1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 78 #include "llvm/Transforms/Utils.h" 79 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 80 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 81 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 82 #include "llvm/Transforms/Utils/SymbolRewriter.h" 83 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 84 #include <memory> 85 using namespace clang; 86 using namespace llvm; 87 88 #define HANDLE_EXTENSION(Ext) \ 89 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 90 #include "llvm/Support/Extension.def" 91 92 namespace { 93 94 // Default filename used for profile generation. 95 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 96 97 class EmitAssemblyHelper { 98 DiagnosticsEngine &Diags; 99 const HeaderSearchOptions &HSOpts; 100 const CodeGenOptions &CodeGenOpts; 101 const clang::TargetOptions &TargetOpts; 102 const LangOptions &LangOpts; 103 Module *TheModule; 104 105 Timer CodeGenerationTime; 106 107 std::unique_ptr<raw_pwrite_stream> OS; 108 109 TargetIRAnalysis getTargetIRAnalysis() const { 110 if (TM) 111 return TM->getTargetIRAnalysis(); 112 113 return TargetIRAnalysis(); 114 } 115 116 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 117 118 /// Generates the TargetMachine. 119 /// Leaves TM unchanged if it is unable to create the target machine. 120 /// Some of our clang tests specify triples which are not built 121 /// into clang. This is okay because these tests check the generated 122 /// IR, and they require DataLayout which depends on the triple. 123 /// In this case, we allow this method to fail and not report an error. 124 /// When MustCreateTM is used, we print an error if we are unable to load 125 /// the requested target. 126 void CreateTargetMachine(bool MustCreateTM); 127 128 /// Add passes necessary to emit assembly or LLVM IR. 129 /// 130 /// \return True on success. 131 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 132 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 133 134 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 135 std::error_code EC; 136 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 137 llvm::sys::fs::OF_None); 138 if (EC) { 139 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 140 F.reset(); 141 } 142 return F; 143 } 144 145 public: 146 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 147 const HeaderSearchOptions &HeaderSearchOpts, 148 const CodeGenOptions &CGOpts, 149 const clang::TargetOptions &TOpts, 150 const LangOptions &LOpts, Module *M) 151 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 152 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 153 CodeGenerationTime("codegen", "Code Generation Time") {} 154 155 ~EmitAssemblyHelper() { 156 if (CodeGenOpts.DisableFree) 157 BuryPointer(std::move(TM)); 158 } 159 160 std::unique_ptr<TargetMachine> TM; 161 162 void EmitAssembly(BackendAction Action, 163 std::unique_ptr<raw_pwrite_stream> OS); 164 165 void EmitAssemblyWithNewPassManager(BackendAction Action, 166 std::unique_ptr<raw_pwrite_stream> OS); 167 }; 168 169 // We need this wrapper to access LangOpts and CGOpts from extension functions 170 // that we add to the PassManagerBuilder. 171 class PassManagerBuilderWrapper : public PassManagerBuilder { 172 public: 173 PassManagerBuilderWrapper(const Triple &TargetTriple, 174 const CodeGenOptions &CGOpts, 175 const LangOptions &LangOpts) 176 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 177 LangOpts(LangOpts) {} 178 const Triple &getTargetTriple() const { return TargetTriple; } 179 const CodeGenOptions &getCGOpts() const { return CGOpts; } 180 const LangOptions &getLangOpts() const { return LangOpts; } 181 182 private: 183 const Triple &TargetTriple; 184 const CodeGenOptions &CGOpts; 185 const LangOptions &LangOpts; 186 }; 187 } 188 189 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 190 if (Builder.OptLevel > 0) 191 PM.add(createObjCARCAPElimPass()); 192 } 193 194 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCExpandPass()); 197 } 198 199 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCOptPass()); 202 } 203 204 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 205 legacy::PassManagerBase &PM) { 206 PM.add(createAddDiscriminatorsPass()); 207 } 208 209 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createBoundsCheckingLegacyPass()); 212 } 213 214 static SanitizerCoverageOptions 215 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 216 SanitizerCoverageOptions Opts; 217 Opts.CoverageType = 218 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 219 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 220 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 221 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 222 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 223 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 224 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 225 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 226 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 227 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 228 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 229 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 230 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 231 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 232 return Opts; 233 } 234 235 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 236 legacy::PassManagerBase &PM) { 237 const PassManagerBuilderWrapper &BuilderWrapper = 238 static_cast<const PassManagerBuilderWrapper &>(Builder); 239 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 240 auto Opts = getSancovOptsFromCGOpts(CGOpts); 241 PM.add(createModuleSanitizerCoverageLegacyPassPass( 242 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 243 CGOpts.SanitizeCoverageBlocklistFiles)); 244 } 245 246 // Check if ASan should use GC-friendly instrumentation for globals. 247 // First of all, there is no point if -fdata-sections is off (expect for MachO, 248 // where this is not a factor). Also, on ELF this feature requires an assembler 249 // extension that only works with -integrated-as at the moment. 250 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 251 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 252 return false; 253 switch (T.getObjectFormat()) { 254 case Triple::MachO: 255 case Triple::COFF: 256 return true; 257 case Triple::ELF: 258 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 259 case Triple::GOFF: 260 llvm::report_fatal_error("ASan not implemented for GOFF"); 261 case Triple::XCOFF: 262 llvm::report_fatal_error("ASan not implemented for XCOFF."); 263 case Triple::Wasm: 264 case Triple::UnknownObjectFormat: 265 break; 266 } 267 return false; 268 } 269 270 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 271 legacy::PassManagerBase &PM) { 272 const PassManagerBuilderWrapper &BuilderWrapper = 273 static_cast<const PassManagerBuilderWrapper&>(Builder); 274 const Triple &T = BuilderWrapper.getTargetTriple(); 275 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 276 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 277 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 278 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 279 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 280 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 281 UseAfterScope)); 282 PM.add(createModuleAddressSanitizerLegacyPassPass( 283 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 284 } 285 286 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createAddressSanitizerFunctionPass( 289 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 290 PM.add(createModuleAddressSanitizerLegacyPassPass( 291 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 292 /*UseOdrIndicator*/ false)); 293 } 294 295 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 296 legacy::PassManagerBase &PM) { 297 const PassManagerBuilderWrapper &BuilderWrapper = 298 static_cast<const PassManagerBuilderWrapper &>(Builder); 299 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 300 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 301 PM.add( 302 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 303 } 304 305 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 306 legacy::PassManagerBase &PM) { 307 PM.add(createHWAddressSanitizerLegacyPassPass( 308 /*CompileKernel*/ true, /*Recover*/ true)); 309 } 310 311 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 312 legacy::PassManagerBase &PM, 313 bool CompileKernel) { 314 const PassManagerBuilderWrapper &BuilderWrapper = 315 static_cast<const PassManagerBuilderWrapper&>(Builder); 316 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 317 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 318 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 319 PM.add(createMemorySanitizerLegacyPassPass( 320 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 321 322 // MemorySanitizer inserts complex instrumentation that mostly follows 323 // the logic of the original code, but operates on "shadow" values. 324 // It can benefit from re-running some general purpose optimization passes. 325 if (Builder.OptLevel > 0) { 326 PM.add(createEarlyCSEPass()); 327 PM.add(createReassociatePass()); 328 PM.add(createLICMPass()); 329 PM.add(createGVNPass()); 330 PM.add(createInstructionCombiningPass()); 331 PM.add(createDeadStoreEliminationPass()); 332 } 333 } 334 335 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 336 legacy::PassManagerBase &PM) { 337 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 338 } 339 340 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 341 legacy::PassManagerBase &PM) { 342 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 343 } 344 345 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 346 legacy::PassManagerBase &PM) { 347 PM.add(createThreadSanitizerLegacyPassPass()); 348 } 349 350 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 351 legacy::PassManagerBase &PM) { 352 const PassManagerBuilderWrapper &BuilderWrapper = 353 static_cast<const PassManagerBuilderWrapper&>(Builder); 354 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 355 PM.add( 356 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 357 } 358 359 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 360 const CodeGenOptions &CodeGenOpts) { 361 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 362 363 switch (CodeGenOpts.getVecLib()) { 364 case CodeGenOptions::Accelerate: 365 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 366 break; 367 case CodeGenOptions::MASSV: 368 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 369 break; 370 case CodeGenOptions::SVML: 371 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 372 break; 373 default: 374 break; 375 } 376 return TLII; 377 } 378 379 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 380 legacy::PassManager *MPM) { 381 llvm::SymbolRewriter::RewriteDescriptorList DL; 382 383 llvm::SymbolRewriter::RewriteMapParser MapParser; 384 for (const auto &MapFile : Opts.RewriteMapFiles) 385 MapParser.parse(MapFile, &DL); 386 387 MPM->add(createRewriteSymbolsPass(DL)); 388 } 389 390 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 391 switch (CodeGenOpts.OptimizationLevel) { 392 default: 393 llvm_unreachable("Invalid optimization level!"); 394 case 0: 395 return CodeGenOpt::None; 396 case 1: 397 return CodeGenOpt::Less; 398 case 2: 399 return CodeGenOpt::Default; // O2/Os/Oz 400 case 3: 401 return CodeGenOpt::Aggressive; 402 } 403 } 404 405 static Optional<llvm::CodeModel::Model> 406 getCodeModel(const CodeGenOptions &CodeGenOpts) { 407 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 408 .Case("tiny", llvm::CodeModel::Tiny) 409 .Case("small", llvm::CodeModel::Small) 410 .Case("kernel", llvm::CodeModel::Kernel) 411 .Case("medium", llvm::CodeModel::Medium) 412 .Case("large", llvm::CodeModel::Large) 413 .Case("default", ~1u) 414 .Default(~0u); 415 assert(CodeModel != ~0u && "invalid code model!"); 416 if (CodeModel == ~1u) 417 return None; 418 return static_cast<llvm::CodeModel::Model>(CodeModel); 419 } 420 421 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 422 if (Action == Backend_EmitObj) 423 return CGFT_ObjectFile; 424 else if (Action == Backend_EmitMCNull) 425 return CGFT_Null; 426 else { 427 assert(Action == Backend_EmitAssembly && "Invalid action!"); 428 return CGFT_AssemblyFile; 429 } 430 } 431 432 static void initTargetOptions(DiagnosticsEngine &Diags, 433 llvm::TargetOptions &Options, 434 const CodeGenOptions &CodeGenOpts, 435 const clang::TargetOptions &TargetOpts, 436 const LangOptions &LangOpts, 437 const HeaderSearchOptions &HSOpts) { 438 Options.ThreadModel = 439 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 440 .Case("posix", llvm::ThreadModel::POSIX) 441 .Case("single", llvm::ThreadModel::Single); 442 443 // Set float ABI type. 444 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 445 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 446 "Invalid Floating Point ABI!"); 447 Options.FloatABIType = 448 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 449 .Case("soft", llvm::FloatABI::Soft) 450 .Case("softfp", llvm::FloatABI::Soft) 451 .Case("hard", llvm::FloatABI::Hard) 452 .Default(llvm::FloatABI::Default); 453 454 // Set FP fusion mode. 455 switch (LangOpts.getDefaultFPContractMode()) { 456 case LangOptions::FPM_Off: 457 // Preserve any contraction performed by the front-end. (Strict performs 458 // splitting of the muladd intrinsic in the backend.) 459 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 460 break; 461 case LangOptions::FPM_On: 462 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 463 break; 464 case LangOptions::FPM_Fast: 465 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 466 break; 467 } 468 469 Options.UseInitArray = CodeGenOpts.UseInitArray; 470 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 471 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 472 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 473 474 // Set EABI version. 475 Options.EABIVersion = TargetOpts.EABIVersion; 476 477 if (LangOpts.SjLjExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 479 if (LangOpts.SEHExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 481 if (LangOpts.DWARFExceptions) 482 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 483 if (LangOpts.WasmExceptions) 484 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 485 486 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 487 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 488 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 489 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 490 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 491 492 Options.BBSections = 493 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 494 .Case("all", llvm::BasicBlockSection::All) 495 .Case("labels", llvm::BasicBlockSection::Labels) 496 .StartsWith("list=", llvm::BasicBlockSection::List) 497 .Case("none", llvm::BasicBlockSection::None) 498 .Default(llvm::BasicBlockSection::None); 499 500 if (Options.BBSections == llvm::BasicBlockSection::List) { 501 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 502 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 503 if (!MBOrErr) 504 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 505 << MBOrErr.getError().message(); 506 else 507 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 508 } 509 510 Options.FunctionSections = CodeGenOpts.FunctionSections; 511 Options.DataSections = CodeGenOpts.DataSections; 512 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 513 Options.UniqueBasicBlockSectionNames = 514 CodeGenOpts.UniqueBasicBlockSectionNames; 515 Options.TLSSize = CodeGenOpts.TLSSize; 516 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 517 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 518 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 519 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 520 Options.EmitAddrsig = CodeGenOpts.Addrsig; 521 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 522 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 523 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 524 525 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 526 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 527 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 528 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 529 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 530 Options.MCOptions.MCIncrementalLinkerCompatible = 531 CodeGenOpts.IncrementalLinkerCompatible; 532 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 533 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 534 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 535 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 536 Options.MCOptions.ABIName = TargetOpts.ABI; 537 for (const auto &Entry : HSOpts.UserEntries) 538 if (!Entry.IsFramework && 539 (Entry.Group == frontend::IncludeDirGroup::Quoted || 540 Entry.Group == frontend::IncludeDirGroup::Angled || 541 Entry.Group == frontend::IncludeDirGroup::System)) 542 Options.MCOptions.IASSearchPaths.push_back( 543 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 544 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 545 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 546 } 547 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 548 if (CodeGenOpts.DisableGCov) 549 return None; 550 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 551 return None; 552 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 553 // LLVM's -default-gcov-version flag is set to something invalid. 554 GCOVOptions Options; 555 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 556 Options.EmitData = CodeGenOpts.EmitGcovArcs; 557 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 558 Options.NoRedZone = CodeGenOpts.DisableRedZone; 559 Options.Filter = CodeGenOpts.ProfileFilterFiles; 560 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 561 return Options; 562 } 563 564 static Optional<InstrProfOptions> 565 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 566 const LangOptions &LangOpts) { 567 if (!CodeGenOpts.hasProfileClangInstr()) 568 return None; 569 InstrProfOptions Options; 570 Options.NoRedZone = CodeGenOpts.DisableRedZone; 571 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 572 573 // TODO: Surface the option to emit atomic profile counter increments at 574 // the driver level. 575 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 576 return Options; 577 } 578 579 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 580 legacy::FunctionPassManager &FPM) { 581 // Handle disabling of all LLVM passes, where we want to preserve the 582 // internal module before any optimization. 583 if (CodeGenOpts.DisableLLVMPasses) 584 return; 585 586 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 587 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 588 // are inserted before PMBuilder ones - they'd get the default-constructed 589 // TLI with an unknown target otherwise. 590 Triple TargetTriple(TheModule->getTargetTriple()); 591 std::unique_ptr<TargetLibraryInfoImpl> TLII( 592 createTLII(TargetTriple, CodeGenOpts)); 593 594 // If we reached here with a non-empty index file name, then the index file 595 // was empty and we are not performing ThinLTO backend compilation (used in 596 // testing in a distributed build environment). Drop any the type test 597 // assume sequences inserted for whole program vtables so that codegen doesn't 598 // complain. 599 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 600 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 601 /*ImportSummary=*/nullptr, 602 /*DropTypeTests=*/true)); 603 604 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 605 606 // At O0 and O1 we only run the always inliner which is more efficient. At 607 // higher optimization levels we run the normal inliner. 608 if (CodeGenOpts.OptimizationLevel <= 1) { 609 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 610 !CodeGenOpts.DisableLifetimeMarkers) || 611 LangOpts.Coroutines); 612 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 613 } else { 614 // We do not want to inline hot callsites for SamplePGO module-summary build 615 // because profile annotation will happen again in ThinLTO backend, and we 616 // want the IR of the hot path to match the profile. 617 PMBuilder.Inliner = createFunctionInliningPass( 618 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 619 (!CodeGenOpts.SampleProfileFile.empty() && 620 CodeGenOpts.PrepareForThinLTO)); 621 } 622 623 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 624 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 625 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 626 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 627 // Only enable CGProfilePass when using integrated assembler, since 628 // non-integrated assemblers don't recognize .cgprofile section. 629 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 630 631 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 632 // Loop interleaving in the loop vectorizer has historically been set to be 633 // enabled when loop unrolling is enabled. 634 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 635 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 636 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 637 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 638 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 639 640 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 641 642 if (TM) 643 TM->adjustPassManager(PMBuilder); 644 645 if (CodeGenOpts.DebugInfoForProfiling || 646 !CodeGenOpts.SampleProfileFile.empty()) 647 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 648 addAddDiscriminatorsPass); 649 650 // In ObjC ARC mode, add the main ARC optimization passes. 651 if (LangOpts.ObjCAutoRefCount) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 653 addObjCARCExpandPass); 654 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 655 addObjCARCAPElimPass); 656 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 657 addObjCARCOptPass); 658 } 659 660 if (LangOpts.Coroutines) 661 addCoroutinePassesToExtensionPoints(PMBuilder); 662 663 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 664 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 665 addBoundsCheckingPass); 666 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 667 addBoundsCheckingPass); 668 } 669 670 if (CodeGenOpts.SanitizeCoverageType || 671 CodeGenOpts.SanitizeCoverageIndirectCalls || 672 CodeGenOpts.SanitizeCoverageTraceCmp) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addSanitizerCoveragePass); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addSanitizerCoveragePass); 677 } 678 679 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 680 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 681 addAddressSanitizerPasses); 682 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 683 addAddressSanitizerPasses); 684 } 685 686 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 687 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 688 addKernelAddressSanitizerPasses); 689 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 690 addKernelAddressSanitizerPasses); 691 } 692 693 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 694 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 695 addHWAddressSanitizerPasses); 696 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 697 addHWAddressSanitizerPasses); 698 } 699 700 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 701 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 702 addKernelHWAddressSanitizerPasses); 703 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 704 addKernelHWAddressSanitizerPasses); 705 } 706 707 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 708 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 709 addMemorySanitizerPass); 710 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 711 addMemorySanitizerPass); 712 } 713 714 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 715 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 716 addKernelMemorySanitizerPass); 717 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 718 addKernelMemorySanitizerPass); 719 } 720 721 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 722 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 723 addThreadSanitizerPass); 724 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 725 addThreadSanitizerPass); 726 } 727 728 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 729 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 730 addDataFlowSanitizerPass); 731 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 732 addDataFlowSanitizerPass); 733 } 734 735 // Set up the per-function pass manager. 736 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 737 if (CodeGenOpts.VerifyModule) 738 FPM.add(createVerifierPass()); 739 740 // Set up the per-module pass manager. 741 if (!CodeGenOpts.RewriteMapFiles.empty()) 742 addSymbolRewriterPass(CodeGenOpts, &MPM); 743 744 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 745 // with unique names. 746 if (CodeGenOpts.UniqueInternalLinkageNames) { 747 MPM.add(createUniqueInternalLinkageNamesPass()); 748 } 749 750 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 751 MPM.add(createGCOVProfilerPass(*Options)); 752 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 753 MPM.add(createStripSymbolsPass(true)); 754 } 755 756 if (Optional<InstrProfOptions> Options = 757 getInstrProfOptions(CodeGenOpts, LangOpts)) 758 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 759 760 bool hasIRInstr = false; 761 if (CodeGenOpts.hasProfileIRInstr()) { 762 PMBuilder.EnablePGOInstrGen = true; 763 hasIRInstr = true; 764 } 765 if (CodeGenOpts.hasProfileCSIRInstr()) { 766 assert(!CodeGenOpts.hasProfileCSIRUse() && 767 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 768 "same time"); 769 assert(!hasIRInstr && 770 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 771 "same time"); 772 PMBuilder.EnablePGOCSInstrGen = true; 773 hasIRInstr = true; 774 } 775 if (hasIRInstr) { 776 if (!CodeGenOpts.InstrProfileOutput.empty()) 777 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 778 else 779 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 780 } 781 if (CodeGenOpts.hasProfileIRUse()) { 782 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 783 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 784 } 785 786 if (!CodeGenOpts.SampleProfileFile.empty()) 787 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 788 789 PMBuilder.populateFunctionPassManager(FPM); 790 PMBuilder.populateModulePassManager(MPM); 791 } 792 793 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 794 SmallVector<const char *, 16> BackendArgs; 795 BackendArgs.push_back("clang"); // Fake program name. 796 if (!CodeGenOpts.DebugPass.empty()) { 797 BackendArgs.push_back("-debug-pass"); 798 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 799 } 800 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 801 BackendArgs.push_back("-limit-float-precision"); 802 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 803 } 804 BackendArgs.push_back(nullptr); 805 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 806 BackendArgs.data()); 807 } 808 809 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 810 // Create the TargetMachine for generating code. 811 std::string Error; 812 std::string Triple = TheModule->getTargetTriple(); 813 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 814 if (!TheTarget) { 815 if (MustCreateTM) 816 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 817 return; 818 } 819 820 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 821 std::string FeaturesStr = 822 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 823 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 824 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 825 826 llvm::TargetOptions Options; 827 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 828 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 829 Options, RM, CM, OptLevel)); 830 } 831 832 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 833 BackendAction Action, 834 raw_pwrite_stream &OS, 835 raw_pwrite_stream *DwoOS) { 836 // Add LibraryInfo. 837 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 838 std::unique_ptr<TargetLibraryInfoImpl> TLII( 839 createTLII(TargetTriple, CodeGenOpts)); 840 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 841 842 // Normal mode, emit a .s or .o file by running the code generator. Note, 843 // this also adds codegenerator level optimization passes. 844 CodeGenFileType CGFT = getCodeGenFileType(Action); 845 846 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 847 // "codegen" passes so that it isn't run multiple times when there is 848 // inlining happening. 849 if (CodeGenOpts.OptimizationLevel > 0) 850 CodeGenPasses.add(createObjCARCContractPass()); 851 852 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 853 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 854 Diags.Report(diag::err_fe_unable_to_interface_with_target); 855 return false; 856 } 857 858 return true; 859 } 860 861 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 862 std::unique_ptr<raw_pwrite_stream> OS) { 863 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 864 865 setCommandLineOpts(CodeGenOpts); 866 867 bool UsesCodeGen = (Action != Backend_EmitNothing && 868 Action != Backend_EmitBC && 869 Action != Backend_EmitLL); 870 CreateTargetMachine(UsesCodeGen); 871 872 if (UsesCodeGen && !TM) 873 return; 874 if (TM) 875 TheModule->setDataLayout(TM->createDataLayout()); 876 877 legacy::PassManager PerModulePasses; 878 PerModulePasses.add( 879 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 880 881 legacy::FunctionPassManager PerFunctionPasses(TheModule); 882 PerFunctionPasses.add( 883 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 884 885 CreatePasses(PerModulePasses, PerFunctionPasses); 886 887 legacy::PassManager CodeGenPasses; 888 CodeGenPasses.add( 889 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 890 891 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 892 893 switch (Action) { 894 case Backend_EmitNothing: 895 break; 896 897 case Backend_EmitBC: 898 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 899 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 900 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 901 if (!ThinLinkOS) 902 return; 903 } 904 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 905 CodeGenOpts.EnableSplitLTOUnit); 906 PerModulePasses.add(createWriteThinLTOBitcodePass( 907 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 908 } else { 909 // Emit a module summary by default for Regular LTO except for ld64 910 // targets 911 bool EmitLTOSummary = 912 (CodeGenOpts.PrepareForLTO && 913 !CodeGenOpts.DisableLLVMPasses && 914 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 915 llvm::Triple::Apple); 916 if (EmitLTOSummary) { 917 if (!TheModule->getModuleFlag("ThinLTO")) 918 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 919 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 920 uint32_t(1)); 921 } 922 923 PerModulePasses.add(createBitcodeWriterPass( 924 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 925 } 926 break; 927 928 case Backend_EmitLL: 929 PerModulePasses.add( 930 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 931 break; 932 933 default: 934 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 935 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 936 if (!DwoOS) 937 return; 938 } 939 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 940 DwoOS ? &DwoOS->os() : nullptr)) 941 return; 942 } 943 944 // Before executing passes, print the final values of the LLVM options. 945 cl::PrintOptionValues(); 946 947 // Run passes. For now we do all passes at once, but eventually we 948 // would like to have the option of streaming code generation. 949 950 { 951 PrettyStackTraceString CrashInfo("Per-function optimization"); 952 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 953 954 PerFunctionPasses.doInitialization(); 955 for (Function &F : *TheModule) 956 if (!F.isDeclaration()) 957 PerFunctionPasses.run(F); 958 PerFunctionPasses.doFinalization(); 959 } 960 961 { 962 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 963 llvm::TimeTraceScope TimeScope("PerModulePasses"); 964 PerModulePasses.run(*TheModule); 965 } 966 967 { 968 PrettyStackTraceString CrashInfo("Code generation"); 969 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 970 CodeGenPasses.run(*TheModule); 971 } 972 973 if (ThinLinkOS) 974 ThinLinkOS->keep(); 975 if (DwoOS) 976 DwoOS->keep(); 977 } 978 979 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 980 switch (Opts.OptimizationLevel) { 981 default: 982 llvm_unreachable("Invalid optimization level!"); 983 984 case 1: 985 return PassBuilder::OptimizationLevel::O1; 986 987 case 2: 988 switch (Opts.OptimizeSize) { 989 default: 990 llvm_unreachable("Invalid optimization level for size!"); 991 992 case 0: 993 return PassBuilder::OptimizationLevel::O2; 994 995 case 1: 996 return PassBuilder::OptimizationLevel::Os; 997 998 case 2: 999 return PassBuilder::OptimizationLevel::Oz; 1000 } 1001 1002 case 3: 1003 return PassBuilder::OptimizationLevel::O3; 1004 } 1005 } 1006 1007 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1008 const LangOptions &LangOpts, 1009 const CodeGenOptions &CodeGenOpts) { 1010 if (!LangOpts.Coroutines) 1011 return; 1012 1013 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1014 1015 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1016 CGPM.addPass(CoroSplitPass()); 1017 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1018 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1019 1020 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1021 } 1022 1023 static void addSanitizersAtO0(ModulePassManager &MPM, 1024 const Triple &TargetTriple, 1025 const LangOptions &LangOpts, 1026 const CodeGenOptions &CodeGenOpts) { 1027 if (CodeGenOpts.SanitizeCoverageType || 1028 CodeGenOpts.SanitizeCoverageIndirectCalls || 1029 CodeGenOpts.SanitizeCoverageTraceCmp) { 1030 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1031 MPM.addPass(ModuleSanitizerCoveragePass( 1032 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1033 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1034 } 1035 1036 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1037 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1038 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1039 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1040 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1041 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1042 MPM.addPass( 1043 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1044 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1045 }; 1046 1047 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1048 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1049 } 1050 1051 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1052 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1053 } 1054 1055 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1056 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1057 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1058 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1059 MPM.addPass(createModuleToFunctionPassAdaptor( 1060 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1061 } 1062 1063 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1064 MPM.addPass(createModuleToFunctionPassAdaptor( 1065 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1066 } 1067 1068 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1069 MPM.addPass(ThreadSanitizerPass()); 1070 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1071 } 1072 } 1073 1074 /// A clean version of `EmitAssembly` that uses the new pass manager. 1075 /// 1076 /// Not all features are currently supported in this system, but where 1077 /// necessary it falls back to the legacy pass manager to at least provide 1078 /// basic functionality. 1079 /// 1080 /// This API is planned to have its functionality finished and then to replace 1081 /// `EmitAssembly` at some point in the future when the default switches. 1082 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1083 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1084 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1085 setCommandLineOpts(CodeGenOpts); 1086 1087 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1088 Action != Backend_EmitBC && 1089 Action != Backend_EmitLL); 1090 CreateTargetMachine(RequiresCodeGen); 1091 1092 if (RequiresCodeGen && !TM) 1093 return; 1094 if (TM) 1095 TheModule->setDataLayout(TM->createDataLayout()); 1096 1097 Optional<PGOOptions> PGOOpt; 1098 1099 if (CodeGenOpts.hasProfileIRInstr()) 1100 // -fprofile-generate. 1101 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1102 ? std::string(DefaultProfileGenName) 1103 : CodeGenOpts.InstrProfileOutput, 1104 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1105 CodeGenOpts.DebugInfoForProfiling); 1106 else if (CodeGenOpts.hasProfileIRUse()) { 1107 // -fprofile-use. 1108 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1109 : PGOOptions::NoCSAction; 1110 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1111 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1112 CSAction, CodeGenOpts.DebugInfoForProfiling); 1113 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1114 // -fprofile-sample-use 1115 PGOOpt = 1116 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1117 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1118 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1119 else if (CodeGenOpts.DebugInfoForProfiling) 1120 // -fdebug-info-for-profiling 1121 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1122 PGOOptions::NoCSAction, true); 1123 1124 // Check to see if we want to generate a CS profile. 1125 if (CodeGenOpts.hasProfileCSIRInstr()) { 1126 assert(!CodeGenOpts.hasProfileCSIRUse() && 1127 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1128 "the same time"); 1129 if (PGOOpt.hasValue()) { 1130 assert(PGOOpt->Action != PGOOptions::IRInstr && 1131 PGOOpt->Action != PGOOptions::SampleUse && 1132 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1133 " pass"); 1134 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1135 ? std::string(DefaultProfileGenName) 1136 : CodeGenOpts.InstrProfileOutput; 1137 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1138 } else 1139 PGOOpt = PGOOptions("", 1140 CodeGenOpts.InstrProfileOutput.empty() 1141 ? std::string(DefaultProfileGenName) 1142 : CodeGenOpts.InstrProfileOutput, 1143 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1144 CodeGenOpts.DebugInfoForProfiling); 1145 } 1146 1147 PipelineTuningOptions PTO; 1148 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1149 // For historical reasons, loop interleaving is set to mirror setting for loop 1150 // unrolling. 1151 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1152 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1153 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1154 // Only enable CGProfilePass when using integrated assembler, since 1155 // non-integrated assemblers don't recognize .cgprofile section. 1156 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1157 PTO.Coroutines = LangOpts.Coroutines; 1158 1159 PassInstrumentationCallbacks PIC; 1160 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1161 SI.registerCallbacks(PIC); 1162 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1163 1164 // Attempt to load pass plugins and register their callbacks with PB. 1165 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1166 auto PassPlugin = PassPlugin::Load(PluginFN); 1167 if (PassPlugin) { 1168 PassPlugin->registerPassBuilderCallbacks(PB); 1169 } else { 1170 Diags.Report(diag::err_fe_unable_to_load_plugin) 1171 << PluginFN << toString(PassPlugin.takeError()); 1172 } 1173 } 1174 #define HANDLE_EXTENSION(Ext) \ 1175 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1176 #include "llvm/Support/Extension.def" 1177 1178 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1179 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1180 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1181 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1182 1183 // Register the AA manager first so that our version is the one used. 1184 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1185 1186 // Register the target library analysis directly and give it a customized 1187 // preset TLI. 1188 Triple TargetTriple(TheModule->getTargetTriple()); 1189 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1190 createTLII(TargetTriple, CodeGenOpts)); 1191 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1192 1193 // Register all the basic analyses with the managers. 1194 PB.registerModuleAnalyses(MAM); 1195 PB.registerCGSCCAnalyses(CGAM); 1196 PB.registerFunctionAnalyses(FAM); 1197 PB.registerLoopAnalyses(LAM); 1198 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1199 1200 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1201 1202 if (!CodeGenOpts.DisableLLVMPasses) { 1203 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1204 bool IsLTO = CodeGenOpts.PrepareForLTO; 1205 1206 if (CodeGenOpts.OptimizationLevel == 0) { 1207 // If we reached here with a non-empty index file name, then the index 1208 // file was empty and we are not performing ThinLTO backend compilation 1209 // (used in testing in a distributed build environment). Drop any the type 1210 // test assume sequences inserted for whole program vtables so that 1211 // codegen doesn't complain. 1212 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1213 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1214 /*ImportSummary=*/nullptr, 1215 /*DropTypeTests=*/true)); 1216 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1217 MPM.addPass(GCOVProfilerPass(*Options)); 1218 if (Optional<InstrProfOptions> Options = 1219 getInstrProfOptions(CodeGenOpts, LangOpts)) 1220 MPM.addPass(InstrProfiling(*Options, false)); 1221 1222 // Build a minimal pipeline based on the semantics required by Clang, 1223 // which is just that always inlining occurs. Further, disable generating 1224 // lifetime intrinsics to avoid enabling further optimizations during 1225 // code generation. 1226 // However, we need to insert lifetime intrinsics to avoid invalid access 1227 // caused by multithreaded coroutines. 1228 MPM.addPass( 1229 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1230 1231 // At -O0, we can still do PGO. Add all the requested passes for 1232 // instrumentation PGO, if requested. 1233 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1234 PGOOpt->Action == PGOOptions::IRUse)) 1235 PB.addPGOInstrPassesForO0( 1236 MPM, CodeGenOpts.DebugPassManager, 1237 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1238 /* IsCS */ false, PGOOpt->ProfileFile, 1239 PGOOpt->ProfileRemappingFile); 1240 1241 // At -O0 we directly run necessary sanitizer passes. 1242 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1243 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1244 1245 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1246 // symbols with unique names. 1247 if (CodeGenOpts.UniqueInternalLinkageNames) { 1248 MPM.addPass(UniqueInternalLinkageNamesPass()); 1249 } 1250 1251 // Lastly, add semantically necessary passes for LTO. 1252 if (IsLTO || IsThinLTO) { 1253 MPM.addPass(CanonicalizeAliasesPass()); 1254 MPM.addPass(NameAnonGlobalPass()); 1255 } 1256 } else { 1257 // Map our optimization levels into one of the distinct levels used to 1258 // configure the pipeline. 1259 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1260 1261 // If we reached here with a non-empty index file name, then the index 1262 // file was empty and we are not performing ThinLTO backend compilation 1263 // (used in testing in a distributed build environment). Drop any the type 1264 // test assume sequences inserted for whole program vtables so that 1265 // codegen doesn't complain. 1266 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1267 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1268 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1269 /*ImportSummary=*/nullptr, 1270 /*DropTypeTests=*/true)); 1271 }); 1272 1273 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1274 MPM.addPass(createModuleToFunctionPassAdaptor( 1275 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1276 }); 1277 1278 // Register callbacks to schedule sanitizer passes at the appropriate part of 1279 // the pipeline. 1280 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1281 PB.registerScalarOptimizerLateEPCallback( 1282 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1283 FPM.addPass(BoundsCheckingPass()); 1284 }); 1285 1286 if (CodeGenOpts.SanitizeCoverageType || 1287 CodeGenOpts.SanitizeCoverageIndirectCalls || 1288 CodeGenOpts.SanitizeCoverageTraceCmp) { 1289 PB.registerOptimizerLastEPCallback( 1290 [this](ModulePassManager &MPM, 1291 PassBuilder::OptimizationLevel Level) { 1292 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1293 MPM.addPass(ModuleSanitizerCoveragePass( 1294 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1295 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1296 }); 1297 } 1298 1299 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1300 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1301 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1302 PB.registerOptimizerLastEPCallback( 1303 [TrackOrigins, Recover](ModulePassManager &MPM, 1304 PassBuilder::OptimizationLevel Level) { 1305 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1306 MPM.addPass(createModuleToFunctionPassAdaptor( 1307 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1308 }); 1309 } 1310 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1311 PB.registerOptimizerLastEPCallback( 1312 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1313 MPM.addPass(ThreadSanitizerPass()); 1314 MPM.addPass( 1315 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1316 }); 1317 } 1318 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1319 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1320 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1321 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1322 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1323 PB.registerOptimizerLastEPCallback( 1324 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1325 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1326 MPM.addPass( 1327 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1328 MPM.addPass(ModuleAddressSanitizerPass( 1329 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1330 UseOdrIndicator)); 1331 MPM.addPass( 1332 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1333 /*CompileKernel=*/false, Recover, UseAfterScope))); 1334 }); 1335 } 1336 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1337 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1338 MPM.addPass(GCOVProfilerPass(*Options)); 1339 }); 1340 if (Optional<InstrProfOptions> Options = 1341 getInstrProfOptions(CodeGenOpts, LangOpts)) 1342 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1343 MPM.addPass(InstrProfiling(*Options, false)); 1344 }); 1345 1346 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1347 // symbols with unique names. 1348 if (CodeGenOpts.UniqueInternalLinkageNames) { 1349 MPM.addPass(UniqueInternalLinkageNamesPass()); 1350 } 1351 1352 if (IsThinLTO) { 1353 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1354 Level, CodeGenOpts.DebugPassManager); 1355 MPM.addPass(CanonicalizeAliasesPass()); 1356 MPM.addPass(NameAnonGlobalPass()); 1357 } else if (IsLTO) { 1358 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1359 CodeGenOpts.DebugPassManager); 1360 MPM.addPass(CanonicalizeAliasesPass()); 1361 MPM.addPass(NameAnonGlobalPass()); 1362 } else { 1363 MPM = PB.buildPerModuleDefaultPipeline(Level, 1364 CodeGenOpts.DebugPassManager); 1365 } 1366 } 1367 1368 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1369 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1370 MPM.addPass(HWAddressSanitizerPass( 1371 /*CompileKernel=*/false, Recover)); 1372 } 1373 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1374 MPM.addPass(HWAddressSanitizerPass( 1375 /*CompileKernel=*/true, /*Recover=*/true)); 1376 } 1377 1378 if (CodeGenOpts.OptimizationLevel == 0) { 1379 // FIXME: the backends do not handle matrix intrinsics currently. Make 1380 // sure they are also lowered in O0. A lightweight version of the pass 1381 // should run in the backend pipeline on demand. 1382 if (LangOpts.MatrixTypes) 1383 MPM.addPass( 1384 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1385 1386 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1387 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1388 } 1389 } 1390 1391 // FIXME: We still use the legacy pass manager to do code generation. We 1392 // create that pass manager here and use it as needed below. 1393 legacy::PassManager CodeGenPasses; 1394 bool NeedCodeGen = false; 1395 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1396 1397 // Append any output we need to the pass manager. 1398 switch (Action) { 1399 case Backend_EmitNothing: 1400 break; 1401 1402 case Backend_EmitBC: 1403 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1404 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1405 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1406 if (!ThinLinkOS) 1407 return; 1408 } 1409 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1410 CodeGenOpts.EnableSplitLTOUnit); 1411 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1412 : nullptr)); 1413 } else { 1414 // Emit a module summary by default for Regular LTO except for ld64 1415 // targets 1416 bool EmitLTOSummary = 1417 (CodeGenOpts.PrepareForLTO && 1418 !CodeGenOpts.DisableLLVMPasses && 1419 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1420 llvm::Triple::Apple); 1421 if (EmitLTOSummary) { 1422 if (!TheModule->getModuleFlag("ThinLTO")) 1423 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1424 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1425 uint32_t(1)); 1426 } 1427 MPM.addPass( 1428 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1429 } 1430 break; 1431 1432 case Backend_EmitLL: 1433 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1434 break; 1435 1436 case Backend_EmitAssembly: 1437 case Backend_EmitMCNull: 1438 case Backend_EmitObj: 1439 NeedCodeGen = true; 1440 CodeGenPasses.add( 1441 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1442 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1443 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1444 if (!DwoOS) 1445 return; 1446 } 1447 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1448 DwoOS ? &DwoOS->os() : nullptr)) 1449 // FIXME: Should we handle this error differently? 1450 return; 1451 break; 1452 } 1453 1454 // Before executing passes, print the final values of the LLVM options. 1455 cl::PrintOptionValues(); 1456 1457 // Now that we have all of the passes ready, run them. 1458 { 1459 PrettyStackTraceString CrashInfo("Optimizer"); 1460 MPM.run(*TheModule, MAM); 1461 } 1462 1463 // Now if needed, run the legacy PM for codegen. 1464 if (NeedCodeGen) { 1465 PrettyStackTraceString CrashInfo("Code generation"); 1466 CodeGenPasses.run(*TheModule); 1467 } 1468 1469 if (ThinLinkOS) 1470 ThinLinkOS->keep(); 1471 if (DwoOS) 1472 DwoOS->keep(); 1473 } 1474 1475 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1476 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1477 if (!BMsOrErr) 1478 return BMsOrErr.takeError(); 1479 1480 // The bitcode file may contain multiple modules, we want the one that is 1481 // marked as being the ThinLTO module. 1482 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1483 return *Bm; 1484 1485 return make_error<StringError>("Could not find module summary", 1486 inconvertibleErrorCode()); 1487 } 1488 1489 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1490 for (BitcodeModule &BM : BMs) { 1491 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1492 if (LTOInfo && LTOInfo->IsThinLTO) 1493 return &BM; 1494 } 1495 return nullptr; 1496 } 1497 1498 static void runThinLTOBackend( 1499 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1500 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1501 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1502 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1503 std::string ProfileRemapping, BackendAction Action) { 1504 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1505 ModuleToDefinedGVSummaries; 1506 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1507 1508 setCommandLineOpts(CGOpts); 1509 1510 // We can simply import the values mentioned in the combined index, since 1511 // we should only invoke this using the individual indexes written out 1512 // via a WriteIndexesThinBackend. 1513 FunctionImporter::ImportMapTy ImportList; 1514 for (auto &GlobalList : *CombinedIndex) { 1515 // Ignore entries for undefined references. 1516 if (GlobalList.second.SummaryList.empty()) 1517 continue; 1518 1519 auto GUID = GlobalList.first; 1520 for (auto &Summary : GlobalList.second.SummaryList) { 1521 // Skip the summaries for the importing module. These are included to 1522 // e.g. record required linkage changes. 1523 if (Summary->modulePath() == M->getModuleIdentifier()) 1524 continue; 1525 // Add an entry to provoke importing by thinBackend. 1526 ImportList[Summary->modulePath()].insert(GUID); 1527 } 1528 } 1529 1530 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1531 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1532 1533 for (auto &I : ImportList) { 1534 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1535 llvm::MemoryBuffer::getFile(I.first()); 1536 if (!MBOrErr) { 1537 errs() << "Error loading imported file '" << I.first() 1538 << "': " << MBOrErr.getError().message() << "\n"; 1539 return; 1540 } 1541 1542 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1543 if (!BMOrErr) { 1544 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1545 errs() << "Error loading imported file '" << I.first() 1546 << "': " << EIB.message() << '\n'; 1547 }); 1548 return; 1549 } 1550 ModuleMap.insert({I.first(), *BMOrErr}); 1551 1552 OwnedImports.push_back(std::move(*MBOrErr)); 1553 } 1554 auto AddStream = [&](size_t Task) { 1555 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1556 }; 1557 lto::Config Conf; 1558 if (CGOpts.SaveTempsFilePrefix != "") { 1559 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1560 /* UseInputModulePath */ false)) { 1561 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1562 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1563 << '\n'; 1564 }); 1565 } 1566 } 1567 Conf.CPU = TOpts.CPU; 1568 Conf.CodeModel = getCodeModel(CGOpts); 1569 Conf.MAttrs = TOpts.Features; 1570 Conf.RelocModel = CGOpts.RelocationModel; 1571 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1572 Conf.OptLevel = CGOpts.OptimizationLevel; 1573 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1574 Conf.SampleProfile = std::move(SampleProfile); 1575 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1576 // For historical reasons, loop interleaving is set to mirror setting for loop 1577 // unrolling. 1578 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1579 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1580 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1581 // Only enable CGProfilePass when using integrated assembler, since 1582 // non-integrated assemblers don't recognize .cgprofile section. 1583 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1584 1585 // Context sensitive profile. 1586 if (CGOpts.hasProfileCSIRInstr()) { 1587 Conf.RunCSIRInstr = true; 1588 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1589 } else if (CGOpts.hasProfileCSIRUse()) { 1590 Conf.RunCSIRInstr = false; 1591 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1592 } 1593 1594 Conf.ProfileRemapping = std::move(ProfileRemapping); 1595 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1596 Conf.DebugPassManager = CGOpts.DebugPassManager; 1597 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1598 Conf.RemarksFilename = CGOpts.OptRecordFile; 1599 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1600 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1601 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1602 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1603 switch (Action) { 1604 case Backend_EmitNothing: 1605 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1606 return false; 1607 }; 1608 break; 1609 case Backend_EmitLL: 1610 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1611 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1612 return false; 1613 }; 1614 break; 1615 case Backend_EmitBC: 1616 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1617 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1618 return false; 1619 }; 1620 break; 1621 default: 1622 Conf.CGFileType = getCodeGenFileType(Action); 1623 break; 1624 } 1625 if (Error E = thinBackend( 1626 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1627 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1628 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1629 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1630 }); 1631 } 1632 } 1633 1634 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1635 const HeaderSearchOptions &HeaderOpts, 1636 const CodeGenOptions &CGOpts, 1637 const clang::TargetOptions &TOpts, 1638 const LangOptions &LOpts, 1639 const llvm::DataLayout &TDesc, Module *M, 1640 BackendAction Action, 1641 std::unique_ptr<raw_pwrite_stream> OS) { 1642 1643 llvm::TimeTraceScope TimeScope("Backend"); 1644 1645 std::unique_ptr<llvm::Module> EmptyModule; 1646 if (!CGOpts.ThinLTOIndexFile.empty()) { 1647 // If we are performing a ThinLTO importing compile, load the function index 1648 // into memory and pass it into runThinLTOBackend, which will run the 1649 // function importer and invoke LTO passes. 1650 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1651 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1652 /*IgnoreEmptyThinLTOIndexFile*/true); 1653 if (!IndexOrErr) { 1654 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1655 "Error loading index file '" + 1656 CGOpts.ThinLTOIndexFile + "': "); 1657 return; 1658 } 1659 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1660 // A null CombinedIndex means we should skip ThinLTO compilation 1661 // (LLVM will optionally ignore empty index files, returning null instead 1662 // of an error). 1663 if (CombinedIndex) { 1664 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1665 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1666 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1667 CGOpts.ProfileRemappingFile, Action); 1668 return; 1669 } 1670 // Distributed indexing detected that nothing from the module is needed 1671 // for the final linking. So we can skip the compilation. We sill need to 1672 // output an empty object file to make sure that a linker does not fail 1673 // trying to read it. Also for some features, like CFI, we must skip 1674 // the compilation as CombinedIndex does not contain all required 1675 // information. 1676 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1677 EmptyModule->setTargetTriple(M->getTargetTriple()); 1678 M = EmptyModule.get(); 1679 } 1680 } 1681 1682 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1683 1684 if (CGOpts.ExperimentalNewPassManager) 1685 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1686 else 1687 AsmHelper.EmitAssembly(Action, std::move(OS)); 1688 1689 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1690 // DataLayout. 1691 if (AsmHelper.TM) { 1692 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1693 if (DLDesc != TDesc.getStringRepresentation()) { 1694 unsigned DiagID = Diags.getCustomDiagID( 1695 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1696 "expected target description '%1'"); 1697 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1698 } 1699 } 1700 } 1701 1702 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1703 // __LLVM,__bitcode section. 1704 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1705 llvm::MemoryBufferRef Buf) { 1706 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1707 return; 1708 llvm::EmbedBitcodeInModule( 1709 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1710 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1711 &CGOpts.CmdArgs); 1712 } 1713