error << "\n"; 696 return; 697 } 698 ModuleSummary = std::move(IndexOrErr.get()); 699 assert(ModuleSummary && "Expected non-empty module summary index"); 700 } 701 702 CreatePasses(ModuleSummary.get()); 703 704 switch (Action) { 705 case Backend_EmitNothing: 706 break; 707 708 case Backend_EmitBC: 709 getPerModulePasses()->add(createBitcodeWriterPass( 710 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, 711 CodeGenOpts.EmitSummaryIndex)); 712 break; 713 714 case Backend_EmitLL: 715 getPerModulePasses()->add( 716 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 717 break; 718 719 default: 720 if (!AddEmitPasses(Action, *OS)) 721 return; 722 } 723 724 // Before executing passes, print the final values of the LLVM options. 725 cl::PrintOptionValues(); 726 727 // Run passes. For now we do all passes at once, but eventually we 728 // would like to have the option of streaming code generation. 729 730 if (PerFunctionPasses) { 731 PrettyStackTraceString CrashInfo("Per-function optimization"); 732 733 PerFunctionPasses->doInitialization(); 734 for (Function &F : *TheModule) 735 if (!F.isDeclaration()) 736 PerFunctionPasses->run(F); 737 PerFunctionPasses->doFinalization(); 738 } 739 740 if (PerModulePasses) { 741 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 742 PerModulePasses->run(*TheModule); 743 } 744 745 if (CodeGenPasses) { 746 PrettyStackTraceString CrashInfo("Code generation"); 747 CodeGenPasses->run(*TheModule); 748 } 749 } 750 751 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 752 const CodeGenOptions &CGOpts, 753 const clang::TargetOptions &TOpts, 754 const LangOptions &LOpts, const llvm::DataLayout &TDesc, 755 Module *M, BackendAction Action, 756 raw_pwrite_stream *OS) { 757 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); 758 759 AsmHelper.EmitAssembly(Action, OS); 760 761 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 762 // DataLayout. 763 if (AsmHelper.TM) { 764 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 765 if (DLDesc != TDesc.getStringRepresentation()) { 766 unsigned DiagID = Diags.getCustomDiagID( 767 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 768 "expected target description '%1'"); 769 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 770 } 771 } 772 } 773 774 static const char* getSectionNameForBitcode(const Triple &T) { 775 switch (T.getObjectFormat()) { 776 case Triple::MachO: 777 return "__LLVM,__bitcode"; 778 case Triple::COFF: 779 case Triple::ELF: 780 case Triple::UnknownObjectFormat: 781 return ".llvmbc"; 782 } 783 llvm_unreachable("Unimplemented ObjectFormatType"); 784 } 785 786 static const char* getSectionNameForCommandline(const Triple &T) { 787 switch (T.getObjectFormat()) { 788 case Triple::MachO: 789 return "__LLVM,__cmdline"; 790 case Triple::COFF: 791 case Triple::ELF: 792 case Triple::UnknownObjectFormat: 793 return ".llvmcmd"; 794 } 795 llvm_unreachable("Unimplemented ObjectFormatType"); 796 } 797 798 // With -fembed-bitcode, save a copy of the llvm IR as data in the 799 // __LLVM,__bitcode section. 800 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 801 llvm::MemoryBufferRef Buf) { 802 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 803 return; 804 805 // Save llvm.compiler.used and remote it. 806 SmallVector<Constant*, 2> UsedArray; 807 SmallSet<GlobalValue*, 4> UsedGlobals; 808 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 809 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 810 for (auto *GV : UsedGlobals) { 811 if (GV->getName() != "llvm.embedded.module" && 812 GV->getName() != "llvm.cmdline") 813 UsedArray.push_back( 814 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 815 } 816 if (Used) 817 Used->eraseFromParent(); 818 819 // Embed the bitcode for the llvm module. 820 std::string Data; 821 ArrayRef<uint8_t> ModuleData; 822 Triple T(M->getTargetTriple()); 823 // Create a constant that contains the bitcode. 824 // In case of embedding a marker, ignore the input Buf and use the empty 825 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 826 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 827 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 828 (const unsigned char *)Buf.getBufferEnd())) { 829 // If the input is LLVM Assembly, bitcode is produced by serializing 830 // the module. Use-lists order need to be perserved in this case. 831 llvm::raw_string_ostream OS(Data); 832 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 833 ModuleData = 834 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 835 } else 836 // If the input is LLVM bitcode, write the input byte stream directly. 837 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 838 Buf.getBufferSize()); 839 } 840 llvm::Constant *ModuleConstant = 841 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 842 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 843 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 844 ModuleConstant); 845 GV->setSection(getSectionNameForBitcode(T)); 846 UsedArray.push_back( 847 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 848 if (llvm::GlobalVariable *Old = 849 M->getGlobalVariable("llvm.embedded.module", true)) { 850 assert(Old->hasOneUse() && 851 "llvm.embedded.module can only be used once in llvm.compiler.used"); 852 GV->takeName(Old); 853 Old->eraseFromParent(); 854 } else { 855 GV->setName("llvm.embedded.module"); 856 } 857 858 // Skip if only bitcode needs to be embedded. 859 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 860 // Embed command-line options. 861 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 862 CGOpts.CmdArgs.size()); 863 llvm::Constant *CmdConstant = 864 llvm::ConstantDataArray::get(M->getContext(), CmdData); 865 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 866 llvm::GlobalValue::PrivateLinkage, 867 CmdConstant); 868 GV->setSection(getSectionNameForCommandline(T)); 869 UsedArray.push_back( 870 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 871 if (llvm::GlobalVariable *Old = 872 M->getGlobalVariable("llvm.cmdline", true)) { 873 assert(Old->hasOneUse() && 874 "llvm.cmdline can only be used once in llvm.compiler.used"); 875 GV->takeName(Old); 876 Old->eraseFromParent(); 877 } else { 878 GV->setName("llvm.cmdline"); 879 } 880 } 881 882 if (UsedArray.empty()) 883 return; 884 885 // Recreate llvm.compiler.used. 886 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 887 auto *NewUsed = new GlobalVariable( 888 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 889 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 890 NewUsed->setSection("llvm.metadata"); 891 } 892