1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/TimeProfiler.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/Coroutines.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/AlwaysInliner.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 55 #include "llvm/Transforms/InstCombine/InstCombine.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 58 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 59 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 60 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 61 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 62 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 63 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 64 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 65 #include "llvm/Transforms/ObjCARC.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Scalar/GVN.h" 68 #include "llvm/Transforms/Utils.h" 69 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 70 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 71 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 72 #include "llvm/Transforms/Utils/SymbolRewriter.h" 73 #include <memory> 74 using namespace clang; 75 using namespace llvm; 76 77 namespace { 78 79 // Default filename used for profile generation. 80 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 81 82 class EmitAssemblyHelper { 83 DiagnosticsEngine &Diags; 84 const HeaderSearchOptions &HSOpts; 85 const CodeGenOptions &CodeGenOpts; 86 const clang::TargetOptions &TargetOpts; 87 const LangOptions &LangOpts; 88 Module *TheModule; 89 90 Timer CodeGenerationTime; 91 92 std::unique_ptr<raw_pwrite_stream> OS; 93 94 TargetIRAnalysis getTargetIRAnalysis() const { 95 if (TM) 96 return TM->getTargetIRAnalysis(); 97 98 return TargetIRAnalysis(); 99 } 100 101 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 102 103 /// Generates the TargetMachine. 104 /// Leaves TM unchanged if it is unable to create the target machine. 105 /// Some of our clang tests specify triples which are not built 106 /// into clang. This is okay because these tests check the generated 107 /// IR, and they require DataLayout which depends on the triple. 108 /// In this case, we allow this method to fail and not report an error. 109 /// When MustCreateTM is used, we print an error if we are unable to load 110 /// the requested target. 111 void CreateTargetMachine(bool MustCreateTM); 112 113 /// Add passes necessary to emit assembly or LLVM IR. 114 /// 115 /// \return True on success. 116 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 117 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 118 119 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 120 std::error_code EC; 121 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 122 llvm::sys::fs::F_None); 123 if (EC) { 124 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 125 F.reset(); 126 } 127 return F; 128 } 129 130 public: 131 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 132 const HeaderSearchOptions &HeaderSearchOpts, 133 const CodeGenOptions &CGOpts, 134 const clang::TargetOptions &TOpts, 135 const LangOptions &LOpts, Module *M) 136 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 137 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 138 CodeGenerationTime("codegen", "Code Generation Time") {} 139 140 ~EmitAssemblyHelper() { 141 if (CodeGenOpts.DisableFree) 142 BuryPointer(std::move(TM)); 143 } 144 145 std::unique_ptr<TargetMachine> TM; 146 147 void EmitAssembly(BackendAction Action, 148 std::unique_ptr<raw_pwrite_stream> OS); 149 150 void EmitAssemblyWithNewPassManager(BackendAction Action, 151 std::unique_ptr<raw_pwrite_stream> OS); 152 }; 153 154 // We need this wrapper to access LangOpts and CGOpts from extension functions 155 // that we add to the PassManagerBuilder. 156 class PassManagerBuilderWrapper : public PassManagerBuilder { 157 public: 158 PassManagerBuilderWrapper(const Triple &TargetTriple, 159 const CodeGenOptions &CGOpts, 160 const LangOptions &LangOpts) 161 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 162 LangOpts(LangOpts) {} 163 const Triple &getTargetTriple() const { return TargetTriple; } 164 const CodeGenOptions &getCGOpts() const { return CGOpts; } 165 const LangOptions &getLangOpts() const { return LangOpts; } 166 167 private: 168 const Triple &TargetTriple; 169 const CodeGenOptions &CGOpts; 170 const LangOptions &LangOpts; 171 }; 172 } 173 174 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 175 if (Builder.OptLevel > 0) 176 PM.add(createObjCARCAPElimPass()); 177 } 178 179 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCExpandPass()); 182 } 183 184 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 185 if (Builder.OptLevel > 0) 186 PM.add(createObjCARCOptPass()); 187 } 188 189 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 190 legacy::PassManagerBase &PM) { 191 PM.add(createAddDiscriminatorsPass()); 192 } 193 194 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 PM.add(createBoundsCheckingLegacyPass()); 197 } 198 199 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 200 legacy::PassManagerBase &PM) { 201 const PassManagerBuilderWrapper &BuilderWrapper = 202 static_cast<const PassManagerBuilderWrapper&>(Builder); 203 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 204 SanitizerCoverageOptions Opts; 205 Opts.CoverageType = 206 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 207 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 208 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 209 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 210 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 211 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 212 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 213 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 214 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 215 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 216 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 217 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 218 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 219 PM.add(createSanitizerCoverageModulePass(Opts)); 220 } 221 222 // Check if ASan should use GC-friendly instrumentation for globals. 223 // First of all, there is no point if -fdata-sections is off (expect for MachO, 224 // where this is not a factor). Also, on ELF this feature requires an assembler 225 // extension that only works with -integrated-as at the moment. 226 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 227 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 228 return false; 229 switch (T.getObjectFormat()) { 230 case Triple::MachO: 231 case Triple::COFF: 232 return true; 233 case Triple::ELF: 234 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 235 default: 236 return false; 237 } 238 } 239 240 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper&>(Builder); 244 const Triple &T = BuilderWrapper.getTargetTriple(); 245 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 247 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 248 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 249 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 250 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 251 UseAfterScope)); 252 PM.add(createModuleAddressSanitizerLegacyPassPass( 253 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 254 } 255 256 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 257 legacy::PassManagerBase &PM) { 258 PM.add(createAddressSanitizerFunctionPass( 259 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 260 PM.add(createModuleAddressSanitizerLegacyPassPass( 261 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 262 /*UseOdrIndicator*/ false)); 263 } 264 265 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 266 legacy::PassManagerBase &PM) { 267 const PassManagerBuilderWrapper &BuilderWrapper = 268 static_cast<const PassManagerBuilderWrapper &>(Builder); 269 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 270 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 271 PM.add( 272 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 273 } 274 275 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM) { 277 PM.add(createHWAddressSanitizerLegacyPassPass( 278 /*CompileKernel*/ true, /*Recover*/ true)); 279 } 280 281 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 282 legacy::PassManagerBase &PM, 283 bool CompileKernel) { 284 const PassManagerBuilderWrapper &BuilderWrapper = 285 static_cast<const PassManagerBuilderWrapper&>(Builder); 286 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 287 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 288 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 289 PM.add(createMemorySanitizerLegacyPassPass( 290 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 291 292 // MemorySanitizer inserts complex instrumentation that mostly follows 293 // the logic of the original code, but operates on "shadow" values. 294 // It can benefit from re-running some general purpose optimization passes. 295 if (Builder.OptLevel > 0) { 296 PM.add(createEarlyCSEPass()); 297 PM.add(createReassociatePass()); 298 PM.add(createLICMPass()); 299 PM.add(createGVNPass()); 300 PM.add(createInstructionCombiningPass()); 301 PM.add(createDeadStoreEliminationPass()); 302 } 303 } 304 305 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 306 legacy::PassManagerBase &PM) { 307 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 308 } 309 310 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 311 legacy::PassManagerBase &PM) { 312 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 313 } 314 315 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 316 legacy::PassManagerBase &PM) { 317 PM.add(createThreadSanitizerLegacyPassPass()); 318 } 319 320 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 321 legacy::PassManagerBase &PM) { 322 const PassManagerBuilderWrapper &BuilderWrapper = 323 static_cast<const PassManagerBuilderWrapper&>(Builder); 324 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 325 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 326 } 327 328 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 329 const CodeGenOptions &CodeGenOpts) { 330 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 331 if (!CodeGenOpts.SimplifyLibCalls) 332 TLII->disableAllFunctions(); 333 else { 334 // Disable individual libc/libm calls in TargetLibraryInfo. 335 LibFunc F; 336 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 337 if (TLII->getLibFunc(FuncName, F)) 338 TLII->setUnavailable(F); 339 } 340 341 switch (CodeGenOpts.getVecLib()) { 342 case CodeGenOptions::Accelerate: 343 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 344 break; 345 case CodeGenOptions::MASSV: 346 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 347 break; 348 case CodeGenOptions::SVML: 349 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 350 break; 351 default: 352 break; 353 } 354 return TLII; 355 } 356 357 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 358 legacy::PassManager *MPM) { 359 llvm::SymbolRewriter::RewriteDescriptorList DL; 360 361 llvm::SymbolRewriter::RewriteMapParser MapParser; 362 for (const auto &MapFile : Opts.RewriteMapFiles) 363 MapParser.parse(MapFile, &DL); 364 365 MPM->add(createRewriteSymbolsPass(DL)); 366 } 367 368 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 369 switch (CodeGenOpts.OptimizationLevel) { 370 default: 371 llvm_unreachable("Invalid optimization level!"); 372 case 0: 373 return CodeGenOpt::None; 374 case 1: 375 return CodeGenOpt::Less; 376 case 2: 377 return CodeGenOpt::Default; // O2/Os/Oz 378 case 3: 379 return CodeGenOpt::Aggressive; 380 } 381 } 382 383 static Optional<llvm::CodeModel::Model> 384 getCodeModel(const CodeGenOptions &CodeGenOpts) { 385 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 386 .Case("tiny", llvm::CodeModel::Tiny) 387 .Case("small", llvm::CodeModel::Small) 388 .Case("kernel", llvm::CodeModel::Kernel) 389 .Case("medium", llvm::CodeModel::Medium) 390 .Case("large", llvm::CodeModel::Large) 391 .Case("default", ~1u) 392 .Default(~0u); 393 assert(CodeModel != ~0u && "invalid code model!"); 394 if (CodeModel == ~1u) 395 return None; 396 return static_cast<llvm::CodeModel::Model>(CodeModel); 397 } 398 399 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 400 if (Action == Backend_EmitObj) 401 return TargetMachine::CGFT_ObjectFile; 402 else if (Action == Backend_EmitMCNull) 403 return TargetMachine::CGFT_Null; 404 else { 405 assert(Action == Backend_EmitAssembly && "Invalid action!"); 406 return TargetMachine::CGFT_AssemblyFile; 407 } 408 } 409 410 static void initTargetOptions(llvm::TargetOptions &Options, 411 const CodeGenOptions &CodeGenOpts, 412 const clang::TargetOptions &TargetOpts, 413 const LangOptions &LangOpts, 414 const HeaderSearchOptions &HSOpts) { 415 Options.ThreadModel = 416 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 417 .Case("posix", llvm::ThreadModel::POSIX) 418 .Case("single", llvm::ThreadModel::Single); 419 420 // Set float ABI type. 421 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 422 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 423 "Invalid Floating Point ABI!"); 424 Options.FloatABIType = 425 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 426 .Case("soft", llvm::FloatABI::Soft) 427 .Case("softfp", llvm::FloatABI::Soft) 428 .Case("hard", llvm::FloatABI::Hard) 429 .Default(llvm::FloatABI::Default); 430 431 // Set FP fusion mode. 432 switch (LangOpts.getDefaultFPContractMode()) { 433 case LangOptions::FPC_Off: 434 // Preserve any contraction performed by the front-end. (Strict performs 435 // splitting of the muladd intrinsic in the backend.) 436 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 437 break; 438 case LangOptions::FPC_On: 439 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 440 break; 441 case LangOptions::FPC_Fast: 442 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 443 break; 444 } 445 446 Options.UseInitArray = CodeGenOpts.UseInitArray; 447 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 448 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 449 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 450 451 // Set EABI version. 452 Options.EABIVersion = TargetOpts.EABIVersion; 453 454 if (LangOpts.SjLjExceptions) 455 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 456 if (LangOpts.SEHExceptions) 457 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 458 if (LangOpts.DWARFExceptions) 459 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 460 461 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 462 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 463 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 464 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 465 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 466 Options.FunctionSections = CodeGenOpts.FunctionSections; 467 Options.DataSections = CodeGenOpts.DataSections; 468 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 469 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 470 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 471 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 472 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 473 Options.EmitAddrsig = CodeGenOpts.Addrsig; 474 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 475 476 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 477 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 478 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 479 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 480 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 481 Options.MCOptions.MCIncrementalLinkerCompatible = 482 CodeGenOpts.IncrementalLinkerCompatible; 483 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 484 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 485 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 486 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 487 Options.MCOptions.ABIName = TargetOpts.ABI; 488 for (const auto &Entry : HSOpts.UserEntries) 489 if (!Entry.IsFramework && 490 (Entry.Group == frontend::IncludeDirGroup::Quoted || 491 Entry.Group == frontend::IncludeDirGroup::Angled || 492 Entry.Group == frontend::IncludeDirGroup::System)) 493 Options.MCOptions.IASSearchPaths.push_back( 494 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 495 } 496 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 497 if (CodeGenOpts.DisableGCov) 498 return None; 499 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 500 return None; 501 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 502 // LLVM's -default-gcov-version flag is set to something invalid. 503 GCOVOptions Options; 504 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 505 Options.EmitData = CodeGenOpts.EmitGcovArcs; 506 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 507 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 508 Options.NoRedZone = CodeGenOpts.DisableRedZone; 509 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 510 Options.Filter = CodeGenOpts.ProfileFilterFiles; 511 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 512 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 513 return Options; 514 } 515 516 static Optional<InstrProfOptions> 517 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 518 const LangOptions &LangOpts) { 519 if (!CodeGenOpts.hasProfileClangInstr()) 520 return None; 521 InstrProfOptions Options; 522 Options.NoRedZone = CodeGenOpts.DisableRedZone; 523 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 524 525 // TODO: Surface the option to emit atomic profile counter increments at 526 // the driver level. 527 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 528 return Options; 529 } 530 531 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 532 legacy::FunctionPassManager &FPM) { 533 // Handle disabling of all LLVM passes, where we want to preserve the 534 // internal module before any optimization. 535 if (CodeGenOpts.DisableLLVMPasses) 536 return; 537 538 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 539 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 540 // are inserted before PMBuilder ones - they'd get the default-constructed 541 // TLI with an unknown target otherwise. 542 Triple TargetTriple(TheModule->getTargetTriple()); 543 std::unique_ptr<TargetLibraryInfoImpl> TLII( 544 createTLII(TargetTriple, CodeGenOpts)); 545 546 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 547 548 // At O0 and O1 we only run the always inliner which is more efficient. At 549 // higher optimization levels we run the normal inliner. 550 if (CodeGenOpts.OptimizationLevel <= 1) { 551 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 552 !CodeGenOpts.DisableLifetimeMarkers); 553 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 554 } else { 555 // We do not want to inline hot callsites for SamplePGO module-summary build 556 // because profile annotation will happen again in ThinLTO backend, and we 557 // want the IR of the hot path to match the profile. 558 PMBuilder.Inliner = createFunctionInliningPass( 559 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 560 (!CodeGenOpts.SampleProfileFile.empty() && 561 CodeGenOpts.PrepareForThinLTO)); 562 } 563 564 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 565 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 566 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 567 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 568 569 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 570 // Loop interleaving in the loop vectorizer has historically been set to be 571 // enabled when loop unrolling is enabled. 572 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 573 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 574 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 575 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 576 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 577 578 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 579 580 if (TM) 581 TM->adjustPassManager(PMBuilder); 582 583 if (CodeGenOpts.DebugInfoForProfiling || 584 !CodeGenOpts.SampleProfileFile.empty()) 585 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 586 addAddDiscriminatorsPass); 587 588 // In ObjC ARC mode, add the main ARC optimization passes. 589 if (LangOpts.ObjCAutoRefCount) { 590 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 591 addObjCARCExpandPass); 592 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 593 addObjCARCAPElimPass); 594 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 595 addObjCARCOptPass); 596 } 597 598 if (LangOpts.Coroutines) 599 addCoroutinePassesToExtensionPoints(PMBuilder); 600 601 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 602 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 603 addBoundsCheckingPass); 604 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 605 addBoundsCheckingPass); 606 } 607 608 if (CodeGenOpts.SanitizeCoverageType || 609 CodeGenOpts.SanitizeCoverageIndirectCalls || 610 CodeGenOpts.SanitizeCoverageTraceCmp) { 611 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 612 addSanitizerCoveragePass); 613 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 614 addSanitizerCoveragePass); 615 } 616 617 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 618 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 619 addAddressSanitizerPasses); 620 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 621 addAddressSanitizerPasses); 622 } 623 624 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 626 addKernelAddressSanitizerPasses); 627 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 628 addKernelAddressSanitizerPasses); 629 } 630 631 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 632 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 633 addHWAddressSanitizerPasses); 634 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 635 addHWAddressSanitizerPasses); 636 } 637 638 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 639 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 640 addKernelHWAddressSanitizerPasses); 641 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 642 addKernelHWAddressSanitizerPasses); 643 } 644 645 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 646 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 647 addMemorySanitizerPass); 648 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 649 addMemorySanitizerPass); 650 } 651 652 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 653 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 654 addKernelMemorySanitizerPass); 655 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 656 addKernelMemorySanitizerPass); 657 } 658 659 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 660 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 661 addThreadSanitizerPass); 662 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 663 addThreadSanitizerPass); 664 } 665 666 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 667 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 668 addDataFlowSanitizerPass); 669 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 670 addDataFlowSanitizerPass); 671 } 672 673 // Set up the per-function pass manager. 674 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 675 if (CodeGenOpts.VerifyModule) 676 FPM.add(createVerifierPass()); 677 678 // Set up the per-module pass manager. 679 if (!CodeGenOpts.RewriteMapFiles.empty()) 680 addSymbolRewriterPass(CodeGenOpts, &MPM); 681 682 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 683 MPM.add(createGCOVProfilerPass(*Options)); 684 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 685 MPM.add(createStripSymbolsPass(true)); 686 } 687 688 if (Optional<InstrProfOptions> Options = 689 getInstrProfOptions(CodeGenOpts, LangOpts)) 690 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 691 692 bool hasIRInstr = false; 693 if (CodeGenOpts.hasProfileIRInstr()) { 694 PMBuilder.EnablePGOInstrGen = true; 695 hasIRInstr = true; 696 } 697 if (CodeGenOpts.hasProfileCSIRInstr()) { 698 assert(!CodeGenOpts.hasProfileCSIRUse() && 699 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 700 "same time"); 701 assert(!hasIRInstr && 702 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 703 "same time"); 704 PMBuilder.EnablePGOCSInstrGen = true; 705 hasIRInstr = true; 706 } 707 if (hasIRInstr) { 708 if (!CodeGenOpts.InstrProfileOutput.empty()) 709 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 710 else 711 PMBuilder.PGOInstrGen = DefaultProfileGenName; 712 } 713 if (CodeGenOpts.hasProfileIRUse()) { 714 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 715 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 716 } 717 718 if (!CodeGenOpts.SampleProfileFile.empty()) 719 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 720 721 PMBuilder.populateFunctionPassManager(FPM); 722 PMBuilder.populateModulePassManager(MPM); 723 } 724 725 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 726 SmallVector<const char *, 16> BackendArgs; 727 BackendArgs.push_back("clang"); // Fake program name. 728 if (!CodeGenOpts.DebugPass.empty()) { 729 BackendArgs.push_back("-debug-pass"); 730 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 731 } 732 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 733 BackendArgs.push_back("-limit-float-precision"); 734 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 735 } 736 BackendArgs.push_back(nullptr); 737 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 738 BackendArgs.data()); 739 } 740 741 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 742 // Create the TargetMachine for generating code. 743 std::string Error; 744 std::string Triple = TheModule->getTargetTriple(); 745 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 746 if (!TheTarget) { 747 if (MustCreateTM) 748 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 749 return; 750 } 751 752 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 753 std::string FeaturesStr = 754 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 755 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 756 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 757 758 llvm::TargetOptions Options; 759 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 760 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 761 Options, RM, CM, OptLevel)); 762 } 763 764 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 765 BackendAction Action, 766 raw_pwrite_stream &OS, 767 raw_pwrite_stream *DwoOS) { 768 // Add LibraryInfo. 769 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 770 std::unique_ptr<TargetLibraryInfoImpl> TLII( 771 createTLII(TargetTriple, CodeGenOpts)); 772 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 773 774 // Normal mode, emit a .s or .o file by running the code generator. Note, 775 // this also adds codegenerator level optimization passes. 776 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 777 778 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 779 // "codegen" passes so that it isn't run multiple times when there is 780 // inlining happening. 781 if (CodeGenOpts.OptimizationLevel > 0) 782 CodeGenPasses.add(createObjCARCContractPass()); 783 784 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 785 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 786 Diags.Report(diag::err_fe_unable_to_interface_with_target); 787 return false; 788 } 789 790 return true; 791 } 792 793 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 794 std::unique_ptr<raw_pwrite_stream> OS) { 795 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 796 797 setCommandLineOpts(CodeGenOpts); 798 799 bool UsesCodeGen = (Action != Backend_EmitNothing && 800 Action != Backend_EmitBC && 801 Action != Backend_EmitLL); 802 CreateTargetMachine(UsesCodeGen); 803 804 if (UsesCodeGen && !TM) 805 return; 806 if (TM) 807 TheModule->setDataLayout(TM->createDataLayout()); 808 809 legacy::PassManager PerModulePasses; 810 PerModulePasses.add( 811 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 812 813 legacy::FunctionPassManager PerFunctionPasses(TheModule); 814 PerFunctionPasses.add( 815 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 816 817 CreatePasses(PerModulePasses, PerFunctionPasses); 818 819 legacy::PassManager CodeGenPasses; 820 CodeGenPasses.add( 821 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 822 823 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 824 825 switch (Action) { 826 case Backend_EmitNothing: 827 break; 828 829 case Backend_EmitBC: 830 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 831 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 832 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 833 if (!ThinLinkOS) 834 return; 835 } 836 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 837 CodeGenOpts.EnableSplitLTOUnit); 838 PerModulePasses.add(createWriteThinLTOBitcodePass( 839 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 840 } else { 841 // Emit a module summary by default for Regular LTO except for ld64 842 // targets 843 bool EmitLTOSummary = 844 (CodeGenOpts.PrepareForLTO && 845 !CodeGenOpts.DisableLLVMPasses && 846 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 847 llvm::Triple::Apple); 848 if (EmitLTOSummary) { 849 if (!TheModule->getModuleFlag("ThinLTO")) 850 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 851 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 852 CodeGenOpts.EnableSplitLTOUnit); 853 } 854 855 PerModulePasses.add(createBitcodeWriterPass( 856 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 857 } 858 break; 859 860 case Backend_EmitLL: 861 PerModulePasses.add( 862 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 863 break; 864 865 default: 866 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 867 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 868 if (!DwoOS) 869 return; 870 } 871 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 872 DwoOS ? &DwoOS->os() : nullptr)) 873 return; 874 } 875 876 // Before executing passes, print the final values of the LLVM options. 877 cl::PrintOptionValues(); 878 879 // Run passes. For now we do all passes at once, but eventually we 880 // would like to have the option of streaming code generation. 881 882 { 883 PrettyStackTraceString CrashInfo("Per-function optimization"); 884 885 PerFunctionPasses.doInitialization(); 886 for (Function &F : *TheModule) 887 if (!F.isDeclaration()) 888 PerFunctionPasses.run(F); 889 PerFunctionPasses.doFinalization(); 890 } 891 892 { 893 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 894 PerModulePasses.run(*TheModule); 895 } 896 897 { 898 PrettyStackTraceString CrashInfo("Code generation"); 899 CodeGenPasses.run(*TheModule); 900 } 901 902 if (ThinLinkOS) 903 ThinLinkOS->keep(); 904 if (DwoOS) 905 DwoOS->keep(); 906 } 907 908 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 909 switch (Opts.OptimizationLevel) { 910 default: 911 llvm_unreachable("Invalid optimization level!"); 912 913 case 1: 914 return PassBuilder::O1; 915 916 case 2: 917 switch (Opts.OptimizeSize) { 918 default: 919 llvm_unreachable("Invalid optimization level for size!"); 920 921 case 0: 922 return PassBuilder::O2; 923 924 case 1: 925 return PassBuilder::Os; 926 927 case 2: 928 return PassBuilder::Oz; 929 } 930 931 case 3: 932 return PassBuilder::O3; 933 } 934 } 935 936 static void addSanitizersAtO0(ModulePassManager &MPM, 937 const Triple &TargetTriple, 938 const LangOptions &LangOpts, 939 const CodeGenOptions &CodeGenOpts) { 940 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 941 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 942 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 943 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 944 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 945 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 946 MPM.addPass( 947 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 948 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 949 }; 950 951 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 952 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 953 } 954 955 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 956 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 957 } 958 959 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 960 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 961 } 962 963 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 964 MPM.addPass(createModuleToFunctionPassAdaptor( 965 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 966 } 967 968 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 969 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 970 } 971 972 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 973 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 974 MPM.addPass(createModuleToFunctionPassAdaptor( 975 HWAddressSanitizerPass(/*CompileKernel=*/false, Recover))); 976 } 977 978 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 979 MPM.addPass(createModuleToFunctionPassAdaptor( 980 HWAddressSanitizerPass(/*CompileKernel=*/true, /*Recover=*/true))); 981 } 982 } 983 984 /// A clean version of `EmitAssembly` that uses the new pass manager. 985 /// 986 /// Not all features are currently supported in this system, but where 987 /// necessary it falls back to the legacy pass manager to at least provide 988 /// basic functionality. 989 /// 990 /// This API is planned to have its functionality finished and then to replace 991 /// `EmitAssembly` at some point in the future when the default switches. 992 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 993 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 994 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 995 setCommandLineOpts(CodeGenOpts); 996 997 bool RequiresCodeGen = (Action != Backend_EmitNothing && 998 Action != Backend_EmitBC && 999 Action != Backend_EmitLL); 1000 CreateTargetMachine(RequiresCodeGen); 1001 1002 if (RequiresCodeGen && !TM) 1003 return; 1004 if (TM) 1005 TheModule->setDataLayout(TM->createDataLayout()); 1006 1007 Optional<PGOOptions> PGOOpt; 1008 1009 if (CodeGenOpts.hasProfileIRInstr()) 1010 // -fprofile-generate. 1011 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1012 ? DefaultProfileGenName 1013 : CodeGenOpts.InstrProfileOutput, 1014 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1015 CodeGenOpts.DebugInfoForProfiling); 1016 else if (CodeGenOpts.hasProfileIRUse()) { 1017 // -fprofile-use. 1018 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1019 : PGOOptions::NoCSAction; 1020 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1021 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1022 CSAction, CodeGenOpts.DebugInfoForProfiling); 1023 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1024 // -fprofile-sample-use 1025 PGOOpt = 1026 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1027 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1028 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1029 else if (CodeGenOpts.DebugInfoForProfiling) 1030 // -fdebug-info-for-profiling 1031 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1032 PGOOptions::NoCSAction, true); 1033 1034 // Check to see if we want to generate a CS profile. 1035 if (CodeGenOpts.hasProfileCSIRInstr()) { 1036 assert(!CodeGenOpts.hasProfileCSIRUse() && 1037 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1038 "the same time"); 1039 if (PGOOpt.hasValue()) { 1040 assert(PGOOpt->Action != PGOOptions::IRInstr && 1041 PGOOpt->Action != PGOOptions::SampleUse && 1042 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1043 " pass"); 1044 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1045 ? DefaultProfileGenName 1046 : CodeGenOpts.InstrProfileOutput; 1047 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1048 } else 1049 PGOOpt = PGOOptions("", 1050 CodeGenOpts.InstrProfileOutput.empty() 1051 ? DefaultProfileGenName 1052 : CodeGenOpts.InstrProfileOutput, 1053 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1054 CodeGenOpts.DebugInfoForProfiling); 1055 } 1056 1057 PipelineTuningOptions PTO; 1058 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1059 // For historical reasons, loop interleaving is set to mirror setting for loop 1060 // unrolling. 1061 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1062 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1063 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1064 1065 PassBuilder PB(TM.get(), PTO, PGOOpt); 1066 1067 // Attempt to load pass plugins and register their callbacks with PB. 1068 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1069 auto PassPlugin = PassPlugin::Load(PluginFN); 1070 if (PassPlugin) { 1071 PassPlugin->registerPassBuilderCallbacks(PB); 1072 } else { 1073 Diags.Report(diag::err_fe_unable_to_load_plugin) 1074 << PluginFN << toString(PassPlugin.takeError()); 1075 } 1076 } 1077 1078 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1079 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1080 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1081 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1082 1083 // Register the AA manager first so that our version is the one used. 1084 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1085 1086 // Register the target library analysis directly and give it a customized 1087 // preset TLI. 1088 Triple TargetTriple(TheModule->getTargetTriple()); 1089 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1090 createTLII(TargetTriple, CodeGenOpts)); 1091 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1092 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1093 1094 // Register all the basic analyses with the managers. 1095 PB.registerModuleAnalyses(MAM); 1096 PB.registerCGSCCAnalyses(CGAM); 1097 PB.registerFunctionAnalyses(FAM); 1098 PB.registerLoopAnalyses(LAM); 1099 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1100 1101 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1102 1103 if (!CodeGenOpts.DisableLLVMPasses) { 1104 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1105 bool IsLTO = CodeGenOpts.PrepareForLTO; 1106 1107 if (CodeGenOpts.OptimizationLevel == 0) { 1108 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1109 MPM.addPass(GCOVProfilerPass(*Options)); 1110 if (Optional<InstrProfOptions> Options = 1111 getInstrProfOptions(CodeGenOpts, LangOpts)) 1112 MPM.addPass(InstrProfiling(*Options, false)); 1113 1114 // Build a minimal pipeline based on the semantics required by Clang, 1115 // which is just that always inlining occurs. Further, disable generating 1116 // lifetime intrinsics to avoid enabling further optimizations during 1117 // code generation. 1118 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1119 1120 // At -O0 we directly run necessary sanitizer passes. 1121 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1122 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1123 1124 // Lastly, add semantically necessary passes for LTO. 1125 if (IsLTO || IsThinLTO) { 1126 MPM.addPass(CanonicalizeAliasesPass()); 1127 MPM.addPass(NameAnonGlobalPass()); 1128 } 1129 } else { 1130 // Map our optimization levels into one of the distinct levels used to 1131 // configure the pipeline. 1132 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1133 1134 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1135 MPM.addPass(createModuleToFunctionPassAdaptor( 1136 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1137 }); 1138 1139 // Register callbacks to schedule sanitizer passes at the appropriate part of 1140 // the pipeline. 1141 // FIXME: either handle asan/the remaining sanitizers or error out 1142 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1143 PB.registerScalarOptimizerLateEPCallback( 1144 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1145 FPM.addPass(BoundsCheckingPass()); 1146 }); 1147 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1148 PB.registerOptimizerLastEPCallback( 1149 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1150 FPM.addPass(MemorySanitizerPass({})); 1151 }); 1152 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1153 PB.registerOptimizerLastEPCallback( 1154 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1155 FPM.addPass(ThreadSanitizerPass()); 1156 }); 1157 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1158 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1159 MPM.addPass( 1160 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1161 }); 1162 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1163 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1164 PB.registerOptimizerLastEPCallback( 1165 [Recover, UseAfterScope](FunctionPassManager &FPM, 1166 PassBuilder::OptimizationLevel Level) { 1167 FPM.addPass(AddressSanitizerPass( 1168 /*CompileKernel=*/false, Recover, UseAfterScope)); 1169 }); 1170 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1171 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1172 PB.registerPipelineStartEPCallback( 1173 [Recover, ModuleUseAfterScope, 1174 UseOdrIndicator](ModulePassManager &MPM) { 1175 MPM.addPass(ModuleAddressSanitizerPass( 1176 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1177 UseOdrIndicator)); 1178 }); 1179 } 1180 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1181 bool Recover = 1182 CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1183 PB.registerOptimizerLastEPCallback( 1184 [Recover](FunctionPassManager &FPM, 1185 PassBuilder::OptimizationLevel Level) { 1186 FPM.addPass(HWAddressSanitizerPass( 1187 /*CompileKernel=*/false, Recover)); 1188 }); 1189 } 1190 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1191 PB.registerOptimizerLastEPCallback( 1192 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1193 FPM.addPass(HWAddressSanitizerPass( 1194 /*CompileKernel=*/true, /*Recover=*/true)); 1195 }); 1196 } 1197 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1198 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1199 MPM.addPass(GCOVProfilerPass(*Options)); 1200 }); 1201 if (Optional<InstrProfOptions> Options = 1202 getInstrProfOptions(CodeGenOpts, LangOpts)) 1203 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1204 MPM.addPass(InstrProfiling(*Options, false)); 1205 }); 1206 1207 if (IsThinLTO) { 1208 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1209 Level, CodeGenOpts.DebugPassManager); 1210 MPM.addPass(CanonicalizeAliasesPass()); 1211 MPM.addPass(NameAnonGlobalPass()); 1212 } else if (IsLTO) { 1213 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1214 CodeGenOpts.DebugPassManager); 1215 MPM.addPass(CanonicalizeAliasesPass()); 1216 MPM.addPass(NameAnonGlobalPass()); 1217 } else { 1218 MPM = PB.buildPerModuleDefaultPipeline(Level, 1219 CodeGenOpts.DebugPassManager); 1220 } 1221 } 1222 1223 if (CodeGenOpts.OptimizationLevel == 0) 1224 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1225 1226 if (CodeGenOpts.hasProfileIRInstr()) { 1227 // This file is stored as the ProfileFile. 1228 MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->ProfileFile)); 1229 } 1230 } 1231 1232 // FIXME: We still use the legacy pass manager to do code generation. We 1233 // create that pass manager here and use it as needed below. 1234 legacy::PassManager CodeGenPasses; 1235 bool NeedCodeGen = false; 1236 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1237 1238 // Append any output we need to the pass manager. 1239 switch (Action) { 1240 case Backend_EmitNothing: 1241 break; 1242 1243 case Backend_EmitBC: 1244 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1245 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1246 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1247 if (!ThinLinkOS) 1248 return; 1249 } 1250 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1251 CodeGenOpts.EnableSplitLTOUnit); 1252 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1253 : nullptr)); 1254 } else { 1255 // Emit a module summary by default for Regular LTO except for ld64 1256 // targets 1257 bool EmitLTOSummary = 1258 (CodeGenOpts.PrepareForLTO && 1259 !CodeGenOpts.DisableLLVMPasses && 1260 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1261 llvm::Triple::Apple); 1262 if (EmitLTOSummary) { 1263 if (!TheModule->getModuleFlag("ThinLTO")) 1264 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1265 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1266 CodeGenOpts.EnableSplitLTOUnit); 1267 } 1268 MPM.addPass( 1269 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1270 } 1271 break; 1272 1273 case Backend_EmitLL: 1274 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1275 break; 1276 1277 case Backend_EmitAssembly: 1278 case Backend_EmitMCNull: 1279 case Backend_EmitObj: 1280 NeedCodeGen = true; 1281 CodeGenPasses.add( 1282 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1283 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1284 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1285 if (!DwoOS) 1286 return; 1287 } 1288 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1289 DwoOS ? &DwoOS->os() : nullptr)) 1290 // FIXME: Should we handle this error differently? 1291 return; 1292 break; 1293 } 1294 1295 // Before executing passes, print the final values of the LLVM options. 1296 cl::PrintOptionValues(); 1297 1298 // Now that we have all of the passes ready, run them. 1299 { 1300 PrettyStackTraceString CrashInfo("Optimizer"); 1301 MPM.run(*TheModule, MAM); 1302 } 1303 1304 // Now if needed, run the legacy PM for codegen. 1305 if (NeedCodeGen) { 1306 PrettyStackTraceString CrashInfo("Code generation"); 1307 CodeGenPasses.run(*TheModule); 1308 } 1309 1310 if (ThinLinkOS) 1311 ThinLinkOS->keep(); 1312 if (DwoOS) 1313 DwoOS->keep(); 1314 } 1315 1316 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1317 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1318 if (!BMsOrErr) 1319 return BMsOrErr.takeError(); 1320 1321 // The bitcode file may contain multiple modules, we want the one that is 1322 // marked as being the ThinLTO module. 1323 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1324 return *Bm; 1325 1326 return make_error<StringError>("Could not find module summary", 1327 inconvertibleErrorCode()); 1328 } 1329 1330 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1331 for (BitcodeModule &BM : BMs) { 1332 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1333 if (LTOInfo && LTOInfo->IsThinLTO) 1334 return &BM; 1335 } 1336 return nullptr; 1337 } 1338 1339 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1340 const HeaderSearchOptions &HeaderOpts, 1341 const CodeGenOptions &CGOpts, 1342 const clang::TargetOptions &TOpts, 1343 const LangOptions &LOpts, 1344 std::unique_ptr<raw_pwrite_stream> OS, 1345 std::string SampleProfile, 1346 std::string ProfileRemapping, 1347 BackendAction Action) { 1348 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1349 ModuleToDefinedGVSummaries; 1350 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1351 1352 setCommandLineOpts(CGOpts); 1353 1354 // We can simply import the values mentioned in the combined index, since 1355 // we should only invoke this using the individual indexes written out 1356 // via a WriteIndexesThinBackend. 1357 FunctionImporter::ImportMapTy ImportList; 1358 for (auto &GlobalList : *CombinedIndex) { 1359 // Ignore entries for undefined references. 1360 if (GlobalList.second.SummaryList.empty()) 1361 continue; 1362 1363 auto GUID = GlobalList.first; 1364 for (auto &Summary : GlobalList.second.SummaryList) { 1365 // Skip the summaries for the importing module. These are included to 1366 // e.g. record required linkage changes. 1367 if (Summary->modulePath() == M->getModuleIdentifier()) 1368 continue; 1369 // Add an entry to provoke importing by thinBackend. 1370 ImportList[Summary->modulePath()].insert(GUID); 1371 } 1372 } 1373 1374 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1375 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1376 1377 for (auto &I : ImportList) { 1378 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1379 llvm::MemoryBuffer::getFile(I.first()); 1380 if (!MBOrErr) { 1381 errs() << "Error loading imported file '" << I.first() 1382 << "': " << MBOrErr.getError().message() << "\n"; 1383 return; 1384 } 1385 1386 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1387 if (!BMOrErr) { 1388 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1389 errs() << "Error loading imported file '" << I.first() 1390 << "': " << EIB.message() << '\n'; 1391 }); 1392 return; 1393 } 1394 ModuleMap.insert({I.first(), *BMOrErr}); 1395 1396 OwnedImports.push_back(std::move(*MBOrErr)); 1397 } 1398 auto AddStream = [&](size_t Task) { 1399 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1400 }; 1401 lto::Config Conf; 1402 if (CGOpts.SaveTempsFilePrefix != "") { 1403 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1404 /* UseInputModulePath */ false)) { 1405 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1406 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1407 << '\n'; 1408 }); 1409 } 1410 } 1411 Conf.CPU = TOpts.CPU; 1412 Conf.CodeModel = getCodeModel(CGOpts); 1413 Conf.MAttrs = TOpts.Features; 1414 Conf.RelocModel = CGOpts.RelocationModel; 1415 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1416 Conf.OptLevel = CGOpts.OptimizationLevel; 1417 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1418 Conf.SampleProfile = std::move(SampleProfile); 1419 1420 // Context sensitive profile. 1421 if (CGOpts.hasProfileCSIRInstr()) { 1422 Conf.RunCSIRInstr = true; 1423 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1424 } else if (CGOpts.hasProfileCSIRUse()) { 1425 Conf.RunCSIRInstr = false; 1426 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1427 } 1428 1429 Conf.ProfileRemapping = std::move(ProfileRemapping); 1430 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1431 Conf.DebugPassManager = CGOpts.DebugPassManager; 1432 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1433 Conf.RemarksFilename = CGOpts.OptRecordFile; 1434 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1435 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1436 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1437 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1438 switch (Action) { 1439 case Backend_EmitNothing: 1440 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1441 return false; 1442 }; 1443 break; 1444 case Backend_EmitLL: 1445 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1446 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1447 return false; 1448 }; 1449 break; 1450 case Backend_EmitBC: 1451 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1452 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1453 return false; 1454 }; 1455 break; 1456 default: 1457 Conf.CGFileType = getCodeGenFileType(Action); 1458 break; 1459 } 1460 if (Error E = thinBackend( 1461 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1462 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1463 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1464 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1465 }); 1466 } 1467 } 1468 1469 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1470 const HeaderSearchOptions &HeaderOpts, 1471 const CodeGenOptions &CGOpts, 1472 const clang::TargetOptions &TOpts, 1473 const LangOptions &LOpts, 1474 const llvm::DataLayout &TDesc, Module *M, 1475 BackendAction Action, 1476 std::unique_ptr<raw_pwrite_stream> OS) { 1477 1478 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1479 1480 std::unique_ptr<llvm::Module> EmptyModule; 1481 if (!CGOpts.ThinLTOIndexFile.empty()) { 1482 // If we are performing a ThinLTO importing compile, load the function index 1483 // into memory and pass it into runThinLTOBackend, which will run the 1484 // function importer and invoke LTO passes. 1485 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1486 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1487 /*IgnoreEmptyThinLTOIndexFile*/true); 1488 if (!IndexOrErr) { 1489 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1490 "Error loading index file '" + 1491 CGOpts.ThinLTOIndexFile + "': "); 1492 return; 1493 } 1494 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1495 // A null CombinedIndex means we should skip ThinLTO compilation 1496 // (LLVM will optionally ignore empty index files, returning null instead 1497 // of an error). 1498 if (CombinedIndex) { 1499 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1500 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1501 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1502 CGOpts.ProfileRemappingFile, Action); 1503 return; 1504 } 1505 // Distributed indexing detected that nothing from the module is needed 1506 // for the final linking. So we can skip the compilation. We sill need to 1507 // output an empty object file to make sure that a linker does not fail 1508 // trying to read it. Also for some features, like CFI, we must skip 1509 // the compilation as CombinedIndex does not contain all required 1510 // information. 1511 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1512 EmptyModule->setTargetTriple(M->getTargetTriple()); 1513 M = EmptyModule.get(); 1514 } 1515 } 1516 1517 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1518 1519 if (CGOpts.ExperimentalNewPassManager) 1520 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1521 else 1522 AsmHelper.EmitAssembly(Action, std::move(OS)); 1523 1524 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1525 // DataLayout. 1526 if (AsmHelper.TM) { 1527 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1528 if (DLDesc != TDesc.getStringRepresentation()) { 1529 unsigned DiagID = Diags.getCustomDiagID( 1530 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1531 "expected target description '%1'"); 1532 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1533 } 1534 } 1535 } 1536 1537 static const char* getSectionNameForBitcode(const Triple &T) { 1538 switch (T.getObjectFormat()) { 1539 case Triple::MachO: 1540 return "__LLVM,__bitcode"; 1541 case Triple::COFF: 1542 case Triple::ELF: 1543 case Triple::Wasm: 1544 case Triple::UnknownObjectFormat: 1545 return ".llvmbc"; 1546 case Triple::XCOFF: 1547 llvm_unreachable("XCOFF is not yet implemented"); 1548 break; 1549 } 1550 llvm_unreachable("Unimplemented ObjectFormatType"); 1551 } 1552 1553 static const char* getSectionNameForCommandline(const Triple &T) { 1554 switch (T.getObjectFormat()) { 1555 case Triple::MachO: 1556 return "__LLVM,__cmdline"; 1557 case Triple::COFF: 1558 case Triple::ELF: 1559 case Triple::Wasm: 1560 case Triple::UnknownObjectFormat: 1561 return ".llvmcmd"; 1562 case Triple::XCOFF: 1563 llvm_unreachable("XCOFF is not yet implemented"); 1564 break; 1565 } 1566 llvm_unreachable("Unimplemented ObjectFormatType"); 1567 } 1568 1569 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1570 // __LLVM,__bitcode section. 1571 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1572 llvm::MemoryBufferRef Buf) { 1573 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1574 return; 1575 1576 // Save llvm.compiler.used and remote it. 1577 SmallVector<Constant*, 2> UsedArray; 1578 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1579 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1580 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1581 for (auto *GV : UsedGlobals) { 1582 if (GV->getName() != "llvm.embedded.module" && 1583 GV->getName() != "llvm.cmdline") 1584 UsedArray.push_back( 1585 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1586 } 1587 if (Used) 1588 Used->eraseFromParent(); 1589 1590 // Embed the bitcode for the llvm module. 1591 std::string Data; 1592 ArrayRef<uint8_t> ModuleData; 1593 Triple T(M->getTargetTriple()); 1594 // Create a constant that contains the bitcode. 1595 // In case of embedding a marker, ignore the input Buf and use the empty 1596 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1597 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1598 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1599 (const unsigned char *)Buf.getBufferEnd())) { 1600 // If the input is LLVM Assembly, bitcode is produced by serializing 1601 // the module. Use-lists order need to be perserved in this case. 1602 llvm::raw_string_ostream OS(Data); 1603 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1604 ModuleData = 1605 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1606 } else 1607 // If the input is LLVM bitcode, write the input byte stream directly. 1608 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1609 Buf.getBufferSize()); 1610 } 1611 llvm::Constant *ModuleConstant = 1612 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1613 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1614 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1615 ModuleConstant); 1616 GV->setSection(getSectionNameForBitcode(T)); 1617 UsedArray.push_back( 1618 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1619 if (llvm::GlobalVariable *Old = 1620 M->getGlobalVariable("llvm.embedded.module", true)) { 1621 assert(Old->hasOneUse() && 1622 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1623 GV->takeName(Old); 1624 Old->eraseFromParent(); 1625 } else { 1626 GV->setName("llvm.embedded.module"); 1627 } 1628 1629 // Skip if only bitcode needs to be embedded. 1630 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1631 // Embed command-line options. 1632 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1633 CGOpts.CmdArgs.size()); 1634 llvm::Constant *CmdConstant = 1635 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1636 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1637 llvm::GlobalValue::PrivateLinkage, 1638 CmdConstant); 1639 GV->setSection(getSectionNameForCommandline(T)); 1640 UsedArray.push_back( 1641 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1642 if (llvm::GlobalVariable *Old = 1643 M->getGlobalVariable("llvm.cmdline", true)) { 1644 assert(Old->hasOneUse() && 1645 "llvm.cmdline can only be used once in llvm.compiler.used"); 1646 GV->takeName(Old); 1647 Old->eraseFromParent(); 1648 } else { 1649 GV->setName("llvm.cmdline"); 1650 } 1651 } 1652 1653 if (UsedArray.empty()) 1654 return; 1655 1656 // Recreate llvm.compiler.used. 1657 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1658 auto *NewUsed = new GlobalVariable( 1659 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1660 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1661 NewUsed->setSection("llvm.metadata"); 1662 } 1663