1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/StackSafetyAnalysis.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/RegAllocRegistry.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSummaryIndex.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/Coroutines.h" 56 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 57 #include "llvm/Transforms/Coroutines/CoroEarly.h" 58 #include "llvm/Transforms/Coroutines/CoroElide.h" 59 #include "llvm/Transforms/Coroutines/CoroSplit.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/IPO/AlwaysInliner.h" 62 #include "llvm/Transforms/IPO/LowerTypeTests.h" 63 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Instrumentation.h" 67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 69 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 70 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 71 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 72 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 73 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 74 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 75 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 77 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 78 #include "llvm/Transforms/ObjCARC.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Scalar/EarlyCSE.h" 81 #include "llvm/Transforms/Scalar/GVN.h" 82 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 83 #include "llvm/Transforms/Utils.h" 84 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 87 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 88 #include "llvm/Transforms/Utils/SymbolRewriter.h" 89 #include <memory> 90 using namespace clang; 91 using namespace llvm; 92 93 #define HANDLE_EXTENSION(Ext) \ 94 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 95 #include "llvm/Support/Extension.def" 96 97 namespace { 98 99 // Default filename used for profile generation. 100 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 101 102 class EmitAssemblyHelper { 103 DiagnosticsEngine &Diags; 104 const HeaderSearchOptions &HSOpts; 105 const CodeGenOptions &CodeGenOpts; 106 const clang::TargetOptions &TargetOpts; 107 const LangOptions &LangOpts; 108 Module *TheModule; 109 110 Timer CodeGenerationTime; 111 112 std::unique_ptr<raw_pwrite_stream> OS; 113 114 TargetIRAnalysis getTargetIRAnalysis() const { 115 if (TM) 116 return TM->getTargetIRAnalysis(); 117 118 return TargetIRAnalysis(); 119 } 120 121 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 122 123 /// Generates the TargetMachine. 124 /// Leaves TM unchanged if it is unable to create the target machine. 125 /// Some of our clang tests specify triples which are not built 126 /// into clang. This is okay because these tests check the generated 127 /// IR, and they require DataLayout which depends on the triple. 128 /// In this case, we allow this method to fail and not report an error. 129 /// When MustCreateTM is used, we print an error if we are unable to load 130 /// the requested target. 131 void CreateTargetMachine(bool MustCreateTM); 132 133 /// Add passes necessary to emit assembly or LLVM IR. 134 /// 135 /// \return True on success. 136 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 137 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 138 139 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 140 std::error_code EC; 141 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 142 llvm::sys::fs::OF_None); 143 if (EC) { 144 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 145 F.reset(); 146 } 147 return F; 148 } 149 150 public: 151 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 152 const HeaderSearchOptions &HeaderSearchOpts, 153 const CodeGenOptions &CGOpts, 154 const clang::TargetOptions &TOpts, 155 const LangOptions &LOpts, Module *M) 156 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 157 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 158 CodeGenerationTime("codegen", "Code Generation Time") {} 159 160 ~EmitAssemblyHelper() { 161 if (CodeGenOpts.DisableFree) 162 BuryPointer(std::move(TM)); 163 } 164 165 std::unique_ptr<TargetMachine> TM; 166 167 void EmitAssembly(BackendAction Action, 168 std::unique_ptr<raw_pwrite_stream> OS); 169 170 void EmitAssemblyWithNewPassManager(BackendAction Action, 171 std::unique_ptr<raw_pwrite_stream> OS); 172 }; 173 174 // We need this wrapper to access LangOpts and CGOpts from extension functions 175 // that we add to the PassManagerBuilder. 176 class PassManagerBuilderWrapper : public PassManagerBuilder { 177 public: 178 PassManagerBuilderWrapper(const Triple &TargetTriple, 179 const CodeGenOptions &CGOpts, 180 const LangOptions &LangOpts) 181 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 182 LangOpts(LangOpts) {} 183 const Triple &getTargetTriple() const { return TargetTriple; } 184 const CodeGenOptions &getCGOpts() const { return CGOpts; } 185 const LangOptions &getLangOpts() const { return LangOpts; } 186 187 private: 188 const Triple &TargetTriple; 189 const CodeGenOptions &CGOpts; 190 const LangOptions &LangOpts; 191 }; 192 } 193 194 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 195 if (Builder.OptLevel > 0) 196 PM.add(createObjCARCAPElimPass()); 197 } 198 199 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 200 if (Builder.OptLevel > 0) 201 PM.add(createObjCARCExpandPass()); 202 } 203 204 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 205 if (Builder.OptLevel > 0) 206 PM.add(createObjCARCOptPass()); 207 } 208 209 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 210 legacy::PassManagerBase &PM) { 211 PM.add(createAddDiscriminatorsPass()); 212 } 213 214 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 215 legacy::PassManagerBase &PM) { 216 PM.add(createBoundsCheckingLegacyPass()); 217 } 218 219 static SanitizerCoverageOptions 220 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 221 SanitizerCoverageOptions Opts; 222 Opts.CoverageType = 223 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 224 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 225 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 226 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 227 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 228 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 229 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 230 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 231 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 232 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 233 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 234 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 235 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 236 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 237 return Opts; 238 } 239 240 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper &>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 auto Opts = getSancovOptsFromCGOpts(CGOpts); 246 PM.add(createModuleSanitizerCoverageLegacyPassPass( 247 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 248 CGOpts.SanitizeCoverageIgnorelistFiles)); 249 } 250 251 // Check if ASan should use GC-friendly instrumentation for globals. 252 // First of all, there is no point if -fdata-sections is off (expect for MachO, 253 // where this is not a factor). Also, on ELF this feature requires an assembler 254 // extension that only works with -integrated-as at the moment. 255 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 256 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 257 return false; 258 switch (T.getObjectFormat()) { 259 case Triple::MachO: 260 case Triple::COFF: 261 return true; 262 case Triple::ELF: 263 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 264 case Triple::GOFF: 265 llvm::report_fatal_error("ASan not implemented for GOFF"); 266 case Triple::XCOFF: 267 llvm::report_fatal_error("ASan not implemented for XCOFF."); 268 case Triple::Wasm: 269 case Triple::UnknownObjectFormat: 270 break; 271 } 272 return false; 273 } 274 275 static void addMemProfilerPasses(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM) { 277 PM.add(createMemProfilerFunctionPass()); 278 PM.add(createModuleMemProfilerLegacyPassPass()); 279 } 280 281 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 282 legacy::PassManagerBase &PM) { 283 const PassManagerBuilderWrapper &BuilderWrapper = 284 static_cast<const PassManagerBuilderWrapper&>(Builder); 285 const Triple &T = BuilderWrapper.getTargetTriple(); 286 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 287 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 288 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 289 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 290 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 291 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor(); 292 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 293 CGOpts.getSanitizeAddressUseAfterReturn(); 294 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 295 UseAfterScope, UseAfterReturn)); 296 PM.add(createModuleAddressSanitizerLegacyPassPass( 297 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator, 298 DestructorKind)); 299 } 300 301 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 302 legacy::PassManagerBase &PM) { 303 PM.add(createAddressSanitizerFunctionPass( 304 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false, 305 /*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never)); 306 PM.add(createModuleAddressSanitizerLegacyPassPass( 307 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 308 /*UseOdrIndicator*/ false)); 309 } 310 311 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 312 legacy::PassManagerBase &PM) { 313 const PassManagerBuilderWrapper &BuilderWrapper = 314 static_cast<const PassManagerBuilderWrapper &>(Builder); 315 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 316 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 317 PM.add(createHWAddressSanitizerLegacyPassPass( 318 /*CompileKernel*/ false, Recover, 319 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 320 } 321 322 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 323 legacy::PassManagerBase &PM) { 324 const PassManagerBuilderWrapper &BuilderWrapper = 325 static_cast<const PassManagerBuilderWrapper &>(Builder); 326 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 327 PM.add(createHWAddressSanitizerLegacyPassPass( 328 /*CompileKernel*/ true, /*Recover*/ true, 329 /*DisableOptimization*/ CGOpts.OptimizationLevel == 0)); 330 } 331 332 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM, 334 bool CompileKernel) { 335 const PassManagerBuilderWrapper &BuilderWrapper = 336 static_cast<const PassManagerBuilderWrapper&>(Builder); 337 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 338 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 339 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 340 PM.add(createMemorySanitizerLegacyPassPass( 341 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 342 343 // MemorySanitizer inserts complex instrumentation that mostly follows 344 // the logic of the original code, but operates on "shadow" values. 345 // It can benefit from re-running some general purpose optimization passes. 346 if (Builder.OptLevel > 0) { 347 PM.add(createEarlyCSEPass()); 348 PM.add(createReassociatePass()); 349 PM.add(createLICMPass()); 350 PM.add(createGVNPass()); 351 PM.add(createInstructionCombiningPass()); 352 PM.add(createDeadStoreEliminationPass()); 353 } 354 } 355 356 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 357 legacy::PassManagerBase &PM) { 358 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 359 } 360 361 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 362 legacy::PassManagerBase &PM) { 363 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 364 } 365 366 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 367 legacy::PassManagerBase &PM) { 368 PM.add(createThreadSanitizerLegacyPassPass()); 369 } 370 371 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 372 legacy::PassManagerBase &PM) { 373 const PassManagerBuilderWrapper &BuilderWrapper = 374 static_cast<const PassManagerBuilderWrapper&>(Builder); 375 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 376 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles)); 377 } 378 379 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 380 legacy::PassManagerBase &PM) { 381 PM.add(createEntryExitInstrumenterPass()); 382 } 383 384 static void 385 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder, 386 legacy::PassManagerBase &PM) { 387 PM.add(createPostInlineEntryExitInstrumenterPass()); 388 } 389 390 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 391 const CodeGenOptions &CodeGenOpts) { 392 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 393 394 switch (CodeGenOpts.getVecLib()) { 395 case CodeGenOptions::Accelerate: 396 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 397 break; 398 case CodeGenOptions::LIBMVEC: 399 switch(TargetTriple.getArch()) { 400 default: 401 break; 402 case llvm::Triple::x86_64: 403 TLII->addVectorizableFunctionsFromVecLib 404 (TargetLibraryInfoImpl::LIBMVEC_X86); 405 break; 406 } 407 break; 408 case CodeGenOptions::MASSV: 409 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 410 break; 411 case CodeGenOptions::SVML: 412 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 413 break; 414 case CodeGenOptions::Darwin_libsystem_m: 415 TLII->addVectorizableFunctionsFromVecLib( 416 TargetLibraryInfoImpl::DarwinLibSystemM); 417 break; 418 default: 419 break; 420 } 421 return TLII; 422 } 423 424 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 425 legacy::PassManager *MPM) { 426 llvm::SymbolRewriter::RewriteDescriptorList DL; 427 428 llvm::SymbolRewriter::RewriteMapParser MapParser; 429 for (const auto &MapFile : Opts.RewriteMapFiles) 430 MapParser.parse(MapFile, &DL); 431 432 MPM->add(createRewriteSymbolsPass(DL)); 433 } 434 435 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 436 switch (CodeGenOpts.OptimizationLevel) { 437 default: 438 llvm_unreachable("Invalid optimization level!"); 439 case 0: 440 return CodeGenOpt::None; 441 case 1: 442 return CodeGenOpt::Less; 443 case 2: 444 return CodeGenOpt::Default; // O2/Os/Oz 445 case 3: 446 return CodeGenOpt::Aggressive; 447 } 448 } 449 450 static Optional<llvm::CodeModel::Model> 451 getCodeModel(const CodeGenOptions &CodeGenOpts) { 452 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 453 .Case("tiny", llvm::CodeModel::Tiny) 454 .Case("small", llvm::CodeModel::Small) 455 .Case("kernel", llvm::CodeModel::Kernel) 456 .Case("medium", llvm::CodeModel::Medium) 457 .Case("large", llvm::CodeModel::Large) 458 .Case("default", ~1u) 459 .Default(~0u); 460 assert(CodeModel != ~0u && "invalid code model!"); 461 if (CodeModel == ~1u) 462 return None; 463 return static_cast<llvm::CodeModel::Model>(CodeModel); 464 } 465 466 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 467 if (Action == Backend_EmitObj) 468 return CGFT_ObjectFile; 469 else if (Action == Backend_EmitMCNull) 470 return CGFT_Null; 471 else { 472 assert(Action == Backend_EmitAssembly && "Invalid action!"); 473 return CGFT_AssemblyFile; 474 } 475 } 476 477 static bool initTargetOptions(DiagnosticsEngine &Diags, 478 llvm::TargetOptions &Options, 479 const CodeGenOptions &CodeGenOpts, 480 const clang::TargetOptions &TargetOpts, 481 const LangOptions &LangOpts, 482 const HeaderSearchOptions &HSOpts) { 483 switch (LangOpts.getThreadModel()) { 484 case LangOptions::ThreadModelKind::POSIX: 485 Options.ThreadModel = llvm::ThreadModel::POSIX; 486 break; 487 case LangOptions::ThreadModelKind::Single: 488 Options.ThreadModel = llvm::ThreadModel::Single; 489 break; 490 } 491 492 // Set float ABI type. 493 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 494 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 495 "Invalid Floating Point ABI!"); 496 Options.FloatABIType = 497 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 498 .Case("soft", llvm::FloatABI::Soft) 499 .Case("softfp", llvm::FloatABI::Soft) 500 .Case("hard", llvm::FloatABI::Hard) 501 .Default(llvm::FloatABI::Default); 502 503 // Set FP fusion mode. 504 switch (LangOpts.getDefaultFPContractMode()) { 505 case LangOptions::FPM_Off: 506 // Preserve any contraction performed by the front-end. (Strict performs 507 // splitting of the muladd intrinsic in the backend.) 508 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 509 break; 510 case LangOptions::FPM_On: 511 case LangOptions::FPM_FastHonorPragmas: 512 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 513 break; 514 case LangOptions::FPM_Fast: 515 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 516 break; 517 } 518 519 Options.BinutilsVersion = 520 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 521 Options.UseInitArray = CodeGenOpts.UseInitArray; 522 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 523 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 524 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 525 526 // Set EABI version. 527 Options.EABIVersion = TargetOpts.EABIVersion; 528 529 if (LangOpts.hasSjLjExceptions()) 530 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 531 if (LangOpts.hasSEHExceptions()) 532 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 533 if (LangOpts.hasDWARFExceptions()) 534 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 535 if (LangOpts.hasWasmExceptions()) 536 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 537 538 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 539 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 540 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 541 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 542 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 543 544 Options.BBSections = 545 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 546 .Case("all", llvm::BasicBlockSection::All) 547 .Case("labels", llvm::BasicBlockSection::Labels) 548 .StartsWith("list=", llvm::BasicBlockSection::List) 549 .Case("none", llvm::BasicBlockSection::None) 550 .Default(llvm::BasicBlockSection::None); 551 552 if (Options.BBSections == llvm::BasicBlockSection::List) { 553 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 554 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 555 if (!MBOrErr) { 556 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 557 << MBOrErr.getError().message(); 558 return false; 559 } 560 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 561 } 562 563 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 564 Options.FunctionSections = CodeGenOpts.FunctionSections; 565 Options.DataSections = CodeGenOpts.DataSections; 566 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 567 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 568 Options.UniqueBasicBlockSectionNames = 569 CodeGenOpts.UniqueBasicBlockSectionNames; 570 Options.TLSSize = CodeGenOpts.TLSSize; 571 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 572 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 573 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 574 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 575 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 576 Options.EmitAddrsig = CodeGenOpts.Addrsig; 577 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 578 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 579 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 580 Options.ValueTrackingVariableLocations = 581 CodeGenOpts.ValueTrackingVariableLocations; 582 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 583 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 584 585 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 586 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 587 Options.SwiftAsyncFramePointer = 588 SwiftAsyncFramePointerMode::DeploymentBased; 589 break; 590 591 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 592 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 593 break; 594 595 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 596 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 597 break; 598 } 599 600 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 601 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 602 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 603 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 604 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 605 Options.MCOptions.MCIncrementalLinkerCompatible = 606 CodeGenOpts.IncrementalLinkerCompatible; 607 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 608 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 609 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 610 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 611 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 612 Options.MCOptions.ABIName = TargetOpts.ABI; 613 for (const auto &Entry : HSOpts.UserEntries) 614 if (!Entry.IsFramework && 615 (Entry.Group == frontend::IncludeDirGroup::Quoted || 616 Entry.Group == frontend::IncludeDirGroup::Angled || 617 Entry.Group == frontend::IncludeDirGroup::System)) 618 Options.MCOptions.IASSearchPaths.push_back( 619 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 620 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 621 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 622 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 623 624 return true; 625 } 626 627 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts, 628 const LangOptions &LangOpts) { 629 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 630 return None; 631 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 632 // LLVM's -default-gcov-version flag is set to something invalid. 633 GCOVOptions Options; 634 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 635 Options.EmitData = CodeGenOpts.EmitGcovArcs; 636 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 637 Options.NoRedZone = CodeGenOpts.DisableRedZone; 638 Options.Filter = CodeGenOpts.ProfileFilterFiles; 639 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 640 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 641 return Options; 642 } 643 644 static Optional<InstrProfOptions> 645 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 646 const LangOptions &LangOpts) { 647 if (!CodeGenOpts.hasProfileClangInstr()) 648 return None; 649 InstrProfOptions Options; 650 Options.NoRedZone = CodeGenOpts.DisableRedZone; 651 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 652 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 653 return Options; 654 } 655 656 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 657 legacy::FunctionPassManager &FPM) { 658 // Handle disabling of all LLVM passes, where we want to preserve the 659 // internal module before any optimization. 660 if (CodeGenOpts.DisableLLVMPasses) 661 return; 662 663 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 664 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 665 // are inserted before PMBuilder ones - they'd get the default-constructed 666 // TLI with an unknown target otherwise. 667 Triple TargetTriple(TheModule->getTargetTriple()); 668 std::unique_ptr<TargetLibraryInfoImpl> TLII( 669 createTLII(TargetTriple, CodeGenOpts)); 670 671 // If we reached here with a non-empty index file name, then the index file 672 // was empty and we are not performing ThinLTO backend compilation (used in 673 // testing in a distributed build environment). Drop any the type test 674 // assume sequences inserted for whole program vtables so that codegen doesn't 675 // complain. 676 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 677 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 678 /*ImportSummary=*/nullptr, 679 /*DropTypeTests=*/true)); 680 681 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 682 683 // At O0 and O1 we only run the always inliner which is more efficient. At 684 // higher optimization levels we run the normal inliner. 685 if (CodeGenOpts.OptimizationLevel <= 1) { 686 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 687 !CodeGenOpts.DisableLifetimeMarkers) || 688 LangOpts.Coroutines); 689 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 690 } else { 691 // We do not want to inline hot callsites for SamplePGO module-summary build 692 // because profile annotation will happen again in ThinLTO backend, and we 693 // want the IR of the hot path to match the profile. 694 PMBuilder.Inliner = createFunctionInliningPass( 695 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 696 (!CodeGenOpts.SampleProfileFile.empty() && 697 CodeGenOpts.PrepareForThinLTO)); 698 } 699 700 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 701 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 702 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 703 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 704 // Only enable CGProfilePass when using integrated assembler, since 705 // non-integrated assemblers don't recognize .cgprofile section. 706 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 707 708 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 709 // Loop interleaving in the loop vectorizer has historically been set to be 710 // enabled when loop unrolling is enabled. 711 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 712 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 713 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 714 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 715 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 716 717 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 718 719 if (TM) 720 TM->adjustPassManager(PMBuilder); 721 722 if (CodeGenOpts.DebugInfoForProfiling || 723 !CodeGenOpts.SampleProfileFile.empty()) 724 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 725 addAddDiscriminatorsPass); 726 727 // In ObjC ARC mode, add the main ARC optimization passes. 728 if (LangOpts.ObjCAutoRefCount) { 729 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 730 addObjCARCExpandPass); 731 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 732 addObjCARCAPElimPass); 733 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 734 addObjCARCOptPass); 735 } 736 737 if (LangOpts.Coroutines) 738 addCoroutinePassesToExtensionPoints(PMBuilder); 739 740 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 741 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 742 addMemProfilerPasses); 743 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 744 addMemProfilerPasses); 745 } 746 747 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 748 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 749 addBoundsCheckingPass); 750 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 751 addBoundsCheckingPass); 752 } 753 754 if (CodeGenOpts.hasSanitizeCoverage()) { 755 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 756 addSanitizerCoveragePass); 757 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 758 addSanitizerCoveragePass); 759 } 760 761 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 762 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 763 addAddressSanitizerPasses); 764 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 765 addAddressSanitizerPasses); 766 } 767 768 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 769 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 770 addKernelAddressSanitizerPasses); 771 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 772 addKernelAddressSanitizerPasses); 773 } 774 775 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 776 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 777 addHWAddressSanitizerPasses); 778 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 779 addHWAddressSanitizerPasses); 780 } 781 782 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 783 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 784 addKernelHWAddressSanitizerPasses); 785 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 786 addKernelHWAddressSanitizerPasses); 787 } 788 789 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 790 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 791 addMemorySanitizerPass); 792 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 793 addMemorySanitizerPass); 794 } 795 796 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 797 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 798 addKernelMemorySanitizerPass); 799 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 800 addKernelMemorySanitizerPass); 801 } 802 803 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 804 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 805 addThreadSanitizerPass); 806 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 807 addThreadSanitizerPass); 808 } 809 810 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 811 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 812 addDataFlowSanitizerPass); 813 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 814 addDataFlowSanitizerPass); 815 } 816 817 if (CodeGenOpts.InstrumentFunctions || 818 CodeGenOpts.InstrumentFunctionEntryBare || 819 CodeGenOpts.InstrumentFunctionsAfterInlining || 820 CodeGenOpts.InstrumentForProfiling) { 821 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 822 addEntryExitInstrumentationPass); 823 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 824 addEntryExitInstrumentationPass); 825 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 826 addPostInlineEntryExitInstrumentationPass); 827 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 828 addPostInlineEntryExitInstrumentationPass); 829 } 830 831 // Set up the per-function pass manager. 832 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 833 if (CodeGenOpts.VerifyModule) 834 FPM.add(createVerifierPass()); 835 836 // Set up the per-module pass manager. 837 if (!CodeGenOpts.RewriteMapFiles.empty()) 838 addSymbolRewriterPass(CodeGenOpts, &MPM); 839 840 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) { 841 MPM.add(createGCOVProfilerPass(*Options)); 842 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 843 MPM.add(createStripSymbolsPass(true)); 844 } 845 846 if (Optional<InstrProfOptions> Options = 847 getInstrProfOptions(CodeGenOpts, LangOpts)) 848 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 849 850 bool hasIRInstr = false; 851 if (CodeGenOpts.hasProfileIRInstr()) { 852 PMBuilder.EnablePGOInstrGen = true; 853 hasIRInstr = true; 854 } 855 if (CodeGenOpts.hasProfileCSIRInstr()) { 856 assert(!CodeGenOpts.hasProfileCSIRUse() && 857 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 858 "same time"); 859 assert(!hasIRInstr && 860 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 861 "same time"); 862 PMBuilder.EnablePGOCSInstrGen = true; 863 hasIRInstr = true; 864 } 865 if (hasIRInstr) { 866 if (!CodeGenOpts.InstrProfileOutput.empty()) 867 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 868 else 869 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 870 } 871 if (CodeGenOpts.hasProfileIRUse()) { 872 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 873 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 874 } 875 876 if (!CodeGenOpts.SampleProfileFile.empty()) 877 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 878 879 PMBuilder.populateFunctionPassManager(FPM); 880 PMBuilder.populateModulePassManager(MPM); 881 } 882 883 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 884 SmallVector<const char *, 16> BackendArgs; 885 BackendArgs.push_back("clang"); // Fake program name. 886 if (!CodeGenOpts.DebugPass.empty()) { 887 BackendArgs.push_back("-debug-pass"); 888 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 889 } 890 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 891 BackendArgs.push_back("-limit-float-precision"); 892 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 893 } 894 // Check for the default "clang" invocation that won't set any cl::opt values. 895 // Skip trying to parse the command line invocation to avoid the issues 896 // described below. 897 if (BackendArgs.size() == 1) 898 return; 899 BackendArgs.push_back(nullptr); 900 // FIXME: The command line parser below is not thread-safe and shares a global 901 // state, so this call might crash or overwrite the options of another Clang 902 // instance in the same process. 903 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 904 BackendArgs.data()); 905 } 906 907 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 908 // Create the TargetMachine for generating code. 909 std::string Error; 910 std::string Triple = TheModule->getTargetTriple(); 911 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 912 if (!TheTarget) { 913 if (MustCreateTM) 914 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 915 return; 916 } 917 918 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 919 std::string FeaturesStr = 920 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 921 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 922 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 923 924 llvm::TargetOptions Options; 925 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 926 HSOpts)) 927 return; 928 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 929 Options, RM, CM, OptLevel)); 930 } 931 932 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 933 BackendAction Action, 934 raw_pwrite_stream &OS, 935 raw_pwrite_stream *DwoOS) { 936 // Add LibraryInfo. 937 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 938 std::unique_ptr<TargetLibraryInfoImpl> TLII( 939 createTLII(TargetTriple, CodeGenOpts)); 940 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 941 942 // Normal mode, emit a .s or .o file by running the code generator. Note, 943 // this also adds codegenerator level optimization passes. 944 CodeGenFileType CGFT = getCodeGenFileType(Action); 945 946 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 947 // "codegen" passes so that it isn't run multiple times when there is 948 // inlining happening. 949 if (CodeGenOpts.OptimizationLevel > 0) 950 CodeGenPasses.add(createObjCARCContractPass()); 951 952 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 953 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 954 Diags.Report(diag::err_fe_unable_to_interface_with_target); 955 return false; 956 } 957 958 return true; 959 } 960 961 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 962 std::unique_ptr<raw_pwrite_stream> OS) { 963 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 964 965 setCommandLineOpts(CodeGenOpts); 966 967 bool UsesCodeGen = (Action != Backend_EmitNothing && 968 Action != Backend_EmitBC && 969 Action != Backend_EmitLL); 970 CreateTargetMachine(UsesCodeGen); 971 972 if (UsesCodeGen && !TM) 973 return; 974 if (TM) 975 TheModule->setDataLayout(TM->createDataLayout()); 976 977 DebugifyCustomPassManager PerModulePasses; 978 DebugInfoPerPassMap DIPreservationMap; 979 if (CodeGenOpts.EnableDIPreservationVerify) { 980 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 981 PerModulePasses.setDIPreservationMap(DIPreservationMap); 982 983 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 984 PerModulePasses.setOrigDIVerifyBugsReportFilePath( 985 CodeGenOpts.DIBugsReportFilePath); 986 } 987 PerModulePasses.add( 988 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 989 990 legacy::FunctionPassManager PerFunctionPasses(TheModule); 991 PerFunctionPasses.add( 992 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 993 994 CreatePasses(PerModulePasses, PerFunctionPasses); 995 996 legacy::PassManager CodeGenPasses; 997 CodeGenPasses.add( 998 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 999 1000 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1001 1002 switch (Action) { 1003 case Backend_EmitNothing: 1004 break; 1005 1006 case Backend_EmitBC: 1007 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1008 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1009 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1010 if (!ThinLinkOS) 1011 return; 1012 } 1013 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1014 CodeGenOpts.EnableSplitLTOUnit); 1015 PerModulePasses.add(createWriteThinLTOBitcodePass( 1016 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1017 } else { 1018 // Emit a module summary by default for Regular LTO except for ld64 1019 // targets 1020 bool EmitLTOSummary = 1021 (CodeGenOpts.PrepareForLTO && 1022 !CodeGenOpts.DisableLLVMPasses && 1023 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1024 llvm::Triple::Apple); 1025 if (EmitLTOSummary) { 1026 if (!TheModule->getModuleFlag("ThinLTO")) 1027 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1028 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1029 uint32_t(1)); 1030 } 1031 1032 PerModulePasses.add(createBitcodeWriterPass( 1033 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1034 } 1035 break; 1036 1037 case Backend_EmitLL: 1038 PerModulePasses.add( 1039 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1040 break; 1041 1042 default: 1043 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1044 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1045 if (!DwoOS) 1046 return; 1047 } 1048 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1049 DwoOS ? &DwoOS->os() : nullptr)) 1050 return; 1051 } 1052 1053 // Before executing passes, print the final values of the LLVM options. 1054 cl::PrintOptionValues(); 1055 1056 // Run passes. For now we do all passes at once, but eventually we 1057 // would like to have the option of streaming code generation. 1058 1059 { 1060 PrettyStackTraceString CrashInfo("Per-function optimization"); 1061 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 1062 1063 PerFunctionPasses.doInitialization(); 1064 for (Function &F : *TheModule) 1065 if (!F.isDeclaration()) 1066 PerFunctionPasses.run(F); 1067 PerFunctionPasses.doFinalization(); 1068 } 1069 1070 { 1071 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 1072 llvm::TimeTraceScope TimeScope("PerModulePasses"); 1073 PerModulePasses.run(*TheModule); 1074 } 1075 1076 { 1077 PrettyStackTraceString CrashInfo("Code generation"); 1078 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1079 CodeGenPasses.run(*TheModule); 1080 } 1081 1082 if (ThinLinkOS) 1083 ThinLinkOS->keep(); 1084 if (DwoOS) 1085 DwoOS->keep(); 1086 } 1087 1088 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 1089 switch (Opts.OptimizationLevel) { 1090 default: 1091 llvm_unreachable("Invalid optimization level!"); 1092 1093 case 0: 1094 return OptimizationLevel::O0; 1095 1096 case 1: 1097 return OptimizationLevel::O1; 1098 1099 case 2: 1100 switch (Opts.OptimizeSize) { 1101 default: 1102 llvm_unreachable("Invalid optimization level for size!"); 1103 1104 case 0: 1105 return OptimizationLevel::O2; 1106 1107 case 1: 1108 return OptimizationLevel::Os; 1109 1110 case 2: 1111 return OptimizationLevel::Oz; 1112 } 1113 1114 case 3: 1115 return OptimizationLevel::O3; 1116 } 1117 } 1118 1119 static void addSanitizers(const Triple &TargetTriple, 1120 const CodeGenOptions &CodeGenOpts, 1121 const LangOptions &LangOpts, PassBuilder &PB) { 1122 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM, 1123 OptimizationLevel Level) { 1124 if (CodeGenOpts.hasSanitizeCoverage()) { 1125 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1126 MPM.addPass(ModuleSanitizerCoveragePass( 1127 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1128 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 1129 } 1130 1131 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1132 if (LangOpts.Sanitize.has(Mask)) { 1133 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1134 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1135 1136 MPM.addPass( 1137 ModuleMemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1138 FunctionPassManager FPM; 1139 FPM.addPass( 1140 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel})); 1141 if (Level != OptimizationLevel::O0) { 1142 // MemorySanitizer inserts complex instrumentation that mostly 1143 // follows the logic of the original code, but operates on 1144 // "shadow" values. It can benefit from re-running some 1145 // general purpose optimization passes. 1146 FPM.addPass(EarlyCSEPass()); 1147 // TODO: Consider add more passes like in 1148 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible 1149 // difference on size. It's not clear if the rest is still 1150 // usefull. InstCombinePass breakes 1151 // compiler-rt/test/msan/select_origin.cpp. 1152 } 1153 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 1154 } 1155 }; 1156 MSanPass(SanitizerKind::Memory, false); 1157 MSanPass(SanitizerKind::KernelMemory, true); 1158 1159 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1160 MPM.addPass(ModuleThreadSanitizerPass()); 1161 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1162 } 1163 1164 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1165 if (LangOpts.Sanitize.has(Mask)) { 1166 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1167 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1168 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1169 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1170 llvm::AsanDtorKind DestructorKind = 1171 CodeGenOpts.getSanitizeAddressDtor(); 1172 llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn = 1173 CodeGenOpts.getSanitizeAddressUseAfterReturn(); 1174 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1175 MPM.addPass(ModuleAddressSanitizerPass( 1176 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator, 1177 DestructorKind)); 1178 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1179 {CompileKernel, Recover, UseAfterScope, UseAfterReturn}))); 1180 } 1181 }; 1182 ASanPass(SanitizerKind::Address, false); 1183 ASanPass(SanitizerKind::KernelAddress, true); 1184 1185 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1186 if (LangOpts.Sanitize.has(Mask)) { 1187 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1188 MPM.addPass(HWAddressSanitizerPass( 1189 {CompileKernel, Recover, 1190 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 1191 } 1192 }; 1193 HWASanPass(SanitizerKind::HWAddress, false); 1194 HWASanPass(SanitizerKind::KernelHWAddress, true); 1195 1196 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 1197 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 1198 } 1199 }); 1200 } 1201 1202 /// A clean version of `EmitAssembly` that uses the new pass manager. 1203 /// 1204 /// Not all features are currently supported in this system, but where 1205 /// necessary it falls back to the legacy pass manager to at least provide 1206 /// basic functionality. 1207 /// 1208 /// This API is planned to have its functionality finished and then to replace 1209 /// `EmitAssembly` at some point in the future when the default switches. 1210 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1211 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1212 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1213 setCommandLineOpts(CodeGenOpts); 1214 1215 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1216 Action != Backend_EmitBC && 1217 Action != Backend_EmitLL); 1218 CreateTargetMachine(RequiresCodeGen); 1219 1220 if (RequiresCodeGen && !TM) 1221 return; 1222 if (TM) 1223 TheModule->setDataLayout(TM->createDataLayout()); 1224 1225 Optional<PGOOptions> PGOOpt; 1226 1227 if (CodeGenOpts.hasProfileIRInstr()) 1228 // -fprofile-generate. 1229 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1230 ? std::string(DefaultProfileGenName) 1231 : CodeGenOpts.InstrProfileOutput, 1232 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1233 CodeGenOpts.DebugInfoForProfiling); 1234 else if (CodeGenOpts.hasProfileIRUse()) { 1235 // -fprofile-use. 1236 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1237 : PGOOptions::NoCSAction; 1238 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1239 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1240 CSAction, CodeGenOpts.DebugInfoForProfiling); 1241 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1242 // -fprofile-sample-use 1243 PGOOpt = PGOOptions( 1244 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 1245 PGOOptions::SampleUse, PGOOptions::NoCSAction, 1246 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 1247 else if (CodeGenOpts.PseudoProbeForProfiling) 1248 // -fpseudo-probe-for-profiling 1249 PGOOpt = 1250 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 1251 CodeGenOpts.DebugInfoForProfiling, true); 1252 else if (CodeGenOpts.DebugInfoForProfiling) 1253 // -fdebug-info-for-profiling 1254 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1255 PGOOptions::NoCSAction, true); 1256 1257 // Check to see if we want to generate a CS profile. 1258 if (CodeGenOpts.hasProfileCSIRInstr()) { 1259 assert(!CodeGenOpts.hasProfileCSIRUse() && 1260 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1261 "the same time"); 1262 if (PGOOpt.hasValue()) { 1263 assert(PGOOpt->Action != PGOOptions::IRInstr && 1264 PGOOpt->Action != PGOOptions::SampleUse && 1265 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1266 " pass"); 1267 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1268 ? std::string(DefaultProfileGenName) 1269 : CodeGenOpts.InstrProfileOutput; 1270 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1271 } else 1272 PGOOpt = PGOOptions("", 1273 CodeGenOpts.InstrProfileOutput.empty() 1274 ? std::string(DefaultProfileGenName) 1275 : CodeGenOpts.InstrProfileOutput, 1276 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1277 CodeGenOpts.DebugInfoForProfiling); 1278 } 1279 if (TM) 1280 TM->setPGOOption(PGOOpt); 1281 1282 PipelineTuningOptions PTO; 1283 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1284 // For historical reasons, loop interleaving is set to mirror setting for loop 1285 // unrolling. 1286 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1287 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1288 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1289 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 1290 // Only enable CGProfilePass when using integrated assembler, since 1291 // non-integrated assemblers don't recognize .cgprofile section. 1292 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1293 1294 LoopAnalysisManager LAM; 1295 FunctionAnalysisManager FAM; 1296 CGSCCAnalysisManager CGAM; 1297 ModuleAnalysisManager MAM; 1298 1299 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 1300 PassInstrumentationCallbacks PIC; 1301 PrintPassOptions PrintPassOpts; 1302 PrintPassOpts.Indent = DebugPassStructure; 1303 PrintPassOpts.SkipAnalyses = DebugPassStructure; 1304 StandardInstrumentations SI(CodeGenOpts.DebugPassManager || 1305 DebugPassStructure, 1306 /*VerifyEach*/ false, PrintPassOpts); 1307 SI.registerCallbacks(PIC, &FAM); 1308 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1309 1310 // Attempt to load pass plugins and register their callbacks with PB. 1311 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1312 auto PassPlugin = PassPlugin::Load(PluginFN); 1313 if (PassPlugin) { 1314 PassPlugin->registerPassBuilderCallbacks(PB); 1315 } else { 1316 Diags.Report(diag::err_fe_unable_to_load_plugin) 1317 << PluginFN << toString(PassPlugin.takeError()); 1318 } 1319 } 1320 #define HANDLE_EXTENSION(Ext) \ 1321 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1322 #include "llvm/Support/Extension.def" 1323 1324 // Register the AA manager first so that our version is the one used. 1325 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1326 1327 // Register the target library analysis directly and give it a customized 1328 // preset TLI. 1329 Triple TargetTriple(TheModule->getTargetTriple()); 1330 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1331 createTLII(TargetTriple, CodeGenOpts)); 1332 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1333 1334 // Register all the basic analyses with the managers. 1335 PB.registerModuleAnalyses(MAM); 1336 PB.registerCGSCCAnalyses(CGAM); 1337 PB.registerFunctionAnalyses(FAM); 1338 PB.registerLoopAnalyses(LAM); 1339 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1340 1341 ModulePassManager MPM; 1342 1343 if (!CodeGenOpts.DisableLLVMPasses) { 1344 // Map our optimization levels into one of the distinct levels used to 1345 // configure the pipeline. 1346 OptimizationLevel Level = mapToLevel(CodeGenOpts); 1347 1348 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1349 bool IsLTO = CodeGenOpts.PrepareForLTO; 1350 1351 if (LangOpts.ObjCAutoRefCount) { 1352 PB.registerPipelineStartEPCallback( 1353 [](ModulePassManager &MPM, OptimizationLevel Level) { 1354 if (Level != OptimizationLevel::O0) 1355 MPM.addPass( 1356 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 1357 }); 1358 PB.registerPipelineEarlySimplificationEPCallback( 1359 [](ModulePassManager &MPM, OptimizationLevel Level) { 1360 if (Level != OptimizationLevel::O0) 1361 MPM.addPass(ObjCARCAPElimPass()); 1362 }); 1363 PB.registerScalarOptimizerLateEPCallback( 1364 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1365 if (Level != OptimizationLevel::O0) 1366 FPM.addPass(ObjCARCOptPass()); 1367 }); 1368 } 1369 1370 // If we reached here with a non-empty index file name, then the index 1371 // file was empty and we are not performing ThinLTO backend compilation 1372 // (used in testing in a distributed build environment). 1373 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1374 // If so drop any the type test assume sequences inserted for whole program 1375 // vtables so that codegen doesn't complain. 1376 if (IsThinLTOPostLink) 1377 PB.registerPipelineStartEPCallback( 1378 [](ModulePassManager &MPM, OptimizationLevel Level) { 1379 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1380 /*ImportSummary=*/nullptr, 1381 /*DropTypeTests=*/true)); 1382 }); 1383 1384 if (CodeGenOpts.InstrumentFunctions || 1385 CodeGenOpts.InstrumentFunctionEntryBare || 1386 CodeGenOpts.InstrumentFunctionsAfterInlining || 1387 CodeGenOpts.InstrumentForProfiling) { 1388 PB.registerPipelineStartEPCallback( 1389 [](ModulePassManager &MPM, OptimizationLevel Level) { 1390 MPM.addPass(createModuleToFunctionPassAdaptor( 1391 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1392 }); 1393 PB.registerOptimizerLastEPCallback( 1394 [](ModulePassManager &MPM, OptimizationLevel Level) { 1395 MPM.addPass(createModuleToFunctionPassAdaptor( 1396 EntryExitInstrumenterPass(/*PostInlining=*/true))); 1397 }); 1398 } 1399 1400 // Register callbacks to schedule sanitizer passes at the appropriate part 1401 // of the pipeline. 1402 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1403 PB.registerScalarOptimizerLateEPCallback( 1404 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1405 FPM.addPass(BoundsCheckingPass()); 1406 }); 1407 1408 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1409 // done on PreLink stage. 1410 if (!IsThinLTOPostLink) 1411 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1412 1413 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) 1414 PB.registerPipelineStartEPCallback( 1415 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1416 MPM.addPass(GCOVProfilerPass(*Options)); 1417 }); 1418 if (Optional<InstrProfOptions> Options = 1419 getInstrProfOptions(CodeGenOpts, LangOpts)) 1420 PB.registerPipelineStartEPCallback( 1421 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1422 MPM.addPass(InstrProfiling(*Options, false)); 1423 }); 1424 1425 if (CodeGenOpts.OptimizationLevel == 0) { 1426 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 1427 } else if (IsThinLTO) { 1428 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1429 } else if (IsLTO) { 1430 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1431 } else { 1432 MPM = PB.buildPerModuleDefaultPipeline(Level); 1433 } 1434 1435 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1436 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1437 MPM.addPass(ModuleMemProfilerPass()); 1438 } 1439 } 1440 1441 // FIXME: We still use the legacy pass manager to do code generation. We 1442 // create that pass manager here and use it as needed below. 1443 legacy::PassManager CodeGenPasses; 1444 bool NeedCodeGen = false; 1445 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1446 1447 // Append any output we need to the pass manager. 1448 switch (Action) { 1449 case Backend_EmitNothing: 1450 break; 1451 1452 case Backend_EmitBC: 1453 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1454 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1455 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1456 if (!ThinLinkOS) 1457 return; 1458 } 1459 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1460 CodeGenOpts.EnableSplitLTOUnit); 1461 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1462 : nullptr)); 1463 } else { 1464 // Emit a module summary by default for Regular LTO except for ld64 1465 // targets 1466 bool EmitLTOSummary = 1467 (CodeGenOpts.PrepareForLTO && 1468 !CodeGenOpts.DisableLLVMPasses && 1469 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1470 llvm::Triple::Apple); 1471 if (EmitLTOSummary) { 1472 if (!TheModule->getModuleFlag("ThinLTO")) 1473 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1474 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1475 uint32_t(1)); 1476 } 1477 MPM.addPass( 1478 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1479 } 1480 break; 1481 1482 case Backend_EmitLL: 1483 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1484 break; 1485 1486 case Backend_EmitAssembly: 1487 case Backend_EmitMCNull: 1488 case Backend_EmitObj: 1489 NeedCodeGen = true; 1490 CodeGenPasses.add( 1491 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1492 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1493 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1494 if (!DwoOS) 1495 return; 1496 } 1497 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1498 DwoOS ? &DwoOS->os() : nullptr)) 1499 // FIXME: Should we handle this error differently? 1500 return; 1501 break; 1502 } 1503 1504 // Before executing passes, print the final values of the LLVM options. 1505 cl::PrintOptionValues(); 1506 1507 // Now that we have all of the passes ready, run them. 1508 { 1509 PrettyStackTraceString CrashInfo("Optimizer"); 1510 MPM.run(*TheModule, MAM); 1511 } 1512 1513 // Now if needed, run the legacy PM for codegen. 1514 if (NeedCodeGen) { 1515 PrettyStackTraceString CrashInfo("Code generation"); 1516 CodeGenPasses.run(*TheModule); 1517 } 1518 1519 if (ThinLinkOS) 1520 ThinLinkOS->keep(); 1521 if (DwoOS) 1522 DwoOS->keep(); 1523 } 1524 1525 static void runThinLTOBackend( 1526 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1527 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1528 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1529 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1530 std::string ProfileRemapping, BackendAction Action) { 1531 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1532 ModuleToDefinedGVSummaries; 1533 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1534 1535 setCommandLineOpts(CGOpts); 1536 1537 // We can simply import the values mentioned in the combined index, since 1538 // we should only invoke this using the individual indexes written out 1539 // via a WriteIndexesThinBackend. 1540 FunctionImporter::ImportMapTy ImportList; 1541 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1542 return; 1543 1544 auto AddStream = [&](size_t Task) { 1545 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1546 }; 1547 lto::Config Conf; 1548 if (CGOpts.SaveTempsFilePrefix != "") { 1549 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1550 /* UseInputModulePath */ false)) { 1551 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1552 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1553 << '\n'; 1554 }); 1555 } 1556 } 1557 Conf.CPU = TOpts.CPU; 1558 Conf.CodeModel = getCodeModel(CGOpts); 1559 Conf.MAttrs = TOpts.Features; 1560 Conf.RelocModel = CGOpts.RelocationModel; 1561 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1562 Conf.OptLevel = CGOpts.OptimizationLevel; 1563 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1564 Conf.SampleProfile = std::move(SampleProfile); 1565 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1566 // For historical reasons, loop interleaving is set to mirror setting for loop 1567 // unrolling. 1568 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1569 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1570 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1571 // Only enable CGProfilePass when using integrated assembler, since 1572 // non-integrated assemblers don't recognize .cgprofile section. 1573 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1574 1575 // Context sensitive profile. 1576 if (CGOpts.hasProfileCSIRInstr()) { 1577 Conf.RunCSIRInstr = true; 1578 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1579 } else if (CGOpts.hasProfileCSIRUse()) { 1580 Conf.RunCSIRInstr = false; 1581 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1582 } 1583 1584 Conf.ProfileRemapping = std::move(ProfileRemapping); 1585 Conf.UseNewPM = !CGOpts.LegacyPassManager; 1586 Conf.DebugPassManager = CGOpts.DebugPassManager; 1587 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1588 Conf.RemarksFilename = CGOpts.OptRecordFile; 1589 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1590 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1591 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1592 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1593 switch (Action) { 1594 case Backend_EmitNothing: 1595 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1596 return false; 1597 }; 1598 break; 1599 case Backend_EmitLL: 1600 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1601 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1602 return false; 1603 }; 1604 break; 1605 case Backend_EmitBC: 1606 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1607 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1608 return false; 1609 }; 1610 break; 1611 default: 1612 Conf.CGFileType = getCodeGenFileType(Action); 1613 break; 1614 } 1615 if (Error E = 1616 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1617 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1618 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1619 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1620 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1621 }); 1622 } 1623 } 1624 1625 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1626 const HeaderSearchOptions &HeaderOpts, 1627 const CodeGenOptions &CGOpts, 1628 const clang::TargetOptions &TOpts, 1629 const LangOptions &LOpts, 1630 StringRef TDesc, Module *M, 1631 BackendAction Action, 1632 std::unique_ptr<raw_pwrite_stream> OS) { 1633 1634 llvm::TimeTraceScope TimeScope("Backend"); 1635 1636 std::unique_ptr<llvm::Module> EmptyModule; 1637 if (!CGOpts.ThinLTOIndexFile.empty()) { 1638 // If we are performing a ThinLTO importing compile, load the function index 1639 // into memory and pass it into runThinLTOBackend, which will run the 1640 // function importer and invoke LTO passes. 1641 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1642 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1643 /*IgnoreEmptyThinLTOIndexFile*/true); 1644 if (!IndexOrErr) { 1645 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1646 "Error loading index file '" + 1647 CGOpts.ThinLTOIndexFile + "': "); 1648 return; 1649 } 1650 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1651 // A null CombinedIndex means we should skip ThinLTO compilation 1652 // (LLVM will optionally ignore empty index files, returning null instead 1653 // of an error). 1654 if (CombinedIndex) { 1655 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1656 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1657 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1658 CGOpts.ProfileRemappingFile, Action); 1659 return; 1660 } 1661 // Distributed indexing detected that nothing from the module is needed 1662 // for the final linking. So we can skip the compilation. We sill need to 1663 // output an empty object file to make sure that a linker does not fail 1664 // trying to read it. Also for some features, like CFI, we must skip 1665 // the compilation as CombinedIndex does not contain all required 1666 // information. 1667 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1668 EmptyModule->setTargetTriple(M->getTargetTriple()); 1669 M = EmptyModule.get(); 1670 } 1671 } 1672 1673 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1674 1675 if (!CGOpts.LegacyPassManager) 1676 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1677 else 1678 AsmHelper.EmitAssembly(Action, std::move(OS)); 1679 1680 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1681 // DataLayout. 1682 if (AsmHelper.TM) { 1683 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1684 if (DLDesc != TDesc) { 1685 unsigned DiagID = Diags.getCustomDiagID( 1686 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1687 "expected target description '%1'"); 1688 Diags.Report(DiagID) << DLDesc << TDesc; 1689 } 1690 } 1691 } 1692 1693 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1694 // __LLVM,__bitcode section. 1695 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1696 llvm::MemoryBufferRef Buf) { 1697 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1698 return; 1699 llvm::EmbedBitcodeInModule( 1700 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1701 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1702 CGOpts.CmdArgs); 1703 } 1704