1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 77 #include "llvm/Transforms/ObjCARC.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/EarlyCSE.h" 80 #include "llvm/Transforms/Scalar/GVN.h" 81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 82 #include "llvm/Transforms/Utils.h" 83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 84 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 85 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 86 #include "llvm/Transforms/Utils/SymbolRewriter.h" 87 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 88 #include <memory> 89 using namespace clang; 90 using namespace llvm; 91 92 #define HANDLE_EXTENSION(Ext) \ 93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 94 #include "llvm/Support/Extension.def" 95 96 namespace { 97 98 // Default filename used for profile generation. 99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 100 101 class EmitAssemblyHelper { 102 DiagnosticsEngine &Diags; 103 const HeaderSearchOptions &HSOpts; 104 const CodeGenOptions &CodeGenOpts; 105 const clang::TargetOptions &TargetOpts; 106 const LangOptions &LangOpts; 107 Module *TheModule; 108 109 Timer CodeGenerationTime; 110 111 std::unique_ptr<raw_pwrite_stream> OS; 112 113 TargetIRAnalysis getTargetIRAnalysis() const { 114 if (TM) 115 return TM->getTargetIRAnalysis(); 116 117 return TargetIRAnalysis(); 118 } 119 120 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 121 122 /// Generates the TargetMachine. 123 /// Leaves TM unchanged if it is unable to create the target machine. 124 /// Some of our clang tests specify triples which are not built 125 /// into clang. This is okay because these tests check the generated 126 /// IR, and they require DataLayout which depends on the triple. 127 /// In this case, we allow this method to fail and not report an error. 128 /// When MustCreateTM is used, we print an error if we are unable to load 129 /// the requested target. 130 void CreateTargetMachine(bool MustCreateTM); 131 132 /// Add passes necessary to emit assembly or LLVM IR. 133 /// 134 /// \return True on success. 135 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 136 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 137 138 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 139 std::error_code EC; 140 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 141 llvm::sys::fs::OF_None); 142 if (EC) { 143 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 144 F.reset(); 145 } 146 return F; 147 } 148 149 public: 150 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 151 const HeaderSearchOptions &HeaderSearchOpts, 152 const CodeGenOptions &CGOpts, 153 const clang::TargetOptions &TOpts, 154 const LangOptions &LOpts, Module *M) 155 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 156 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 157 CodeGenerationTime("codegen", "Code Generation Time") {} 158 159 ~EmitAssemblyHelper() { 160 if (CodeGenOpts.DisableFree) 161 BuryPointer(std::move(TM)); 162 } 163 164 std::unique_ptr<TargetMachine> TM; 165 166 void EmitAssembly(BackendAction Action, 167 std::unique_ptr<raw_pwrite_stream> OS); 168 169 void EmitAssemblyWithNewPassManager(BackendAction Action, 170 std::unique_ptr<raw_pwrite_stream> OS); 171 }; 172 173 // We need this wrapper to access LangOpts and CGOpts from extension functions 174 // that we add to the PassManagerBuilder. 175 class PassManagerBuilderWrapper : public PassManagerBuilder { 176 public: 177 PassManagerBuilderWrapper(const Triple &TargetTriple, 178 const CodeGenOptions &CGOpts, 179 const LangOptions &LangOpts) 180 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 181 LangOpts(LangOpts) {} 182 const Triple &getTargetTriple() const { return TargetTriple; } 183 const CodeGenOptions &getCGOpts() const { return CGOpts; } 184 const LangOptions &getLangOpts() const { return LangOpts; } 185 186 private: 187 const Triple &TargetTriple; 188 const CodeGenOptions &CGOpts; 189 const LangOptions &LangOpts; 190 }; 191 } 192 193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCAPElimPass()); 196 } 197 198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCExpandPass()); 201 } 202 203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 204 if (Builder.OptLevel > 0) 205 PM.add(createObjCARCOptPass()); 206 } 207 208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createAddDiscriminatorsPass()); 211 } 212 213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 214 legacy::PassManagerBase &PM) { 215 PM.add(createBoundsCheckingLegacyPass()); 216 } 217 218 static SanitizerCoverageOptions 219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 220 SanitizerCoverageOptions Opts; 221 Opts.CoverageType = 222 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 223 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 224 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 225 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 226 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 227 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 228 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 229 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 230 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 231 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 232 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 233 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 234 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 235 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 236 return Opts; 237 } 238 239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper &>(Builder); 243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 244 auto Opts = getSancovOptsFromCGOpts(CGOpts); 245 PM.add(createModuleSanitizerCoverageLegacyPassPass( 246 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 247 CGOpts.SanitizeCoverageBlocklistFiles)); 248 } 249 250 // Check if ASan should use GC-friendly instrumentation for globals. 251 // First of all, there is no point if -fdata-sections is off (expect for MachO, 252 // where this is not a factor). Also, on ELF this feature requires an assembler 253 // extension that only works with -integrated-as at the moment. 254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 255 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 256 return false; 257 switch (T.getObjectFormat()) { 258 case Triple::MachO: 259 case Triple::COFF: 260 return true; 261 case Triple::ELF: 262 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 263 case Triple::GOFF: 264 llvm::report_fatal_error("ASan not implemented for GOFF"); 265 case Triple::XCOFF: 266 llvm::report_fatal_error("ASan not implemented for XCOFF."); 267 case Triple::Wasm: 268 case Triple::UnknownObjectFormat: 269 break; 270 } 271 return false; 272 } 273 274 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createMemProfilerFunctionPass()); 277 PM.add(createModuleMemProfilerLegacyPassPass()); 278 } 279 280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper&>(Builder); 284 const Triple &T = BuilderWrapper.getTargetTriple(); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 287 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 288 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 289 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 290 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtorKind(); 291 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 292 UseAfterScope)); 293 PM.add(createModuleAddressSanitizerLegacyPassPass( 294 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 295 DestructorKind)); 296 } 297 298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 299 legacy::PassManagerBase &PM) { 300 PM.add(createAddressSanitizerFunctionPass( 301 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 302 PM.add(createModuleAddressSanitizerLegacyPassPass( 303 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 304 /*UseOdrIndicator*/ false)); 305 } 306 307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 308 legacy::PassManagerBase &PM) { 309 const PassManagerBuilderWrapper &BuilderWrapper = 310 static_cast<const PassManagerBuilderWrapper &>(Builder); 311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 313 PM.add( 314 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 315 } 316 317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 318 legacy::PassManagerBase &PM) { 319 PM.add(createHWAddressSanitizerLegacyPassPass( 320 /*CompileKernel*/ true, /*Recover*/ true)); 321 } 322 323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 324 legacy::PassManagerBase &PM, 325 bool CompileKernel) { 326 const PassManagerBuilderWrapper &BuilderWrapper = 327 static_cast<const PassManagerBuilderWrapper&>(Builder); 328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 329 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 330 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 331 PM.add(createMemorySanitizerLegacyPassPass( 332 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 333 334 // MemorySanitizer inserts complex instrumentation that mostly follows 335 // the logic of the original code, but operates on "shadow" values. 336 // It can benefit from re-running some general purpose optimization passes. 337 if (Builder.OptLevel > 0) { 338 PM.add(createEarlyCSEPass()); 339 PM.add(createReassociatePass()); 340 PM.add(createLICMPass()); 341 PM.add(createGVNPass()); 342 PM.add(createInstructionCombiningPass()); 343 PM.add(createDeadStoreEliminationPass()); 344 } 345 } 346 347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 350 } 351 352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 353 legacy::PassManagerBase &PM) { 354 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 355 } 356 357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 358 legacy::PassManagerBase &PM) { 359 PM.add(createThreadSanitizerLegacyPassPass()); 360 } 361 362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 363 legacy::PassManagerBase &PM) { 364 const PassManagerBuilderWrapper &BuilderWrapper = 365 static_cast<const PassManagerBuilderWrapper&>(Builder); 366 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 367 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 368 } 369 370 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 371 legacy::PassManagerBase &PM) { 372 PM.add(createEntryExitInstrumenterPass()); 373 } 374 375 static void 376 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 377 legacy::PassManagerBase &PM) { 378 PM.add(createPostInlineEntryExitInstrumenterPass()); 379 } 380 381 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 382 const CodeGenOptions &CodeGenOpts) { 383 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 384 385 switch (CodeGenOpts.getVecLib()) { 386 case CodeGenOptions::Accelerate: 387 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 388 break; 389 case CodeGenOptions::LIBMVEC: 390 switch(TargetTriple.getArch()) { 391 default: 392 break; 393 case llvm::Triple::x86_64: 394 TLII->addVectorizableFunctionsFromVecLib 395 (TargetLibraryInfoImpl::LIBMVEC_X86); 396 break; 397 } 398 break; 399 case CodeGenOptions::MASSV: 400 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 401 break; 402 case CodeGenOptions::SVML: 403 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 404 break; 405 default: 406 break; 407 } 408 return TLII; 409 } 410 411 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 412 legacy::PassManager *MPM) { 413 llvm::SymbolRewriter::RewriteDescriptorList DL; 414 415 llvm::SymbolRewriter::RewriteMapParser MapParser; 416 for (const auto &MapFile : Opts.RewriteMapFiles) 417 MapParser.parse(MapFile, &DL); 418 419 MPM->add(createRewriteSymbolsPass(DL)); 420 } 421 422 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 423 switch (CodeGenOpts.OptimizationLevel) { 424 default: 425 llvm_unreachable("Invalid optimization level!"); 426 case 0: 427 return CodeGenOpt::None; 428 case 1: 429 return CodeGenOpt::Less; 430 case 2: 431 return CodeGenOpt::Default; // O2/Os/Oz 432 case 3: 433 return CodeGenOpt::Aggressive; 434 } 435 } 436 437 static Optional<llvm::CodeModel::Model> 438 getCodeModel(const CodeGenOptions &CodeGenOpts) { 439 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 440 .Case("tiny", llvm::CodeModel::Tiny) 441 .Case("small", llvm::CodeModel::Small) 442 .Case("kernel", llvm::CodeModel::Kernel) 443 .Case("medium", llvm::CodeModel::Medium) 444 .Case("large", llvm::CodeModel::Large) 445 .Case("default", ~1u) 446 .Default(~0u); 447 assert(CodeModel != ~0u && "invalid code model!"); 448 if (CodeModel == ~1u) 449 return None; 450 return static_cast<llvm::CodeModel::Model>(CodeModel); 451 } 452 453 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 454 if (Action == Backend_EmitObj) 455 return CGFT_ObjectFile; 456 else if (Action == Backend_EmitMCNull) 457 return CGFT_Null; 458 else { 459 assert(Action == Backend_EmitAssembly && "Invalid action!"); 460 return CGFT_AssemblyFile; 461 } 462 } 463 464 static bool initTargetOptions(DiagnosticsEngine &Diags, 465 llvm::TargetOptions &Options, 466 const CodeGenOptions &CodeGenOpts, 467 const clang::TargetOptions &TargetOpts, 468 const LangOptions &LangOpts, 469 const HeaderSearchOptions &HSOpts) { 470 switch (LangOpts.getThreadModel()) { 471 case LangOptions::ThreadModelKind::POSIX: 472 Options.ThreadModel = llvm::ThreadModel::POSIX; 473 break; 474 case LangOptions::ThreadModelKind::Single: 475 Options.ThreadModel = llvm::ThreadModel::Single; 476 break; 477 } 478 479 // Set float ABI type. 480 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 481 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 482 "Invalid Floating Point ABI!"); 483 Options.FloatABIType = 484 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 485 .Case("soft", llvm::FloatABI::Soft) 486 .Case("softfp", llvm::FloatABI::Soft) 487 .Case("hard", llvm::FloatABI::Hard) 488 .Default(llvm::FloatABI::Default); 489 490 // Set FP fusion mode. 491 switch (LangOpts.getDefaultFPContractMode()) { 492 case LangOptions::FPM_Off: 493 // Preserve any contraction performed by the front-end. (Strict performs 494 // splitting of the muladd intrinsic in the backend.) 495 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 496 break; 497 case LangOptions::FPM_On: 498 case LangOptions::FPM_FastHonorPragmas: 499 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 500 break; 501 case LangOptions::FPM_Fast: 502 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 503 break; 504 } 505 506 Options.BinutilsVersion = 507 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 508 Options.UseInitArray = CodeGenOpts.UseInitArray; 509 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 510 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 511 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 512 513 // Set EABI version. 514 Options.EABIVersion = TargetOpts.EABIVersion; 515 516 if (LangOpts.hasSjLjExceptions()) 517 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 518 if (LangOpts.hasSEHExceptions()) 519 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 520 if (LangOpts.hasDWARFExceptions()) 521 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 522 if (LangOpts.hasWasmExceptions()) 523 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 524 525 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 526 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 527 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 528 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 529 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 530 531 Options.BBSections = 532 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 533 .Case("all", llvm::BasicBlockSection::All) 534 .Case("labels", llvm::BasicBlockSection::Labels) 535 .StartsWith("list=", llvm::BasicBlockSection::List) 536 .Case("none", llvm::BasicBlockSection::None) 537 .Default(llvm::BasicBlockSection::None); 538 539 if (Options.BBSections == llvm::BasicBlockSection::List) { 540 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 541 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 542 if (!MBOrErr) { 543 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 544 << MBOrErr.getError().message(); 545 return false; 546 } 547 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 548 } 549 550 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 551 Options.FunctionSections = CodeGenOpts.FunctionSections; 552 Options.DataSections = CodeGenOpts.DataSections; 553 Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility; 554 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 555 Options.UniqueBasicBlockSectionNames = 556 CodeGenOpts.UniqueBasicBlockSectionNames; 557 Options.StackProtectorGuard = 558 llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts 559 .StackProtectorGuard) 560 .Case("tls", llvm::StackProtectorGuards::TLS) 561 .Case("global", llvm::StackProtectorGuards::Global) 562 .Default(llvm::StackProtectorGuards::None); 563 Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset; 564 Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg; 565 Options.TLSSize = CodeGenOpts.TLSSize; 566 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 567 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 568 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 569 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 570 Options.EmitAddrsig = CodeGenOpts.Addrsig; 571 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 572 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 573 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 574 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling; 575 Options.ValueTrackingVariableLocations = 576 CodeGenOpts.ValueTrackingVariableLocations; 577 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 578 579 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 580 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 581 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 582 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 583 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 584 Options.MCOptions.MCIncrementalLinkerCompatible = 585 CodeGenOpts.IncrementalLinkerCompatible; 586 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 587 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 588 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 589 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 590 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 591 Options.MCOptions.ABIName = TargetOpts.ABI; 592 for (const auto &Entry : HSOpts.UserEntries) 593 if (!Entry.IsFramework && 594 (Entry.Group == frontend::IncludeDirGroup::Quoted || 595 Entry.Group == frontend::IncludeDirGroup::Angled || 596 Entry.Group == frontend::IncludeDirGroup::System)) 597 Options.MCOptions.IASSearchPaths.push_back( 598 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 599 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 600 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 601 602 return true; 603 } 604 605 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 606 const LangOptions &LangOpts) { 607 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 608 return None; 609 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 610 // LLVM's -default-gcov-version flag is set to something invalid. 611 GCOVOptions Options; 612 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 613 Options.EmitData = CodeGenOpts.EmitGcovArcs; 614 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 615 Options.NoRedZone = CodeGenOpts.DisableRedZone; 616 Options.Filter = CodeGenOpts.ProfileFilterFiles; 617 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 618 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 619 return Options; 620 } 621 622 static Optional<InstrProfOptions> 623 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 624 const LangOptions &LangOpts) { 625 if (!CodeGenOpts.hasProfileClangInstr()) 626 return None; 627 InstrProfOptions Options; 628 Options.NoRedZone = CodeGenOpts.DisableRedZone; 629 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 630 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 631 return Options; 632 } 633 634 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 635 legacy::FunctionPassManager &FPM) { 636 // Handle disabling of all LLVM passes, where we want to preserve the 637 // internal module before any optimization. 638 if (CodeGenOpts.DisableLLVMPasses) 639 return; 640 641 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 642 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 643 // are inserted before PMBuilder ones - they'd get the default-constructed 644 // TLI with an unknown target otherwise. 645 Triple TargetTriple(TheModule->getTargetTriple()); 646 std::unique_ptr<TargetLibraryInfoImpl> TLII( 647 createTLII(TargetTriple, CodeGenOpts)); 648 649 // If we reached here with a non-empty index file name, then the index file 650 // was empty and we are not performing ThinLTO backend compilation (used in 651 // testing in a distributed build environment). Drop any the type test 652 // assume sequences inserted for whole program vtables so that codegen doesn't 653 // complain. 654 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 655 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 656 /*ImportSummary=*/nullptr, 657 /*DropTypeTests=*/true)); 658 659 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 660 661 // At O0 and O1 we only run the always inliner which is more efficient. At 662 // higher optimization levels we run the normal inliner. 663 if (CodeGenOpts.OptimizationLevel <= 1) { 664 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 665 !CodeGenOpts.DisableLifetimeMarkers) || 666 LangOpts.Coroutines); 667 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 668 } else { 669 // We do not want to inline hot callsites for SamplePGO module-summary build 670 // because profile annotation will happen again in ThinLTO backend, and we 671 // want the IR of the hot path to match the profile. 672 PMBuilder.Inliner = createFunctionInliningPass( 673 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 674 (!CodeGenOpts.SampleProfileFile.empty() && 675 CodeGenOpts.PrepareForThinLTO)); 676 } 677 678 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 679 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 680 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 681 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 682 // Only enable CGProfilePass when using integrated assembler, since 683 // non-integrated assemblers don't recognize .cgprofile section. 684 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 685 686 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 687 // Loop interleaving in the loop vectorizer has historically been set to be 688 // enabled when loop unrolling is enabled. 689 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 690 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 691 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 692 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 693 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 694 695 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 696 697 if (TM) 698 TM->adjustPassManager(PMBuilder); 699 700 if (CodeGenOpts.DebugInfoForProfiling || 701 !CodeGenOpts.SampleProfileFile.empty()) 702 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 703 addAddDiscriminatorsPass); 704 705 // In ObjC ARC mode, add the main ARC optimization passes. 706 if (LangOpts.ObjCAutoRefCount) { 707 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 708 addObjCARCExpandPass); 709 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 710 addObjCARCAPElimPass); 711 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 712 addObjCARCOptPass); 713 } 714 715 if (LangOpts.Coroutines) 716 addCoroutinePassesToExtensionPoints(PMBuilder); 717 718 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 719 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 720 addMemProfilerPasses); 721 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 722 addMemProfilerPasses); 723 } 724 725 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 726 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 727 addBoundsCheckingPass); 728 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 729 addBoundsCheckingPass); 730 } 731 732 if (CodeGenOpts.SanitizeCoverageType || 733 CodeGenOpts.SanitizeCoverageIndirectCalls || 734 CodeGenOpts.SanitizeCoverageTraceCmp) { 735 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 736 addSanitizerCoveragePass); 737 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 738 addSanitizerCoveragePass); 739 } 740 741 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 742 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 743 addAddressSanitizerPasses); 744 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 745 addAddressSanitizerPasses); 746 } 747 748 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 749 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 750 addKernelAddressSanitizerPasses); 751 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 752 addKernelAddressSanitizerPasses); 753 } 754 755 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 756 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 757 addHWAddressSanitizerPasses); 758 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 759 addHWAddressSanitizerPasses); 760 } 761 762 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 763 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 764 addKernelHWAddressSanitizerPasses); 765 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 766 addKernelHWAddressSanitizerPasses); 767 } 768 769 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 770 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 771 addMemorySanitizerPass); 772 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 773 addMemorySanitizerPass); 774 } 775 776 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 777 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 778 addKernelMemorySanitizerPass); 779 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 780 addKernelMemorySanitizerPass); 781 } 782 783 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 784 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 785 addThreadSanitizerPass); 786 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 787 addThreadSanitizerPass); 788 } 789 790 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 791 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 792 addDataFlowSanitizerPass); 793 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 794 addDataFlowSanitizerPass); 795 } 796 797 if (CodeGenOpts.InstrumentFunctions || 798 CodeGenOpts.InstrumentFunctionEntryBare || 799 CodeGenOpts.InstrumentFunctionsAfterInlining || 800 CodeGenOpts.InstrumentForProfiling) { 801 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 802 addEntryExitInstrumentationPass); 803 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 804 addEntryExitInstrumentationPass); 805 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 806 addPostInlineEntryExitInstrumentationPass); 807 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 808 addPostInlineEntryExitInstrumentationPass); 809 } 810 811 // Set up the per-function pass manager. 812 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 813 if (CodeGenOpts.VerifyModule) 814 FPM.add(createVerifierPass()); 815 816 // Set up the per-module pass manager. 817 if (!CodeGenOpts.RewriteMapFiles.empty()) 818 addSymbolRewriterPass(CodeGenOpts, &MPM); 819 820 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 821 // with unique names. 822 if (CodeGenOpts.UniqueInternalLinkageNames) { 823 MPM.add(createUniqueInternalLinkageNamesPass()); 824 } 825 826 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 827 MPM.add(createGCOVProfilerPass(*Options)); 828 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 829 MPM.add(createStripSymbolsPass(true)); 830 } 831 832 if (Optional<InstrProfOptions> Options = 833 getInstrProfOptions(CodeGenOpts, LangOpts)) 834 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 835 836 bool hasIRInstr = false; 837 if (CodeGenOpts.hasProfileIRInstr()) { 838 PMBuilder.EnablePGOInstrGen = true; 839 hasIRInstr = true; 840 } 841 if (CodeGenOpts.hasProfileCSIRInstr()) { 842 assert(!CodeGenOpts.hasProfileCSIRUse() && 843 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 844 "same time"); 845 assert(!hasIRInstr && 846 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 847 "same time"); 848 PMBuilder.EnablePGOCSInstrGen = true; 849 hasIRInstr = true; 850 } 851 if (hasIRInstr) { 852 if (!CodeGenOpts.InstrProfileOutput.empty()) 853 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 854 else 855 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 856 } 857 if (CodeGenOpts.hasProfileIRUse()) { 858 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 859 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 860 } 861 862 if (!CodeGenOpts.SampleProfileFile.empty()) 863 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 864 865 PMBuilder.populateFunctionPassManager(FPM); 866 PMBuilder.populateModulePassManager(MPM); 867 } 868 869 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 870 SmallVector<const char *, 16> BackendArgs; 871 BackendArgs.push_back("clang"); // Fake program name. 872 if (!CodeGenOpts.DebugPass.empty()) { 873 BackendArgs.push_back("-debug-pass"); 874 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 875 } 876 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 877 BackendArgs.push_back("-limit-float-precision"); 878 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 879 } 880 BackendArgs.push_back(nullptr); 881 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 882 BackendArgs.data()); 883 } 884 885 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 886 // Create the TargetMachine for generating code. 887 std::string Error; 888 std::string Triple = TheModule->getTargetTriple(); 889 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 890 if (!TheTarget) { 891 if (MustCreateTM) 892 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 893 return; 894 } 895 896 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 897 std::string FeaturesStr = 898 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 899 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 900 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 901 902 llvm::TargetOptions Options; 903 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 904 HSOpts)) 905 return; 906 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 907 Options, RM, CM, OptLevel)); 908 } 909 910 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 911 BackendAction Action, 912 raw_pwrite_stream &OS, 913 raw_pwrite_stream *DwoOS) { 914 // Add LibraryInfo. 915 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 916 std::unique_ptr<TargetLibraryInfoImpl> TLII( 917 createTLII(TargetTriple, CodeGenOpts)); 918 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 919 920 // Normal mode, emit a .s or .o file by running the code generator. Note, 921 // this also adds codegenerator level optimization passes. 922 CodeGenFileType CGFT = getCodeGenFileType(Action); 923 924 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 925 // "codegen" passes so that it isn't run multiple times when there is 926 // inlining happening. 927 if (CodeGenOpts.OptimizationLevel > 0) 928 CodeGenPasses.add(createObjCARCContractPass()); 929 930 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 931 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 932 Diags.Report(diag::err_fe_unable_to_interface_with_target); 933 return false; 934 } 935 936 return true; 937 } 938 939 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 940 std::unique_ptr<raw_pwrite_stream> OS) { 941 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 942 943 setCommandLineOpts(CodeGenOpts); 944 945 bool UsesCodeGen = (Action != Backend_EmitNothing && 946 Action != Backend_EmitBC && 947 Action != Backend_EmitLL); 948 CreateTargetMachine(UsesCodeGen); 949 950 if (UsesCodeGen && !TM) 951 return; 952 if (TM) 953 TheModule->setDataLayout(TM->createDataLayout()); 954 955 legacy::PassManager PerModulePasses; 956 PerModulePasses.add( 957 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 958 959 legacy::FunctionPassManager PerFunctionPasses(TheModule); 960 PerFunctionPasses.add( 961 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 962 963 CreatePasses(PerModulePasses, PerFunctionPasses); 964 965 legacy::PassManager CodeGenPasses; 966 CodeGenPasses.add( 967 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 968 969 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 970 971 switch (Action) { 972 case Backend_EmitNothing: 973 break; 974 975 case Backend_EmitBC: 976 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 977 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 978 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 979 if (!ThinLinkOS) 980 return; 981 } 982 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 983 CodeGenOpts.EnableSplitLTOUnit); 984 PerModulePasses.add(createWriteThinLTOBitcodePass( 985 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 986 } else { 987 // Emit a module summary by default for Regular LTO except for ld64 988 // targets 989 bool EmitLTOSummary = 990 (CodeGenOpts.PrepareForLTO && 991 !CodeGenOpts.DisableLLVMPasses && 992 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 993 llvm::Triple::Apple); 994 if (EmitLTOSummary) { 995 if (!TheModule->getModuleFlag("ThinLTO")) 996 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 997 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 998 uint32_t(1)); 999 } 1000 1001 PerModulePasses.add(createBitcodeWriterPass( 1002 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1003 } 1004 break; 1005 1006 case Backend_EmitLL: 1007 PerModulePasses.add( 1008 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1009 break; 1010 1011 default: 1012 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1013 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1014 if (!DwoOS) 1015 return; 1016 } 1017 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1018 DwoOS ? &DwoOS->os() : nullptr)) 1019 return; 1020 } 1021 1022 // Before executing passes, print the final values of the LLVM options. 1023 cl::PrintOptionValues(); 1024 1025 // Run passes. For now we do all passes at once, but eventually we 1026 // would like to have the option of streaming code generation. 1027 1028 { 1029 PrettyStackTraceString CrashInfo("Per-function optimization"); 1030 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1031 1032 PerFunctionPasses.doInitialization(); 1033 for (Function &F : *TheModule) 1034 if (!F.isDeclaration()) 1035 PerFunctionPasses.run(F); 1036 PerFunctionPasses.doFinalization(); 1037 } 1038 1039 { 1040 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1041 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1042 PerModulePasses.run(*TheModule); 1043 } 1044 1045 { 1046 PrettyStackTraceString CrashInfo("Code generation"); 1047 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1048 CodeGenPasses.run(*TheModule); 1049 } 1050 1051 if (ThinLinkOS) 1052 ThinLinkOS->keep(); 1053 if (DwoOS) 1054 DwoOS->keep(); 1055 } 1056 1057 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1058 switch (Opts.OptimizationLevel) { 1059 default: 1060 llvm_unreachable("Invalid optimization level!"); 1061 1062 case 0: 1063 return PassBuilder::OptimizationLevel::O0; 1064 1065 case 1: 1066 return PassBuilder::OptimizationLevel::O1; 1067 1068 case 2: 1069 switch (Opts.OptimizeSize) { 1070 default: 1071 llvm_unreachable("Invalid optimization level for size!"); 1072 1073 case 0: 1074 return PassBuilder::OptimizationLevel::O2; 1075 1076 case 1: 1077 return PassBuilder::OptimizationLevel::Os; 1078 1079 case 2: 1080 return PassBuilder::OptimizationLevel::Oz; 1081 } 1082 1083 case 3: 1084 return PassBuilder::OptimizationLevel::O3; 1085 } 1086 } 1087 1088 static void addSanitizers(const Triple &TargetTriple, 1089 const CodeGenOptions &CodeGenOpts, 1090 const LangOptions &LangOpts, PassBuilder &PB) { 1091 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1092 PassBuilder::OptimizationLevel Level) { 1093 if (CodeGenOpts.SanitizeCoverageType || 1094 CodeGenOpts.SanitizeCoverageIndirectCalls || 1095 CodeGenOpts.SanitizeCoverageTraceCmp) { 1096 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1097 MPM.addPass(ModuleSanitizerCoveragePass( 1098 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1099 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1100 } 1101 1102 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1103 if (LangOpts.Sanitize.has(Mask)) { 1104 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1105 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1106 1107 MPM.addPass( 1108 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1109 FunctionPassManager FPM(CodeGenOpts.DebugPassManager); 1110 FPM.addPass( 1111 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1112 if (Level != PassBuilder::OptimizationLevel::O0) { 1113 // MemorySanitizer inserts complex instrumentation that mostly 1114 // follows the logic of the original code, but operates on 1115 // "shadow" values. It can benefit from re-running some 1116 // general purpose optimization passes. 1117 FPM.addPass(EarlyCSEPass()); 1118 // TODO: Consider add more passes like in 1119 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1120 // difference on size. It's not clear if the rest is still 1121 // usefull. InstCombinePass breakes 1122 // compiler-rt/test/msan/select_origin.cpp. 1123 } 1124 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1125 } 1126 }; 1127 MSanPass(SanitizerKind::Memory, false); 1128 MSanPass(SanitizerKind::KernelMemory, true); 1129 1130 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1131 MPM.addPass(ThreadSanitizerPass()); 1132 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1133 } 1134 1135 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1136 if (LangOpts.Sanitize.has(Mask)) { 1137 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1138 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1139 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1140 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1141 llvm::AsanDtorKind DestructorKind = 1142 CodeGenOpts.getSanitizeAddressDtorKind(); 1143 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1144 MPM.addPass(ModuleAddressSanitizerPass( 1145 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1146 DestructorKind)); 1147 MPM.addPass(createModuleToFunctionPassAdaptor( 1148 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope))); 1149 } 1150 }; 1151 ASanPass(SanitizerKind::Address, false); 1152 ASanPass(SanitizerKind::KernelAddress, true); 1153 1154 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1155 if (LangOpts.Sanitize.has(Mask)) { 1156 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1157 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover)); 1158 } 1159 }; 1160 HWASanPass(SanitizerKind::HWAddress, false); 1161 HWASanPass(SanitizerKind::KernelHWAddress, true); 1162 1163 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1164 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1165 } 1166 }); 1167 } 1168 1169 /// A clean version of `EmitAssembly` that uses the new pass manager. 1170 /// 1171 /// Not all features are currently supported in this system, but where 1172 /// necessary it falls back to the legacy pass manager to at least provide 1173 /// basic functionality. 1174 /// 1175 /// This API is planned to have its functionality finished and then to replace 1176 /// `EmitAssembly` at some point in the future when the default switches. 1177 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1178 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1179 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1180 setCommandLineOpts(CodeGenOpts); 1181 1182 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1183 Action != Backend_EmitBC && 1184 Action != Backend_EmitLL); 1185 CreateTargetMachine(RequiresCodeGen); 1186 1187 if (RequiresCodeGen && !TM) 1188 return; 1189 if (TM) 1190 TheModule->setDataLayout(TM->createDataLayout()); 1191 1192 Optional<PGOOptions> PGOOpt; 1193 1194 if (CodeGenOpts.hasProfileIRInstr()) 1195 // -fprofile-generate. 1196 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1197 ? std::string(DefaultProfileGenName) 1198 : CodeGenOpts.InstrProfileOutput, 1199 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1200 CodeGenOpts.DebugInfoForProfiling); 1201 else if (CodeGenOpts.hasProfileIRUse()) { 1202 // -fprofile-use. 1203 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1204 : PGOOptions::NoCSAction; 1205 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1206 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1207 CSAction, CodeGenOpts.DebugInfoForProfiling); 1208 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1209 // -fprofile-sample-use 1210 PGOOpt = PGOOptions( 1211 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1212 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1213 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1214 else if (CodeGenOpts.PseudoProbeForProfiling) 1215 // -fpseudo-probe-for-profiling 1216 PGOOpt = 1217 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1218 CodeGenOpts.DebugInfoForProfiling, true); 1219 else if (CodeGenOpts.DebugInfoForProfiling) 1220 // -fdebug-info-for-profiling 1221 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1222 PGOOptions::NoCSAction, true); 1223 1224 // Check to see if we want to generate a CS profile. 1225 if (CodeGenOpts.hasProfileCSIRInstr()) { 1226 assert(!CodeGenOpts.hasProfileCSIRUse() && 1227 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1228 "the same time"); 1229 if (PGOOpt.hasValue()) { 1230 assert(PGOOpt->Action != PGOOptions::IRInstr && 1231 PGOOpt->Action != PGOOptions::SampleUse && 1232 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1233 " pass"); 1234 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1235 ? std::string(DefaultProfileGenName) 1236 : CodeGenOpts.InstrProfileOutput; 1237 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1238 } else 1239 PGOOpt = PGOOptions("", 1240 CodeGenOpts.InstrProfileOutput.empty() 1241 ? std::string(DefaultProfileGenName) 1242 : CodeGenOpts.InstrProfileOutput, 1243 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1244 CodeGenOpts.DebugInfoForProfiling); 1245 } 1246 1247 PipelineTuningOptions PTO; 1248 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1249 // For historical reasons, loop interleaving is set to mirror setting for loop 1250 // unrolling. 1251 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1252 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1253 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1254 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1255 // Only enable CGProfilePass when using integrated assembler, since 1256 // non-integrated assemblers don't recognize .cgprofile section. 1257 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1258 PTO.Coroutines = LangOpts.Coroutines; 1259 PTO.UniqueLinkageNames = CodeGenOpts.UniqueInternalLinkageNames; 1260 1261 PassInstrumentationCallbacks PIC; 1262 StandardInstrumentations SI(CodeGenOpts.DebugPassManager); 1263 SI.registerCallbacks(PIC); 1264 PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC); 1265 1266 // Attempt to load pass plugins and register their callbacks with PB. 1267 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1268 auto PassPlugin = PassPlugin::Load(PluginFN); 1269 if (PassPlugin) { 1270 PassPlugin->registerPassBuilderCallbacks(PB); 1271 } else { 1272 Diags.Report(diag::err_fe_unable_to_load_plugin) 1273 << PluginFN << toString(PassPlugin.takeError()); 1274 } 1275 } 1276 #define HANDLE_EXTENSION(Ext) \ 1277 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1278 #include "llvm/Support/Extension.def" 1279 1280 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1281 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1282 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1283 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1284 1285 // Register the AA manager first so that our version is the one used. 1286 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1287 1288 // Register the target library analysis directly and give it a customized 1289 // preset TLI. 1290 Triple TargetTriple(TheModule->getTargetTriple()); 1291 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1292 createTLII(TargetTriple, CodeGenOpts)); 1293 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1294 1295 // Register all the basic analyses with the managers. 1296 PB.registerModuleAnalyses(MAM); 1297 PB.registerCGSCCAnalyses(CGAM); 1298 PB.registerFunctionAnalyses(FAM); 1299 PB.registerLoopAnalyses(LAM); 1300 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1301 1302 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1303 1304 if (!CodeGenOpts.DisableLLVMPasses) { 1305 // Map our optimization levels into one of the distinct levels used to 1306 // configure the pipeline. 1307 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1308 1309 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1310 bool IsLTO = CodeGenOpts.PrepareForLTO; 1311 1312 if (LangOpts.ObjCAutoRefCount) { 1313 PB.registerPipelineStartEPCallback( 1314 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1315 if (Level != PassBuilder::OptimizationLevel::O0) 1316 MPM.addPass( 1317 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1318 }); 1319 PB.registerPipelineEarlySimplificationEPCallback( 1320 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1321 if (Level != PassBuilder::OptimizationLevel::O0) 1322 MPM.addPass(ObjCARCAPElimPass()); 1323 }); 1324 PB.registerScalarOptimizerLateEPCallback( 1325 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1326 if (Level != PassBuilder::OptimizationLevel::O0) 1327 FPM.addPass(ObjCARCOptPass()); 1328 }); 1329 } 1330 1331 // If we reached here with a non-empty index file name, then the index 1332 // file was empty and we are not performing ThinLTO backend compilation 1333 // (used in testing in a distributed build environment). 1334 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1335 // If so drop any the type test assume sequences inserted for whole program 1336 // vtables so that codegen doesn't complain. 1337 if (IsThinLTOPostLink) 1338 PB.registerPipelineStartEPCallback( 1339 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1340 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1341 /*ImportSummary=*/nullptr, 1342 /*DropTypeTests=*/true)); 1343 }); 1344 1345 if (CodeGenOpts.InstrumentFunctions || 1346 CodeGenOpts.InstrumentFunctionEntryBare || 1347 CodeGenOpts.InstrumentFunctionsAfterInlining || 1348 CodeGenOpts.InstrumentForProfiling) { 1349 PB.registerPipelineStartEPCallback( 1350 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1351 MPM.addPass(createModuleToFunctionPassAdaptor( 1352 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1353 }); 1354 PB.registerOptimizerLastEPCallback( 1355 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1356 MPM.addPass(createModuleToFunctionPassAdaptor( 1357 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1358 }); 1359 } 1360 1361 // Register callbacks to schedule sanitizer passes at the appropriate part 1362 // of the pipeline. 1363 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1364 PB.registerScalarOptimizerLateEPCallback( 1365 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1366 FPM.addPass(BoundsCheckingPass()); 1367 }); 1368 1369 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1370 // done on PreLink stage. 1371 if (!IsThinLTOPostLink) 1372 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1373 1374 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1375 PB.registerPipelineStartEPCallback( 1376 [Options](ModulePassManager &MPM, 1377 PassBuilder::OptimizationLevel Level) { 1378 MPM.addPass(GCOVProfilerPass(*Options)); 1379 }); 1380 if (Optional<InstrProfOptions> Options = 1381 getInstrProfOptions(CodeGenOpts, LangOpts)) 1382 PB.registerPipelineStartEPCallback( 1383 [Options](ModulePassManager &MPM, 1384 PassBuilder::OptimizationLevel Level) { 1385 MPM.addPass(InstrProfiling(*Options, false)); 1386 }); 1387 1388 if (CodeGenOpts.OptimizationLevel == 0) { 1389 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1390 } else if (IsThinLTO) { 1391 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1392 } else if (IsLTO) { 1393 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1394 } else { 1395 MPM = PB.buildPerModuleDefaultPipeline(Level); 1396 } 1397 1398 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1399 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1400 MPM.addPass(ModuleMemProfilerPass()); 1401 } 1402 } 1403 1404 // FIXME: We still use the legacy pass manager to do code generation. We 1405 // create that pass manager here and use it as needed below. 1406 legacy::PassManager CodeGenPasses; 1407 bool NeedCodeGen = false; 1408 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1409 1410 // Append any output we need to the pass manager. 1411 switch (Action) { 1412 case Backend_EmitNothing: 1413 break; 1414 1415 case Backend_EmitBC: 1416 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1417 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1418 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1419 if (!ThinLinkOS) 1420 return; 1421 } 1422 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1423 CodeGenOpts.EnableSplitLTOUnit); 1424 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1425 : nullptr)); 1426 } else { 1427 // Emit a module summary by default for Regular LTO except for ld64 1428 // targets 1429 bool EmitLTOSummary = 1430 (CodeGenOpts.PrepareForLTO && 1431 !CodeGenOpts.DisableLLVMPasses && 1432 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1433 llvm::Triple::Apple); 1434 if (EmitLTOSummary) { 1435 if (!TheModule->getModuleFlag("ThinLTO")) 1436 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1437 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1438 uint32_t(1)); 1439 } 1440 MPM.addPass( 1441 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1442 } 1443 break; 1444 1445 case Backend_EmitLL: 1446 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1447 break; 1448 1449 case Backend_EmitAssembly: 1450 case Backend_EmitMCNull: 1451 case Backend_EmitObj: 1452 NeedCodeGen = true; 1453 CodeGenPasses.add( 1454 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1455 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1456 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1457 if (!DwoOS) 1458 return; 1459 } 1460 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1461 DwoOS ? &DwoOS->os() : nullptr)) 1462 // FIXME: Should we handle this error differently? 1463 return; 1464 break; 1465 } 1466 1467 // Before executing passes, print the final values of the LLVM options. 1468 cl::PrintOptionValues(); 1469 1470 // Now that we have all of the passes ready, run them. 1471 { 1472 PrettyStackTraceString CrashInfo("Optimizer"); 1473 MPM.run(*TheModule, MAM); 1474 } 1475 1476 // Now if needed, run the legacy PM for codegen. 1477 if (NeedCodeGen) { 1478 PrettyStackTraceString CrashInfo("Code generation"); 1479 CodeGenPasses.run(*TheModule); 1480 } 1481 1482 if (ThinLinkOS) 1483 ThinLinkOS->keep(); 1484 if (DwoOS) 1485 DwoOS->keep(); 1486 } 1487 1488 static void runThinLTOBackend( 1489 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1490 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1491 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1492 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1493 std::string ProfileRemapping, BackendAction Action) { 1494 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1495 ModuleToDefinedGVSummaries; 1496 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1497 1498 setCommandLineOpts(CGOpts); 1499 1500 // We can simply import the values mentioned in the combined index, since 1501 // we should only invoke this using the individual indexes written out 1502 // via a WriteIndexesThinBackend. 1503 FunctionImporter::ImportMapTy ImportList; 1504 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1505 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1506 if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap, 1507 OwnedImports)) 1508 return; 1509 1510 auto AddStream = [&](size_t Task) { 1511 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1512 }; 1513 lto::Config Conf; 1514 if (CGOpts.SaveTempsFilePrefix != "") { 1515 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1516 /* UseInputModulePath */ false)) { 1517 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1518 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1519 << '\n'; 1520 }); 1521 } 1522 } 1523 Conf.CPU = TOpts.CPU; 1524 Conf.CodeModel = getCodeModel(CGOpts); 1525 Conf.MAttrs = TOpts.Features; 1526 Conf.RelocModel = CGOpts.RelocationModel; 1527 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1528 Conf.OptLevel = CGOpts.OptimizationLevel; 1529 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1530 Conf.SampleProfile = std::move(SampleProfile); 1531 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1532 // For historical reasons, loop interleaving is set to mirror setting for loop 1533 // unrolling. 1534 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1535 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1536 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1537 // Only enable CGProfilePass when using integrated assembler, since 1538 // non-integrated assemblers don't recognize .cgprofile section. 1539 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1540 1541 // Context sensitive profile. 1542 if (CGOpts.hasProfileCSIRInstr()) { 1543 Conf.RunCSIRInstr = true; 1544 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1545 } else if (CGOpts.hasProfileCSIRUse()) { 1546 Conf.RunCSIRInstr = false; 1547 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1548 } 1549 1550 Conf.ProfileRemapping = std::move(ProfileRemapping); 1551 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1552 Conf.DebugPassManager = CGOpts.DebugPassManager; 1553 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1554 Conf.RemarksFilename = CGOpts.OptRecordFile; 1555 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1556 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1557 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1558 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1559 switch (Action) { 1560 case Backend_EmitNothing: 1561 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1562 return false; 1563 }; 1564 break; 1565 case Backend_EmitLL: 1566 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1567 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1568 return false; 1569 }; 1570 break; 1571 case Backend_EmitBC: 1572 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1573 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1574 return false; 1575 }; 1576 break; 1577 default: 1578 Conf.CGFileType = getCodeGenFileType(Action); 1579 break; 1580 } 1581 if (Error E = 1582 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1583 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1584 ModuleMap, CGOpts.CmdArgs)) { 1585 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1586 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1587 }); 1588 } 1589 } 1590 1591 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1592 const HeaderSearchOptions &HeaderOpts, 1593 const CodeGenOptions &CGOpts, 1594 const clang::TargetOptions &TOpts, 1595 const LangOptions &LOpts, 1596 const llvm::DataLayout &TDesc, Module *M, 1597 BackendAction Action, 1598 std::unique_ptr<raw_pwrite_stream> OS) { 1599 1600 llvm::TimeTraceScope TimeScope("Backend"); 1601 1602 std::unique_ptr<llvm::Module> EmptyModule; 1603 if (!CGOpts.ThinLTOIndexFile.empty()) { 1604 // If we are performing a ThinLTO importing compile, load the function index 1605 // into memory and pass it into runThinLTOBackend, which will run the 1606 // function importer and invoke LTO passes. 1607 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1608 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1609 /*IgnoreEmptyThinLTOIndexFile*/true); 1610 if (!IndexOrErr) { 1611 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1612 "Error loading index file '" + 1613 CGOpts.ThinLTOIndexFile + "': "); 1614 return; 1615 } 1616 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1617 // A null CombinedIndex means we should skip ThinLTO compilation 1618 // (LLVM will optionally ignore empty index files, returning null instead 1619 // of an error). 1620 if (CombinedIndex) { 1621 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1622 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1623 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1624 CGOpts.ProfileRemappingFile, Action); 1625 return; 1626 } 1627 // Distributed indexing detected that nothing from the module is needed 1628 // for the final linking. So we can skip the compilation. We sill need to 1629 // output an empty object file to make sure that a linker does not fail 1630 // trying to read it. Also for some features, like CFI, we must skip 1631 // the compilation as CombinedIndex does not contain all required 1632 // information. 1633 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1634 EmptyModule->setTargetTriple(M->getTargetTriple()); 1635 M = EmptyModule.get(); 1636 } 1637 } 1638 1639 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1640 1641 if (!CGOpts.LegacyPassManager) 1642 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1643 else 1644 AsmHelper.EmitAssembly(Action, std::move(OS)); 1645 1646 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1647 // DataLayout. 1648 if (AsmHelper.TM) { 1649 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1650 if (DLDesc != TDesc.getStringRepresentation()) { 1651 unsigned DiagID = Diags.getCustomDiagID( 1652 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1653 "expected target description '%1'"); 1654 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1655 } 1656 } 1657 } 1658 1659 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1660 // __LLVM,__bitcode section. 1661 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1662 llvm::MemoryBufferRef Buf) { 1663 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1664 return; 1665 llvm::EmbedBitcodeInModule( 1666 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1667 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1668 CGOpts.CmdArgs); 1669 } 1670