1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/HeapProfiler.h" 71 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 72 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 73 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 74 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 75 #include "llvm/Transforms/ObjCARC.h" 76 #include "llvm/Transforms/Scalar.h" 77 #include "llvm/Transforms/Scalar/GVN.h" 78 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 79 #include "llvm/Transforms/Utils.h" 80 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 81 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 82 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 83 #include "llvm/Transforms/Utils/SymbolRewriter.h" 84 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 85 #include <memory> 86 using namespace clang; 87 using namespace llvm; 88 89 #define HANDLE_EXTENSION(Ext) \ 90 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 91 #include "llvm/Support/Extension.def" 92 93 namespace { 94 95 // Default filename used for profile generation. 96 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 97 98 class EmitAssemblyHelper { 99 DiagnosticsEngine &Diags; 100 const HeaderSearchOptions &HSOpts; 101 const CodeGenOptions &CodeGenOpts; 102 const clang::TargetOptions &TargetOpts; 103 const LangOptions &LangOpts; 104 Module *TheModule; 105 106 Timer CodeGenerationTime; 107 108 std::unique_ptr<raw_pwrite_stream> OS; 109 110 TargetIRAnalysis getTargetIRAnalysis() const { 111 if (TM) 112 return TM->getTargetIRAnalysis(); 113 114 return TargetIRAnalysis(); 115 } 116 117 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 118 119 /// Generates the TargetMachine. 120 /// Leaves TM unchanged if it is unable to create the target machine. 121 /// Some of our clang tests specify triples which are not built 122 /// into clang. This is okay because these tests check the generated 123 /// IR, and they require DataLayout which depends on the triple. 124 /// In this case, we allow this method to fail and not report an error. 125 /// When MustCreateTM is used, we print an error if we are unable to load 126 /// the requested target. 127 void CreateTargetMachine(bool MustCreateTM); 128 129 /// Add passes necessary to emit assembly or LLVM IR. 130 /// 131 /// \return True on success. 132 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 133 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 134 135 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 136 std::error_code EC; 137 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 138 llvm::sys::fs::OF_None); 139 if (EC) { 140 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 141 F.reset(); 142 } 143 return F; 144 } 145 146 public: 147 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 148 const HeaderSearchOptions &HeaderSearchOpts, 149 const CodeGenOptions &CGOpts, 150 const clang::TargetOptions &TOpts, 151 const LangOptions &LOpts, Module *M) 152 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 153 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 154 CodeGenerationTime("codegen", "Code Generation Time") {} 155 156 ~EmitAssemblyHelper() { 157 if (CodeGenOpts.DisableFree) 158 BuryPointer(std::move(TM)); 159 } 160 161 std::unique_ptr<TargetMachine> TM; 162 163 void EmitAssembly(BackendAction Action, 164 std::unique_ptr<raw_pwrite_stream> OS); 165 166 void EmitAssemblyWithNewPassManager(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 }; 169 170 // We need this wrapper to access LangOpts and CGOpts from extension functions 171 // that we add to the PassManagerBuilder. 172 class PassManagerBuilderWrapper : public PassManagerBuilder { 173 public: 174 PassManagerBuilderWrapper(const Triple &TargetTriple, 175 const CodeGenOptions &CGOpts, 176 const LangOptions &LangOpts) 177 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 178 LangOpts(LangOpts) {} 179 const Triple &getTargetTriple() const { return TargetTriple; } 180 const CodeGenOptions &getCGOpts() const { return CGOpts; } 181 const LangOptions &getLangOpts() const { return LangOpts; } 182 183 private: 184 const Triple &TargetTriple; 185 const CodeGenOptions &CGOpts; 186 const LangOptions &LangOpts; 187 }; 188 } 189 190 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 191 if (Builder.OptLevel > 0) 192 PM.add(createObjCARCAPElimPass()); 193 } 194 195 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 196 if (Builder.OptLevel > 0) 197 PM.add(createObjCARCExpandPass()); 198 } 199 200 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 201 if (Builder.OptLevel > 0) 202 PM.add(createObjCARCOptPass()); 203 } 204 205 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 206 legacy::PassManagerBase &PM) { 207 PM.add(createAddDiscriminatorsPass()); 208 } 209 210 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 211 legacy::PassManagerBase &PM) { 212 PM.add(createBoundsCheckingLegacyPass()); 213 } 214 215 static SanitizerCoverageOptions 216 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 217 SanitizerCoverageOptions Opts; 218 Opts.CoverageType = 219 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 220 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 221 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 222 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 223 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 224 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 225 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 226 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 227 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 228 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 229 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 230 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 231 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 232 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 233 return Opts; 234 } 235 236 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 237 legacy::PassManagerBase &PM) { 238 const PassManagerBuilderWrapper &BuilderWrapper = 239 static_cast<const PassManagerBuilderWrapper &>(Builder); 240 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 241 auto Opts = getSancovOptsFromCGOpts(CGOpts); 242 PM.add(createModuleSanitizerCoverageLegacyPassPass( 243 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 244 CGOpts.SanitizeCoverageBlocklistFiles)); 245 } 246 247 // Check if ASan should use GC-friendly instrumentation for globals. 248 // First of all, there is no point if -fdata-sections is off (expect for MachO, 249 // where this is not a factor). Also, on ELF this feature requires an assembler 250 // extension that only works with -integrated-as at the moment. 251 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 252 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 253 return false; 254 switch (T.getObjectFormat()) { 255 case Triple::MachO: 256 case Triple::COFF: 257 return true; 258 case Triple::ELF: 259 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 260 case Triple::GOFF: 261 llvm::report_fatal_error("ASan not implemented for GOFF"); 262 case Triple::XCOFF: 263 llvm::report_fatal_error("ASan not implemented for XCOFF."); 264 case Triple::Wasm: 265 case Triple::UnknownObjectFormat: 266 break; 267 } 268 return false; 269 } 270 271 static void addHeapProfilerPasses(const PassManagerBuilder &Builder, 272 legacy::PassManagerBase &PM) { 273 PM.add(createHeapProfilerFunctionPass()); 274 PM.add(createModuleHeapProfilerLegacyPassPass()); 275 } 276 277 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 278 legacy::PassManagerBase &PM) { 279 const PassManagerBuilderWrapper &BuilderWrapper = 280 static_cast<const PassManagerBuilderWrapper&>(Builder); 281 const Triple &T = BuilderWrapper.getTargetTriple(); 282 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 283 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 284 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 285 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 286 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 287 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 288 UseAfterScope)); 289 PM.add(createModuleAddressSanitizerLegacyPassPass( 290 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 291 } 292 293 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 294 legacy::PassManagerBase &PM) { 295 PM.add(createAddressSanitizerFunctionPass( 296 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 297 PM.add(createModuleAddressSanitizerLegacyPassPass( 298 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 299 /*UseOdrIndicator*/ false)); 300 } 301 302 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 const PassManagerBuilderWrapper &BuilderWrapper = 305 static_cast<const PassManagerBuilderWrapper &>(Builder); 306 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 307 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 308 PM.add( 309 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 310 } 311 312 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 313 legacy::PassManagerBase &PM) { 314 PM.add(createHWAddressSanitizerLegacyPassPass( 315 /*CompileKernel*/ true, /*Recover*/ true)); 316 } 317 318 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 319 legacy::PassManagerBase &PM, 320 bool CompileKernel) { 321 const PassManagerBuilderWrapper &BuilderWrapper = 322 static_cast<const PassManagerBuilderWrapper&>(Builder); 323 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 324 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 325 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 326 PM.add(createMemorySanitizerLegacyPassPass( 327 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 328 329 // MemorySanitizer inserts complex instrumentation that mostly follows 330 // the logic of the original code, but operates on "shadow" values. 331 // It can benefit from re-running some general purpose optimization passes. 332 if (Builder.OptLevel > 0) { 333 PM.add(createEarlyCSEPass()); 334 PM.add(createReassociatePass()); 335 PM.add(createLICMPass()); 336 PM.add(createGVNPass()); 337 PM.add(createInstructionCombiningPass()); 338 PM.add(createDeadStoreEliminationPass()); 339 } 340 } 341 342 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 345 } 346 347 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 350 } 351 352 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 PM.add(createThreadSanitizerLegacyPassPass()); 355 } 356 357 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 const PassManagerBuilderWrapper &BuilderWrapper = 360 static_cast<const PassManagerBuilderWrapper&>(Builder); 361 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 362 PM.add( 363 createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles)); 364 } 365 366 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 367 const CodeGenOptions &CodeGenOpts) { 368 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 369 370 switch (CodeGenOpts.getVecLib()) { 371 case CodeGenOptions::Accelerate: 372 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 373 break; 374 case CodeGenOptions::MASSV: 375 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 376 break; 377 case CodeGenOptions::SVML: 378 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 379 break; 380 default: 381 break; 382 } 383 return TLII; 384 } 385 386 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 387 legacy::PassManager *MPM) { 388 llvm::SymbolRewriter::RewriteDescriptorList DL; 389 390 llvm::SymbolRewriter::RewriteMapParser MapParser; 391 for (const auto &MapFile : Opts.RewriteMapFiles) 392 MapParser.parse(MapFile, &DL); 393 394 MPM->add(createRewriteSymbolsPass(DL)); 395 } 396 397 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 398 switch (CodeGenOpts.OptimizationLevel) { 399 default: 400 llvm_unreachable("Invalid optimization level!"); 401 case 0: 402 return CodeGenOpt::None; 403 case 1: 404 return CodeGenOpt::Less; 405 case 2: 406 return CodeGenOpt::Default; // O2/Os/Oz 407 case 3: 408 return CodeGenOpt::Aggressive; 409 } 410 } 411 412 static Optional<llvm::CodeModel::Model> 413 getCodeModel(const CodeGenOptions &CodeGenOpts) { 414 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 415 .Case("tiny", llvm::CodeModel::Tiny) 416 .Case("small", llvm::CodeModel::Small) 417 .Case("kernel", llvm::CodeModel::Kernel) 418 .Case("medium", llvm::CodeModel::Medium) 419 .Case("large", llvm::CodeModel::Large) 420 .Case("default", ~1u) 421 .Default(~0u); 422 assert(CodeModel != ~0u && "invalid code model!"); 423 if (CodeModel == ~1u) 424 return None; 425 return static_cast<llvm::CodeModel::Model>(CodeModel); 426 } 427 428 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 429 if (Action == Backend_EmitObj) 430 return CGFT_ObjectFile; 431 else if (Action == Backend_EmitMCNull) 432 return CGFT_Null; 433 else { 434 assert(Action == Backend_EmitAssembly && "Invalid action!"); 435 return CGFT_AssemblyFile; 436 } 437 } 438 439 static void initTargetOptions(DiagnosticsEngine &Diags, 440 llvm::TargetOptions &Options, 441 const CodeGenOptions &CodeGenOpts, 442 const clang::TargetOptions &TargetOpts, 443 const LangOptions &LangOpts, 444 const HeaderSearchOptions &HSOpts) { 445 Options.ThreadModel = 446 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 447 .Case("posix", llvm::ThreadModel::POSIX) 448 .Case("single", llvm::ThreadModel::Single); 449 450 // Set float ABI type. 451 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 452 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 453 "Invalid Floating Point ABI!"); 454 Options.FloatABIType = 455 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 456 .Case("soft", llvm::FloatABI::Soft) 457 .Case("softfp", llvm::FloatABI::Soft) 458 .Case("hard", llvm::FloatABI::Hard) 459 .Default(llvm::FloatABI::Default); 460 461 // Set FP fusion mode. 462 switch (LangOpts.getDefaultFPContractMode()) { 463 case LangOptions::FPM_Off: 464 // Preserve any contraction performed by the front-end. (Strict performs 465 // splitting of the muladd intrinsic in the backend.) 466 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 467 break; 468 case LangOptions::FPM_On: 469 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 470 break; 471 case LangOptions::FPM_Fast: 472 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 473 break; 474 } 475 476 Options.UseInitArray = CodeGenOpts.UseInitArray; 477 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 478 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 479 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 480 481 // Set EABI version. 482 Options.EABIVersion = TargetOpts.EABIVersion; 483 484 if (LangOpts.SjLjExceptions) 485 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 486 if (LangOpts.SEHExceptions) 487 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 488 if (LangOpts.DWARFExceptions) 489 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 490 if (LangOpts.WasmExceptions) 491 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 492 493 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 494 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 495 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 496 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 497 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 498 499 Options.BBSections = 500 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 501 .Case("all", llvm::BasicBlockSection::All) 502 .Case("labels", llvm::BasicBlockSection::Labels) 503 .StartsWith("list=", llvm::BasicBlockSection::List) 504 .Case("none", llvm::BasicBlockSection::None) 505 .Default(llvm::BasicBlockSection::None); 506 507 if (Options.BBSections == llvm::BasicBlockSection::List) { 508 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 509 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 510 if (!MBOrErr) 511 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 512 << MBOrErr.getError().message(); 513 else 514 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 515 } 516 517 Options.FunctionSections = CodeGenOpts.FunctionSections; 518 Options.DataSections = CodeGenOpts.DataSections; 519 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 520 Options.UniqueBasicBlockSectionNames = 521 CodeGenOpts.UniqueBasicBlockSectionNames; 522 Options.TLSSize = CodeGenOpts.TLSSize; 523 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 524 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 525 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 526 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 527 Options.EmitAddrsig = CodeGenOpts.Addrsig; 528 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 529 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 530 Options.ValueTrackingVariableLocations = 531 CodeGenOpts.ValueTrackingVariableLocations; 532 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 533 534 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 535 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 536 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 537 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 538 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 539 Options.MCOptions.MCIncrementalLinkerCompatible = 540 CodeGenOpts.IncrementalLinkerCompatible; 541 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 542 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 543 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 544 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 545 Options.MCOptions.ABIName = TargetOpts.ABI; 546 for (const auto &Entry : HSOpts.UserEntries) 547 if (!Entry.IsFramework && 548 (Entry.Group == frontend::IncludeDirGroup::Quoted || 549 Entry.Group == frontend::IncludeDirGroup::Angled || 550 Entry.Group == frontend::IncludeDirGroup::System)) 551 Options.MCOptions.IASSearchPaths.push_back( 552 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 553 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 554 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 555 } 556 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 557 if (CodeGenOpts.DisableGCov) 558 return None; 559 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 560 return None; 561 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 562 // LLVM's -default-gcov-version flag is set to something invalid. 563 GCOVOptions Options; 564 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 565 Options.EmitData = CodeGenOpts.EmitGcovArcs; 566 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 567 Options.NoRedZone = CodeGenOpts.DisableRedZone; 568 Options.Filter = CodeGenOpts.ProfileFilterFiles; 569 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 570 return Options; 571 } 572 573 static Optional<InstrProfOptions> 574 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 575 const LangOptions &LangOpts) { 576 if (!CodeGenOpts.hasProfileClangInstr()) 577 return None; 578 InstrProfOptions Options; 579 Options.NoRedZone = CodeGenOpts.DisableRedZone; 580 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 581 582 // TODO: Surface the option to emit atomic profile counter increments at 583 // the driver level. 584 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 585 return Options; 586 } 587 588 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 589 legacy::FunctionPassManager &FPM) { 590 // Handle disabling of all LLVM passes, where we want to preserve the 591 // internal module before any optimization. 592 if (CodeGenOpts.DisableLLVMPasses) 593 return; 594 595 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 596 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 597 // are inserted before PMBuilder ones - they'd get the default-constructed 598 // TLI with an unknown target otherwise. 599 Triple TargetTriple(TheModule->getTargetTriple()); 600 std::unique_ptr<TargetLibraryInfoImpl> TLII( 601 createTLII(TargetTriple, CodeGenOpts)); 602 603 // If we reached here with a non-empty index file name, then the index file 604 // was empty and we are not performing ThinLTO backend compilation (used in 605 // testing in a distributed build environment). Drop any the type test 606 // assume sequences inserted for whole program vtables so that codegen doesn't 607 // complain. 608 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 609 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 610 /*ImportSummary=*/nullptr, 611 /*DropTypeTests=*/true)); 612 613 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 614 615 // At O0 and O1 we only run the always inliner which is more efficient. At 616 // higher optimization levels we run the normal inliner. 617 if (CodeGenOpts.OptimizationLevel <= 1) { 618 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 619 !CodeGenOpts.DisableLifetimeMarkers) || 620 LangOpts.Coroutines); 621 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 622 } else { 623 // We do not want to inline hot callsites for SamplePGO module-summary build 624 // because profile annotation will happen again in ThinLTO backend, and we 625 // want the IR of the hot path to match the profile. 626 PMBuilder.Inliner = createFunctionInliningPass( 627 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 628 (!CodeGenOpts.SampleProfileFile.empty() && 629 CodeGenOpts.PrepareForThinLTO)); 630 } 631 632 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 633 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 634 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 635 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 636 // Only enable CGProfilePass when using integrated assembler, since 637 // non-integrated assemblers don't recognize .cgprofile section. 638 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 639 640 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 641 // Loop interleaving in the loop vectorizer has historically been set to be 642 // enabled when loop unrolling is enabled. 643 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 644 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 645 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 646 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 647 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 648 649 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 650 651 if (TM) 652 TM->adjustPassManager(PMBuilder); 653 654 if (CodeGenOpts.DebugInfoForProfiling || 655 !CodeGenOpts.SampleProfileFile.empty()) 656 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 657 addAddDiscriminatorsPass); 658 659 // In ObjC ARC mode, add the main ARC optimization passes. 660 if (LangOpts.ObjCAutoRefCount) { 661 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 662 addObjCARCExpandPass); 663 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 664 addObjCARCAPElimPass); 665 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 666 addObjCARCOptPass); 667 } 668 669 if (LangOpts.Coroutines) 670 addCoroutinePassesToExtensionPoints(PMBuilder); 671 672 if (CodeGenOpts.HeapProf) { 673 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 674 addHeapProfilerPasses); 675 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 676 addHeapProfilerPasses); 677 } 678 679 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 680 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 681 addBoundsCheckingPass); 682 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 683 addBoundsCheckingPass); 684 } 685 686 if (CodeGenOpts.SanitizeCoverageType || 687 CodeGenOpts.SanitizeCoverageIndirectCalls || 688 CodeGenOpts.SanitizeCoverageTraceCmp) { 689 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 690 addSanitizerCoveragePass); 691 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 692 addSanitizerCoveragePass); 693 } 694 695 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 696 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 697 addAddressSanitizerPasses); 698 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 699 addAddressSanitizerPasses); 700 } 701 702 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 703 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 704 addKernelAddressSanitizerPasses); 705 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 706 addKernelAddressSanitizerPasses); 707 } 708 709 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 710 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 711 addHWAddressSanitizerPasses); 712 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 713 addHWAddressSanitizerPasses); 714 } 715 716 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 717 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 718 addKernelHWAddressSanitizerPasses); 719 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 720 addKernelHWAddressSanitizerPasses); 721 } 722 723 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 724 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 725 addMemorySanitizerPass); 726 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 727 addMemorySanitizerPass); 728 } 729 730 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 731 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 732 addKernelMemorySanitizerPass); 733 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 734 addKernelMemorySanitizerPass); 735 } 736 737 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 738 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 739 addThreadSanitizerPass); 740 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 741 addThreadSanitizerPass); 742 } 743 744 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 745 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 746 addDataFlowSanitizerPass); 747 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 748 addDataFlowSanitizerPass); 749 } 750 751 // Set up the per-function pass manager. 752 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 753 if (CodeGenOpts.VerifyModule) 754 FPM.add(createVerifierPass()); 755 756 // Set up the per-module pass manager. 757 if (!CodeGenOpts.RewriteMapFiles.empty()) 758 addSymbolRewriterPass(CodeGenOpts, &MPM); 759 760 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 761 // with unique names. 762 if (CodeGenOpts.UniqueInternalLinkageNames) { 763 MPM.add(createUniqueInternalLinkageNamesPass()); 764 } 765 766 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 767 MPM.add(createGCOVProfilerPass(*Options)); 768 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 769 MPM.add(createStripSymbolsPass(true)); 770 } 771 772 if (Optional<InstrProfOptions> Options = 773 getInstrProfOptions(CodeGenOpts, LangOpts)) 774 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 775 776 bool hasIRInstr = false; 777 if (CodeGenOpts.hasProfileIRInstr()) { 778 PMBuilder.EnablePGOInstrGen = true; 779 hasIRInstr = true; 780 } 781 if (CodeGenOpts.hasProfileCSIRInstr()) { 782 assert(!CodeGenOpts.hasProfileCSIRUse() && 783 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 784 "same time"); 785 assert(!hasIRInstr && 786 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 787 "same time"); 788 PMBuilder.EnablePGOCSInstrGen = true; 789 hasIRInstr = true; 790 } 791 if (hasIRInstr) { 792 if (!CodeGenOpts.InstrProfileOutput.empty()) 793 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 794 else 795 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 796 } 797 if (CodeGenOpts.hasProfileIRUse()) { 798 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 799 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 800 } 801 802 if (!CodeGenOpts.SampleProfileFile.empty()) 803 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 804 805 PMBuilder.populateFunctionPassManager(FPM); 806 PMBuilder.populateModulePassManager(MPM); 807 } 808 809 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 810 SmallVector<const char *, 16> BackendArgs; 811 BackendArgs.push_back("clang"); // Fake program name. 812 if (!CodeGenOpts.DebugPass.empty()) { 813 BackendArgs.push_back("-debug-pass"); 814 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 815 } 816 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 817 BackendArgs.push_back("-limit-float-precision"); 818 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 819 } 820 BackendArgs.push_back(nullptr); 821 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 822 BackendArgs.data()); 823 } 824 825 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 826 // Create the TargetMachine for generating code. 827 std::string Error; 828 std::string Triple = TheModule->getTargetTriple(); 829 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 830 if (!TheTarget) { 831 if (MustCreateTM) 832 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 833 return; 834 } 835 836 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 837 std::string FeaturesStr = 838 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 839 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 840 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 841 842 llvm::TargetOptions Options; 843 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 844 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 845 Options, RM, CM, OptLevel)); 846 } 847 848 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 849 BackendAction Action, 850 raw_pwrite_stream &OS, 851 raw_pwrite_stream *DwoOS) { 852 // Add LibraryInfo. 853 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 854 std::unique_ptr<TargetLibraryInfoImpl> TLII( 855 createTLII(TargetTriple, CodeGenOpts)); 856 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 857 858 // Normal mode, emit a .s or .o file by running the code generator. Note, 859 // this also adds codegenerator level optimization passes. 860 CodeGenFileType CGFT = getCodeGenFileType(Action); 861 862 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 863 // "codegen" passes so that it isn't run multiple times when there is 864 // inlining happening. 865 if (CodeGenOpts.OptimizationLevel > 0) 866 CodeGenPasses.add(createObjCARCContractPass()); 867 868 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 869 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 870 Diags.Report(diag::err_fe_unable_to_interface_with_target); 871 return false; 872 } 873 874 return true; 875 } 876 877 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 878 std::unique_ptr<raw_pwrite_stream> OS) { 879 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 880 881 setCommandLineOpts(CodeGenOpts); 882 883 bool UsesCodeGen = (Action != Backend_EmitNothing && 884 Action != Backend_EmitBC && 885 Action != Backend_EmitLL); 886 CreateTargetMachine(UsesCodeGen); 887 888 if (UsesCodeGen && !TM) 889 return; 890 if (TM) 891 TheModule->setDataLayout(TM->createDataLayout()); 892 893 legacy::PassManager PerModulePasses; 894 PerModulePasses.add( 895 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 896 897 legacy::FunctionPassManager PerFunctionPasses(TheModule); 898 PerFunctionPasses.add( 899 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 900 901 CreatePasses(PerModulePasses, PerFunctionPasses); 902 903 legacy::PassManager CodeGenPasses; 904 CodeGenPasses.add( 905 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 906 907 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 908 909 switch (Action) { 910 case Backend_EmitNothing: 911 break; 912 913 case Backend_EmitBC: 914 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 915 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 916 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 917 if (!ThinLinkOS) 918 return; 919 } 920 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 921 CodeGenOpts.EnableSplitLTOUnit); 922 PerModulePasses.add(createWriteThinLTOBitcodePass( 923 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 924 } else { 925 // Emit a module summary by default for Regular LTO except for ld64 926 // targets 927 bool EmitLTOSummary = 928 (CodeGenOpts.PrepareForLTO && 929 !CodeGenOpts.DisableLLVMPasses && 930 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 931 llvm::Triple::Apple); 932 if (EmitLTOSummary) { 933 if (!TheModule->getModuleFlag("ThinLTO")) 934 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 935 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 936 uint32_t(1)); 937 } 938 939 PerModulePasses.add(createBitcodeWriterPass( 940 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 941 } 942 break; 943 944 case Backend_EmitLL: 945 PerModulePasses.add( 946 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 947 break; 948 949 default: 950 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 951 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 952 if (!DwoOS) 953 return; 954 } 955 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 956 DwoOS ? &DwoOS->os() : nullptr)) 957 return; 958 } 959 960 // Before executing passes, print the final values of the LLVM options. 961 cl::PrintOptionValues(); 962 963 // Run passes. For now we do all passes at once, but eventually we 964 // would like to have the option of streaming code generation. 965 966 { 967 PrettyStackTraceString CrashInfo("Per-function optimization"); 968 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 969 970 PerFunctionPasses.doInitialization(); 971 for (Function &F : *TheModule) 972 if (!F.isDeclaration()) 973 PerFunctionPasses.run(F); 974 PerFunctionPasses.doFinalization(); 975 } 976 977 { 978 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 979 llvm::TimeTraceScope TimeScope("PerModulePasses"); 980 PerModulePasses.run(*TheModule); 981 } 982 983 { 984 PrettyStackTraceString CrashInfo("Code generation"); 985 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 986 CodeGenPasses.run(*TheModule); 987 } 988 989 if (ThinLinkOS) 990 ThinLinkOS->keep(); 991 if (DwoOS) 992 DwoOS->keep(); 993 } 994 995 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 996 switch (Opts.OptimizationLevel) { 997 default: 998 llvm_unreachable("Invalid optimization level!"); 999 1000 case 1: 1001 return PassBuilder::OptimizationLevel::O1; 1002 1003 case 2: 1004 switch (Opts.OptimizeSize) { 1005 default: 1006 llvm_unreachable("Invalid optimization level for size!"); 1007 1008 case 0: 1009 return PassBuilder::OptimizationLevel::O2; 1010 1011 case 1: 1012 return PassBuilder::OptimizationLevel::Os; 1013 1014 case 2: 1015 return PassBuilder::OptimizationLevel::Oz; 1016 } 1017 1018 case 3: 1019 return PassBuilder::OptimizationLevel::O3; 1020 } 1021 } 1022 1023 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1024 const LangOptions &LangOpts, 1025 const CodeGenOptions &CodeGenOpts) { 1026 if (!LangOpts.Coroutines) 1027 return; 1028 1029 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1030 1031 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1032 CGPM.addPass(CoroSplitPass()); 1033 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1034 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1035 1036 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1037 } 1038 1039 static void addSanitizersAtO0(ModulePassManager &MPM, 1040 const Triple &TargetTriple, 1041 const LangOptions &LangOpts, 1042 const CodeGenOptions &CodeGenOpts) { 1043 if (CodeGenOpts.SanitizeCoverageType || 1044 CodeGenOpts.SanitizeCoverageIndirectCalls || 1045 CodeGenOpts.SanitizeCoverageTraceCmp) { 1046 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1047 MPM.addPass(ModuleSanitizerCoveragePass( 1048 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1049 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1050 } 1051 1052 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1053 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1054 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1055 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1056 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1057 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1058 MPM.addPass( 1059 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1060 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1061 }; 1062 1063 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1064 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1065 } 1066 1067 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1068 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1069 } 1070 1071 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1072 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1073 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1074 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1075 MPM.addPass(createModuleToFunctionPassAdaptor( 1076 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1077 } 1078 1079 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1080 MPM.addPass(createModuleToFunctionPassAdaptor( 1081 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1082 } 1083 1084 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1085 MPM.addPass(ThreadSanitizerPass()); 1086 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1087 } 1088 } 1089 1090 /// A clean version of `EmitAssembly` that uses the new pass manager. 1091 /// 1092 /// Not all features are currently supported in this system, but where 1093 /// necessary it falls back to the legacy pass manager to at least provide 1094 /// basic functionality. 1095 /// 1096 /// This API is planned to have its functionality finished and then to replace 1097 /// `EmitAssembly` at some point in the future when the default switches. 1098 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1099 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1100 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1101 setCommandLineOpts(CodeGenOpts); 1102 1103 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1104 Action != Backend_EmitBC && 1105 Action != Backend_EmitLL); 1106 CreateTargetMachine(RequiresCodeGen); 1107 1108 if (RequiresCodeGen && !TM) 1109 return; 1110 if (TM) 1111 TheModule->setDataLayout(TM->createDataLayout()); 1112 1113 Optional<PGOOptions> PGOOpt; 1114 1115 if (CodeGenOpts.hasProfileIRInstr()) 1116 // -fprofile-generate. 1117 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1118 ? std::string(DefaultProfileGenName) 1119 : CodeGenOpts.InstrProfileOutput, 1120 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1121 CodeGenOpts.DebugInfoForProfiling); 1122 else if (CodeGenOpts.hasProfileIRUse()) { 1123 // -fprofile-use. 1124 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1125 : PGOOptions::NoCSAction; 1126 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1127 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1128 CSAction, CodeGenOpts.DebugInfoForProfiling); 1129 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1130 // -fprofile-sample-use 1131 PGOOpt = 1132 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1133 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1134 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1135 else if (CodeGenOpts.DebugInfoForProfiling) 1136 // -fdebug-info-for-profiling 1137 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1138 PGOOptions::NoCSAction, true); 1139 1140 // Check to see if we want to generate a CS profile. 1141 if (CodeGenOpts.hasProfileCSIRInstr()) { 1142 assert(!CodeGenOpts.hasProfileCSIRUse() && 1143 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1144 "the same time"); 1145 if (PGOOpt.hasValue()) { 1146 assert(PGOOpt->Action != PGOOptions::IRInstr && 1147 PGOOpt->Action != PGOOptions::SampleUse && 1148 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1149 " pass"); 1150 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1151 ? std::string(DefaultProfileGenName) 1152 : CodeGenOpts.InstrProfileOutput; 1153 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1154 } else 1155 PGOOpt = PGOOptions("", 1156 CodeGenOpts.InstrProfileOutput.empty() 1157 ? std::string(DefaultProfileGenName) 1158 : CodeGenOpts.InstrProfileOutput, 1159 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1160 CodeGenOpts.DebugInfoForProfiling); 1161 } 1162 1163 PipelineTuningOptions PTO; 1164 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1165 // For historical reasons, loop interleaving is set to mirror setting for loop 1166 // unrolling. 1167 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1168 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1169 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1170 // Only enable CGProfilePass when using integrated assembler, since 1171 // non-integrated assemblers don't recognize .cgprofile section. 1172 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1173 PTO.Coroutines = LangOpts.Coroutines; 1174 1175 PassInstrumentationCallbacks PIC; 1176 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1177 SI.registerCallbacks(PIC); 1178 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1179 1180 // Attempt to load pass plugins and register their callbacks with PB. 1181 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1182 auto PassPlugin = PassPlugin::Load(PluginFN); 1183 if (PassPlugin) { 1184 PassPlugin->registerPassBuilderCallbacks(PB); 1185 } else { 1186 Diags.Report(diag::err_fe_unable_to_load_plugin) 1187 << PluginFN << toString(PassPlugin.takeError()); 1188 } 1189 } 1190 #define HANDLE_EXTENSION(Ext) \ 1191 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1192 #include "llvm/Support/Extension.def" 1193 1194 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1195 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1196 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1197 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1198 1199 // Register the AA manager first so that our version is the one used. 1200 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1201 1202 // Register the target library analysis directly and give it a customized 1203 // preset TLI. 1204 Triple TargetTriple(TheModule->getTargetTriple()); 1205 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1206 createTLII(TargetTriple, CodeGenOpts)); 1207 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1208 1209 // Register all the basic analyses with the managers. 1210 PB.registerModuleAnalyses(MAM); 1211 PB.registerCGSCCAnalyses(CGAM); 1212 PB.registerFunctionAnalyses(FAM); 1213 PB.registerLoopAnalyses(LAM); 1214 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1215 1216 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1217 1218 if (!CodeGenOpts.DisableLLVMPasses) { 1219 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1220 bool IsLTO = CodeGenOpts.PrepareForLTO; 1221 1222 if (CodeGenOpts.OptimizationLevel == 0) { 1223 // If we reached here with a non-empty index file name, then the index 1224 // file was empty and we are not performing ThinLTO backend compilation 1225 // (used in testing in a distributed build environment). Drop any the type 1226 // test assume sequences inserted for whole program vtables so that 1227 // codegen doesn't complain. 1228 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1229 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1230 /*ImportSummary=*/nullptr, 1231 /*DropTypeTests=*/true)); 1232 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1233 MPM.addPass(GCOVProfilerPass(*Options)); 1234 if (Optional<InstrProfOptions> Options = 1235 getInstrProfOptions(CodeGenOpts, LangOpts)) 1236 MPM.addPass(InstrProfiling(*Options, false)); 1237 1238 // Build a minimal pipeline based on the semantics required by Clang, 1239 // which is just that always inlining occurs. Further, disable generating 1240 // lifetime intrinsics to avoid enabling further optimizations during 1241 // code generation. 1242 // However, we need to insert lifetime intrinsics to avoid invalid access 1243 // caused by multithreaded coroutines. 1244 MPM.addPass( 1245 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1246 1247 // At -O0, we can still do PGO. Add all the requested passes for 1248 // instrumentation PGO, if requested. 1249 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1250 PGOOpt->Action == PGOOptions::IRUse)) 1251 PB.addPGOInstrPassesForO0( 1252 MPM, CodeGenOpts.DebugPassManager, 1253 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1254 /* IsCS */ false, PGOOpt->ProfileFile, 1255 PGOOpt->ProfileRemappingFile); 1256 1257 // At -O0 we directly run necessary sanitizer passes. 1258 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1259 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1260 1261 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1262 // symbols with unique names. 1263 if (CodeGenOpts.UniqueInternalLinkageNames) { 1264 MPM.addPass(UniqueInternalLinkageNamesPass()); 1265 } 1266 1267 // Lastly, add semantically necessary passes for LTO. 1268 if (IsLTO || IsThinLTO) { 1269 MPM.addPass(CanonicalizeAliasesPass()); 1270 MPM.addPass(NameAnonGlobalPass()); 1271 } 1272 } else { 1273 // Map our optimization levels into one of the distinct levels used to 1274 // configure the pipeline. 1275 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1276 1277 // If we reached here with a non-empty index file name, then the index 1278 // file was empty and we are not performing ThinLTO backend compilation 1279 // (used in testing in a distributed build environment). Drop any the type 1280 // test assume sequences inserted for whole program vtables so that 1281 // codegen doesn't complain. 1282 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1283 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1284 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1285 /*ImportSummary=*/nullptr, 1286 /*DropTypeTests=*/true)); 1287 }); 1288 1289 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1290 MPM.addPass(createModuleToFunctionPassAdaptor( 1291 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1292 }); 1293 1294 // Register callbacks to schedule sanitizer passes at the appropriate part of 1295 // the pipeline. 1296 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1297 PB.registerScalarOptimizerLateEPCallback( 1298 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1299 FPM.addPass(BoundsCheckingPass()); 1300 }); 1301 1302 if (CodeGenOpts.SanitizeCoverageType || 1303 CodeGenOpts.SanitizeCoverageIndirectCalls || 1304 CodeGenOpts.SanitizeCoverageTraceCmp) { 1305 PB.registerOptimizerLastEPCallback( 1306 [this](ModulePassManager &MPM, 1307 PassBuilder::OptimizationLevel Level) { 1308 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1309 MPM.addPass(ModuleSanitizerCoveragePass( 1310 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1311 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1312 }); 1313 } 1314 1315 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1316 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1317 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1318 PB.registerOptimizerLastEPCallback( 1319 [TrackOrigins, Recover](ModulePassManager &MPM, 1320 PassBuilder::OptimizationLevel Level) { 1321 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1322 MPM.addPass(createModuleToFunctionPassAdaptor( 1323 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1324 }); 1325 } 1326 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1327 PB.registerOptimizerLastEPCallback( 1328 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1329 MPM.addPass(ThreadSanitizerPass()); 1330 MPM.addPass( 1331 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1332 }); 1333 } 1334 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1335 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1336 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1337 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1338 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1339 PB.registerOptimizerLastEPCallback( 1340 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1341 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1342 MPM.addPass( 1343 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1344 MPM.addPass(ModuleAddressSanitizerPass( 1345 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1346 UseOdrIndicator)); 1347 MPM.addPass( 1348 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1349 /*CompileKernel=*/false, Recover, UseAfterScope))); 1350 }); 1351 } 1352 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1353 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1354 MPM.addPass(GCOVProfilerPass(*Options)); 1355 }); 1356 if (Optional<InstrProfOptions> Options = 1357 getInstrProfOptions(CodeGenOpts, LangOpts)) 1358 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1359 MPM.addPass(InstrProfiling(*Options, false)); 1360 }); 1361 1362 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1363 // symbols with unique names. 1364 if (CodeGenOpts.UniqueInternalLinkageNames) { 1365 MPM.addPass(UniqueInternalLinkageNamesPass()); 1366 } 1367 1368 if (IsThinLTO) { 1369 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1370 Level, CodeGenOpts.DebugPassManager); 1371 MPM.addPass(CanonicalizeAliasesPass()); 1372 MPM.addPass(NameAnonGlobalPass()); 1373 } else if (IsLTO) { 1374 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1375 CodeGenOpts.DebugPassManager); 1376 MPM.addPass(CanonicalizeAliasesPass()); 1377 MPM.addPass(NameAnonGlobalPass()); 1378 } else { 1379 MPM = PB.buildPerModuleDefaultPipeline(Level, 1380 CodeGenOpts.DebugPassManager); 1381 } 1382 } 1383 1384 if (CodeGenOpts.HeapProf) { 1385 MPM.addPass(createModuleToFunctionPassAdaptor(HeapProfilerPass())); 1386 MPM.addPass(ModuleHeapProfilerPass()); 1387 } 1388 1389 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1390 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1391 MPM.addPass(HWAddressSanitizerPass( 1392 /*CompileKernel=*/false, Recover)); 1393 } 1394 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1395 MPM.addPass(HWAddressSanitizerPass( 1396 /*CompileKernel=*/true, /*Recover=*/true)); 1397 } 1398 1399 if (CodeGenOpts.OptimizationLevel == 0) { 1400 // FIXME: the backends do not handle matrix intrinsics currently. Make 1401 // sure they are also lowered in O0. A lightweight version of the pass 1402 // should run in the backend pipeline on demand. 1403 if (LangOpts.MatrixTypes) 1404 MPM.addPass( 1405 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass())); 1406 1407 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1408 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1409 } 1410 } 1411 1412 // FIXME: We still use the legacy pass manager to do code generation. We 1413 // create that pass manager here and use it as needed below. 1414 legacy::PassManager CodeGenPasses; 1415 bool NeedCodeGen = false; 1416 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1417 1418 // Append any output we need to the pass manager. 1419 switch (Action) { 1420 case Backend_EmitNothing: 1421 break; 1422 1423 case Backend_EmitBC: 1424 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1425 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1426 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1427 if (!ThinLinkOS) 1428 return; 1429 } 1430 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1431 CodeGenOpts.EnableSplitLTOUnit); 1432 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1433 : nullptr)); 1434 } else { 1435 // Emit a module summary by default for Regular LTO except for ld64 1436 // targets 1437 bool EmitLTOSummary = 1438 (CodeGenOpts.PrepareForLTO && 1439 !CodeGenOpts.DisableLLVMPasses && 1440 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1441 llvm::Triple::Apple); 1442 if (EmitLTOSummary) { 1443 if (!TheModule->getModuleFlag("ThinLTO")) 1444 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1445 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1446 uint32_t(1)); 1447 } 1448 MPM.addPass( 1449 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1450 } 1451 break; 1452 1453 case Backend_EmitLL: 1454 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1455 break; 1456 1457 case Backend_EmitAssembly: 1458 case Backend_EmitMCNull: 1459 case Backend_EmitObj: 1460 NeedCodeGen = true; 1461 CodeGenPasses.add( 1462 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1463 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1464 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1465 if (!DwoOS) 1466 return; 1467 } 1468 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1469 DwoOS ? &DwoOS->os() : nullptr)) 1470 // FIXME: Should we handle this error differently? 1471 return; 1472 break; 1473 } 1474 1475 // Before executing passes, print the final values of the LLVM options. 1476 cl::PrintOptionValues(); 1477 1478 // Now that we have all of the passes ready, run them. 1479 { 1480 PrettyStackTraceString CrashInfo("Optimizer"); 1481 MPM.run(*TheModule, MAM); 1482 } 1483 1484 // Now if needed, run the legacy PM for codegen. 1485 if (NeedCodeGen) { 1486 PrettyStackTraceString CrashInfo("Code generation"); 1487 CodeGenPasses.run(*TheModule); 1488 } 1489 1490 if (ThinLinkOS) 1491 ThinLinkOS->keep(); 1492 if (DwoOS) 1493 DwoOS->keep(); 1494 } 1495 1496 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1497 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1498 if (!BMsOrErr) 1499 return BMsOrErr.takeError(); 1500 1501 // The bitcode file may contain multiple modules, we want the one that is 1502 // marked as being the ThinLTO module. 1503 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1504 return *Bm; 1505 1506 return make_error<StringError>("Could not find module summary", 1507 inconvertibleErrorCode()); 1508 } 1509 1510 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1511 for (BitcodeModule &BM : BMs) { 1512 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1513 if (LTOInfo && LTOInfo->IsThinLTO) 1514 return &BM; 1515 } 1516 return nullptr; 1517 } 1518 1519 static void runThinLTOBackend( 1520 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1521 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1522 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1523 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1524 std::string ProfileRemapping, BackendAction Action) { 1525 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1526 ModuleToDefinedGVSummaries; 1527 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1528 1529 setCommandLineOpts(CGOpts); 1530 1531 // We can simply import the values mentioned in the combined index, since 1532 // we should only invoke this using the individual indexes written out 1533 // via a WriteIndexesThinBackend. 1534 FunctionImporter::ImportMapTy ImportList; 1535 for (auto &GlobalList : *CombinedIndex) { 1536 // Ignore entries for undefined references. 1537 if (GlobalList.second.SummaryList.empty()) 1538 continue; 1539 1540 auto GUID = GlobalList.first; 1541 for (auto &Summary : GlobalList.second.SummaryList) { 1542 // Skip the summaries for the importing module. These are included to 1543 // e.g. record required linkage changes. 1544 if (Summary->modulePath() == M->getModuleIdentifier()) 1545 continue; 1546 // Add an entry to provoke importing by thinBackend. 1547 ImportList[Summary->modulePath()].insert(GUID); 1548 } 1549 } 1550 1551 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1552 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1553 1554 for (auto &I : ImportList) { 1555 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1556 llvm::MemoryBuffer::getFile(I.first()); 1557 if (!MBOrErr) { 1558 errs() << "Error loading imported file '" << I.first() 1559 << "': " << MBOrErr.getError().message() << "\n"; 1560 return; 1561 } 1562 1563 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1564 if (!BMOrErr) { 1565 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1566 errs() << "Error loading imported file '" << I.first() 1567 << "': " << EIB.message() << '\n'; 1568 }); 1569 return; 1570 } 1571 ModuleMap.insert({I.first(), *BMOrErr}); 1572 1573 OwnedImports.push_back(std::move(*MBOrErr)); 1574 } 1575 auto AddStream = [&](size_t Task) { 1576 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1577 }; 1578 lto::Config Conf; 1579 if (CGOpts.SaveTempsFilePrefix != "") { 1580 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1581 /* UseInputModulePath */ false)) { 1582 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1583 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1584 << '\n'; 1585 }); 1586 } 1587 } 1588 Conf.CPU = TOpts.CPU; 1589 Conf.CodeModel = getCodeModel(CGOpts); 1590 Conf.MAttrs = TOpts.Features; 1591 Conf.RelocModel = CGOpts.RelocationModel; 1592 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1593 Conf.OptLevel = CGOpts.OptimizationLevel; 1594 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1595 Conf.SampleProfile = std::move(SampleProfile); 1596 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1597 // For historical reasons, loop interleaving is set to mirror setting for loop 1598 // unrolling. 1599 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1600 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1601 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1602 // Only enable CGProfilePass when using integrated assembler, since 1603 // non-integrated assemblers don't recognize .cgprofile section. 1604 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1605 1606 // Context sensitive profile. 1607 if (CGOpts.hasProfileCSIRInstr()) { 1608 Conf.RunCSIRInstr = true; 1609 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1610 } else if (CGOpts.hasProfileCSIRUse()) { 1611 Conf.RunCSIRInstr = false; 1612 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1613 } 1614 1615 Conf.ProfileRemapping = std::move(ProfileRemapping); 1616 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1617 Conf.DebugPassManager = CGOpts.DebugPassManager; 1618 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1619 Conf.RemarksFilename = CGOpts.OptRecordFile; 1620 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1621 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1622 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1623 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1624 switch (Action) { 1625 case Backend_EmitNothing: 1626 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1627 return false; 1628 }; 1629 break; 1630 case Backend_EmitLL: 1631 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1632 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1633 return false; 1634 }; 1635 break; 1636 case Backend_EmitBC: 1637 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1638 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1639 return false; 1640 }; 1641 break; 1642 default: 1643 Conf.CGFileType = getCodeGenFileType(Action); 1644 break; 1645 } 1646 if (Error E = thinBackend( 1647 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1648 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1649 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1650 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1651 }); 1652 } 1653 } 1654 1655 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1656 const HeaderSearchOptions &HeaderOpts, 1657 const CodeGenOptions &CGOpts, 1658 const clang::TargetOptions &TOpts, 1659 const LangOptions &LOpts, 1660 const llvm::DataLayout &TDesc, Module *M, 1661 BackendAction Action, 1662 std::unique_ptr<raw_pwrite_stream> OS) { 1663 1664 llvm::TimeTraceScope TimeScope("Backend"); 1665 1666 std::unique_ptr<llvm::Module> EmptyModule; 1667 if (!CGOpts.ThinLTOIndexFile.empty()) { 1668 // If we are performing a ThinLTO importing compile, load the function index 1669 // into memory and pass it into runThinLTOBackend, which will run the 1670 // function importer and invoke LTO passes. 1671 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1672 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1673 /*IgnoreEmptyThinLTOIndexFile*/true); 1674 if (!IndexOrErr) { 1675 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1676 "Error loading index file '" + 1677 CGOpts.ThinLTOIndexFile + "': "); 1678 return; 1679 } 1680 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1681 // A null CombinedIndex means we should skip ThinLTO compilation 1682 // (LLVM will optionally ignore empty index files, returning null instead 1683 // of an error). 1684 if (CombinedIndex) { 1685 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1686 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1687 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1688 CGOpts.ProfileRemappingFile, Action); 1689 return; 1690 } 1691 // Distributed indexing detected that nothing from the module is needed 1692 // for the final linking. So we can skip the compilation. We sill need to 1693 // output an empty object file to make sure that a linker does not fail 1694 // trying to read it. Also for some features, like CFI, we must skip 1695 // the compilation as CombinedIndex does not contain all required 1696 // information. 1697 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1698 EmptyModule->setTargetTriple(M->getTargetTriple()); 1699 M = EmptyModule.get(); 1700 } 1701 } 1702 1703 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1704 1705 if (CGOpts.ExperimentalNewPassManager) 1706 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1707 else 1708 AsmHelper.EmitAssembly(Action, std::move(OS)); 1709 1710 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1711 // DataLayout. 1712 if (AsmHelper.TM) { 1713 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1714 if (DLDesc != TDesc.getStringRepresentation()) { 1715 unsigned DiagID = Diags.getCustomDiagID( 1716 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1717 "expected target description '%1'"); 1718 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1719 } 1720 } 1721 } 1722 1723 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1724 // __LLVM,__bitcode section. 1725 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1726 llvm::MemoryBufferRef Buf) { 1727 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1728 return; 1729 llvm::EmbedBitcodeInModule( 1730 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1731 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1732 &CGOpts.CmdArgs); 1733 } 1734