1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "clang/Lex/HeaderSearchOptions.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/PrettyStackTrace.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/Transforms/Coroutines.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 55 #include "llvm/Transforms/ObjCARC.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/GVN.h" 58 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 59 #include "llvm/Transforms/Utils/SymbolRewriter.h" 60 #include <memory> 61 using namespace clang; 62 using namespace llvm; 63 64 namespace { 65 66 // Default filename used for profile generation. 67 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 68 69 class EmitAssemblyHelper { 70 DiagnosticsEngine &Diags; 71 const HeaderSearchOptions &HSOpts; 72 const CodeGenOptions &CodeGenOpts; 73 const clang::TargetOptions &TargetOpts; 74 const LangOptions &LangOpts; 75 Module *TheModule; 76 77 Timer CodeGenerationTime; 78 79 std::unique_ptr<raw_pwrite_stream> OS; 80 81 TargetIRAnalysis getTargetIRAnalysis() const { 82 if (TM) 83 return TM->getTargetIRAnalysis(); 84 85 return TargetIRAnalysis(); 86 } 87 88 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 89 90 /// Generates the TargetMachine. 91 /// Leaves TM unchanged if it is unable to create the target machine. 92 /// Some of our clang tests specify triples which are not built 93 /// into clang. This is okay because these tests check the generated 94 /// IR, and they require DataLayout which depends on the triple. 95 /// In this case, we allow this method to fail and not report an error. 96 /// When MustCreateTM is used, we print an error if we are unable to load 97 /// the requested target. 98 void CreateTargetMachine(bool MustCreateTM); 99 100 /// Add passes necessary to emit assembly or LLVM IR. 101 /// 102 /// \return True on success. 103 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 104 raw_pwrite_stream &OS); 105 106 public: 107 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 108 const HeaderSearchOptions &HeaderSearchOpts, 109 const CodeGenOptions &CGOpts, 110 const clang::TargetOptions &TOpts, 111 const LangOptions &LOpts, Module *M) 112 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 113 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 114 CodeGenerationTime("codegen", "Code Generation Time") {} 115 116 ~EmitAssemblyHelper() { 117 if (CodeGenOpts.DisableFree) 118 BuryPointer(std::move(TM)); 119 } 120 121 std::unique_ptr<TargetMachine> TM; 122 123 void EmitAssembly(BackendAction Action, 124 std::unique_ptr<raw_pwrite_stream> OS); 125 126 void EmitAssemblyWithNewPassManager(BackendAction Action, 127 std::unique_ptr<raw_pwrite_stream> OS); 128 }; 129 130 // We need this wrapper to access LangOpts and CGOpts from extension functions 131 // that we add to the PassManagerBuilder. 132 class PassManagerBuilderWrapper : public PassManagerBuilder { 133 public: 134 PassManagerBuilderWrapper(const Triple &TargetTriple, 135 const CodeGenOptions &CGOpts, 136 const LangOptions &LangOpts) 137 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 138 LangOpts(LangOpts) {} 139 const Triple &getTargetTriple() const { return TargetTriple; } 140 const CodeGenOptions &getCGOpts() const { return CGOpts; } 141 const LangOptions &getLangOpts() const { return LangOpts; } 142 143 private: 144 const Triple &TargetTriple; 145 const CodeGenOptions &CGOpts; 146 const LangOptions &LangOpts; 147 }; 148 } 149 150 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 151 if (Builder.OptLevel > 0) 152 PM.add(createObjCARCAPElimPass()); 153 } 154 155 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 156 if (Builder.OptLevel > 0) 157 PM.add(createObjCARCExpandPass()); 158 } 159 160 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 161 if (Builder.OptLevel > 0) 162 PM.add(createObjCARCOptPass()); 163 } 164 165 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 166 legacy::PassManagerBase &PM) { 167 PM.add(createAddDiscriminatorsPass()); 168 } 169 170 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 171 legacy::PassManagerBase &PM) { 172 PM.add(createBoundsCheckingLegacyPass()); 173 } 174 175 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 176 legacy::PassManagerBase &PM) { 177 const PassManagerBuilderWrapper &BuilderWrapper = 178 static_cast<const PassManagerBuilderWrapper&>(Builder); 179 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 180 SanitizerCoverageOptions Opts; 181 Opts.CoverageType = 182 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 183 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 184 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 185 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 186 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 187 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 188 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 189 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 190 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 191 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 192 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 193 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 194 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 195 PM.add(createSanitizerCoverageModulePass(Opts)); 196 } 197 198 // Check if ASan should use GC-friendly instrumentation for globals. 199 // First of all, there is no point if -fdata-sections is off (expect for MachO, 200 // where this is not a factor). Also, on ELF this feature requires an assembler 201 // extension that only works with -integrated-as at the moment. 202 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 203 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 204 return false; 205 switch (T.getObjectFormat()) { 206 case Triple::MachO: 207 case Triple::COFF: 208 return true; 209 case Triple::ELF: 210 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 211 default: 212 return false; 213 } 214 } 215 216 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 217 legacy::PassManagerBase &PM) { 218 const PassManagerBuilderWrapper &BuilderWrapper = 219 static_cast<const PassManagerBuilderWrapper&>(Builder); 220 const Triple &T = BuilderWrapper.getTargetTriple(); 221 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 222 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 223 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 224 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 225 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 226 UseAfterScope)); 227 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover, 228 UseGlobalsGC)); 229 } 230 231 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 232 legacy::PassManagerBase &PM) { 233 PM.add(createAddressSanitizerFunctionPass( 234 /*CompileKernel*/ true, 235 /*Recover*/ true, /*UseAfterScope*/ false)); 236 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 237 /*Recover*/true)); 238 } 239 240 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 241 legacy::PassManagerBase &PM) { 242 const PassManagerBuilderWrapper &BuilderWrapper = 243 static_cast<const PassManagerBuilderWrapper&>(Builder); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 246 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 247 PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); 248 249 // MemorySanitizer inserts complex instrumentation that mostly follows 250 // the logic of the original code, but operates on "shadow" values. 251 // It can benefit from re-running some general purpose optimization passes. 252 if (Builder.OptLevel > 0) { 253 PM.add(createEarlyCSEPass()); 254 PM.add(createReassociatePass()); 255 PM.add(createLICMPass()); 256 PM.add(createGVNPass()); 257 PM.add(createInstructionCombiningPass()); 258 PM.add(createDeadStoreEliminationPass()); 259 } 260 } 261 262 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 263 legacy::PassManagerBase &PM) { 264 PM.add(createThreadSanitizerPass()); 265 } 266 267 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 272 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 273 } 274 275 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, 276 legacy::PassManagerBase &PM) { 277 const PassManagerBuilderWrapper &BuilderWrapper = 278 static_cast<const PassManagerBuilderWrapper&>(Builder); 279 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 280 EfficiencySanitizerOptions Opts; 281 if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) 282 Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; 283 else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) 284 Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; 285 PM.add(createEfficiencySanitizerPass(Opts)); 286 } 287 288 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 289 const CodeGenOptions &CodeGenOpts) { 290 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 291 if (!CodeGenOpts.SimplifyLibCalls) 292 TLII->disableAllFunctions(); 293 else { 294 // Disable individual libc/libm calls in TargetLibraryInfo. 295 LibFunc F; 296 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 297 if (TLII->getLibFunc(FuncName, F)) 298 TLII->setUnavailable(F); 299 } 300 301 switch (CodeGenOpts.getVecLib()) { 302 case CodeGenOptions::Accelerate: 303 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 304 break; 305 case CodeGenOptions::SVML: 306 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 307 break; 308 default: 309 break; 310 } 311 return TLII; 312 } 313 314 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 315 legacy::PassManager *MPM) { 316 llvm::SymbolRewriter::RewriteDescriptorList DL; 317 318 llvm::SymbolRewriter::RewriteMapParser MapParser; 319 for (const auto &MapFile : Opts.RewriteMapFiles) 320 MapParser.parse(MapFile, &DL); 321 322 MPM->add(createRewriteSymbolsPass(DL)); 323 } 324 325 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 326 switch (CodeGenOpts.OptimizationLevel) { 327 default: 328 llvm_unreachable("Invalid optimization level!"); 329 case 0: 330 return CodeGenOpt::None; 331 case 1: 332 return CodeGenOpt::Less; 333 case 2: 334 return CodeGenOpt::Default; // O2/Os/Oz 335 case 3: 336 return CodeGenOpt::Aggressive; 337 } 338 } 339 340 static Optional<llvm::CodeModel::Model> 341 getCodeModel(const CodeGenOptions &CodeGenOpts) { 342 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 343 .Case("small", llvm::CodeModel::Small) 344 .Case("kernel", llvm::CodeModel::Kernel) 345 .Case("medium", llvm::CodeModel::Medium) 346 .Case("large", llvm::CodeModel::Large) 347 .Case("default", ~1u) 348 .Default(~0u); 349 assert(CodeModel != ~0u && "invalid code model!"); 350 if (CodeModel == ~1u) 351 return None; 352 return static_cast<llvm::CodeModel::Model>(CodeModel); 353 } 354 355 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { 356 // Keep this synced with the equivalent code in 357 // lib/Frontend/CompilerInvocation.cpp 358 llvm::Optional<llvm::Reloc::Model> RM; 359 RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel) 360 .Case("static", llvm::Reloc::Static) 361 .Case("pic", llvm::Reloc::PIC_) 362 .Case("ropi", llvm::Reloc::ROPI) 363 .Case("rwpi", llvm::Reloc::RWPI) 364 .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) 365 .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); 366 assert(RM.hasValue() && "invalid PIC model!"); 367 return *RM; 368 } 369 370 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 371 if (Action == Backend_EmitObj) 372 return TargetMachine::CGFT_ObjectFile; 373 else if (Action == Backend_EmitMCNull) 374 return TargetMachine::CGFT_Null; 375 else { 376 assert(Action == Backend_EmitAssembly && "Invalid action!"); 377 return TargetMachine::CGFT_AssemblyFile; 378 } 379 } 380 381 static void initTargetOptions(llvm::TargetOptions &Options, 382 const CodeGenOptions &CodeGenOpts, 383 const clang::TargetOptions &TargetOpts, 384 const LangOptions &LangOpts, 385 const HeaderSearchOptions &HSOpts) { 386 Options.ThreadModel = 387 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 388 .Case("posix", llvm::ThreadModel::POSIX) 389 .Case("single", llvm::ThreadModel::Single); 390 391 // Set float ABI type. 392 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 393 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 394 "Invalid Floating Point ABI!"); 395 Options.FloatABIType = 396 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 397 .Case("soft", llvm::FloatABI::Soft) 398 .Case("softfp", llvm::FloatABI::Soft) 399 .Case("hard", llvm::FloatABI::Hard) 400 .Default(llvm::FloatABI::Default); 401 402 // Set FP fusion mode. 403 switch (LangOpts.getDefaultFPContractMode()) { 404 case LangOptions::FPC_Off: 405 // Preserve any contraction performed by the front-end. (Strict performs 406 // splitting of the muladd instrinsic in the backend.) 407 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 408 break; 409 case LangOptions::FPC_On: 410 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 411 break; 412 case LangOptions::FPC_Fast: 413 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 414 break; 415 } 416 417 Options.UseInitArray = CodeGenOpts.UseInitArray; 418 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 419 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 420 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 421 422 // Set EABI version. 423 Options.EABIVersion = TargetOpts.EABIVersion; 424 425 if (LangOpts.SjLjExceptions) 426 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 427 if (LangOpts.SEHExceptions) 428 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 429 if (LangOpts.DWARFExceptions) 430 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 431 432 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 433 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 434 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 435 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 436 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 437 Options.FunctionSections = CodeGenOpts.FunctionSections; 438 Options.DataSections = CodeGenOpts.DataSections; 439 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 440 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 441 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 442 443 if (CodeGenOpts.EnableSplitDwarf) 444 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 445 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 446 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 447 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 448 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 449 Options.MCOptions.MCIncrementalLinkerCompatible = 450 CodeGenOpts.IncrementalLinkerCompatible; 451 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 452 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 453 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 454 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 455 Options.MCOptions.ABIName = TargetOpts.ABI; 456 for (const auto &Entry : HSOpts.UserEntries) 457 if (!Entry.IsFramework && 458 (Entry.Group == frontend::IncludeDirGroup::Quoted || 459 Entry.Group == frontend::IncludeDirGroup::Angled || 460 Entry.Group == frontend::IncludeDirGroup::System)) 461 Options.MCOptions.IASSearchPaths.push_back( 462 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 463 } 464 465 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 466 legacy::FunctionPassManager &FPM) { 467 // Handle disabling of all LLVM passes, where we want to preserve the 468 // internal module before any optimization. 469 if (CodeGenOpts.DisableLLVMPasses) 470 return; 471 472 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 473 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 474 // are inserted before PMBuilder ones - they'd get the default-constructed 475 // TLI with an unknown target otherwise. 476 Triple TargetTriple(TheModule->getTargetTriple()); 477 std::unique_ptr<TargetLibraryInfoImpl> TLII( 478 createTLII(TargetTriple, CodeGenOpts)); 479 480 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 481 482 // At O0 and O1 we only run the always inliner which is more efficient. At 483 // higher optimization levels we run the normal inliner. 484 if (CodeGenOpts.OptimizationLevel <= 1) { 485 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 486 !CodeGenOpts.DisableLifetimeMarkers); 487 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 488 } else { 489 // We do not want to inline hot callsites for SamplePGO module-summary build 490 // because profile annotation will happen again in ThinLTO backend, and we 491 // want the IR of the hot path to match the profile. 492 PMBuilder.Inliner = createFunctionInliningPass( 493 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 494 (!CodeGenOpts.SampleProfileFile.empty() && 495 CodeGenOpts.EmitSummaryIndex)); 496 } 497 498 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 499 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 500 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 501 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 502 503 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 504 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 505 PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; 506 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 507 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 508 509 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 510 511 if (TM) 512 TM->adjustPassManager(PMBuilder); 513 514 if (CodeGenOpts.DebugInfoForProfiling || 515 !CodeGenOpts.SampleProfileFile.empty()) 516 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 517 addAddDiscriminatorsPass); 518 519 // In ObjC ARC mode, add the main ARC optimization passes. 520 if (LangOpts.ObjCAutoRefCount) { 521 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 522 addObjCARCExpandPass); 523 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 524 addObjCARCAPElimPass); 525 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 526 addObjCARCOptPass); 527 } 528 529 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 530 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 531 addBoundsCheckingPass); 532 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 533 addBoundsCheckingPass); 534 } 535 536 if (CodeGenOpts.SanitizeCoverageType || 537 CodeGenOpts.SanitizeCoverageIndirectCalls || 538 CodeGenOpts.SanitizeCoverageTraceCmp) { 539 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 540 addSanitizerCoveragePass); 541 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 542 addSanitizerCoveragePass); 543 } 544 545 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 546 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 547 addAddressSanitizerPasses); 548 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 549 addAddressSanitizerPasses); 550 } 551 552 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 553 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 554 addKernelAddressSanitizerPasses); 555 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 556 addKernelAddressSanitizerPasses); 557 } 558 559 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 560 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 561 addMemorySanitizerPass); 562 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 563 addMemorySanitizerPass); 564 } 565 566 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 567 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 568 addThreadSanitizerPass); 569 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 570 addThreadSanitizerPass); 571 } 572 573 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 574 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 575 addDataFlowSanitizerPass); 576 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 577 addDataFlowSanitizerPass); 578 } 579 580 if (LangOpts.CoroutinesTS) 581 addCoroutinePassesToExtensionPoints(PMBuilder); 582 583 if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { 584 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 585 addEfficiencySanitizerPass); 586 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 587 addEfficiencySanitizerPass); 588 } 589 590 // Set up the per-function pass manager. 591 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 592 if (CodeGenOpts.VerifyModule) 593 FPM.add(createVerifierPass()); 594 595 // Set up the per-module pass manager. 596 if (!CodeGenOpts.RewriteMapFiles.empty()) 597 addSymbolRewriterPass(CodeGenOpts, &MPM); 598 599 if (!CodeGenOpts.DisableGCov && 600 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 601 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 602 // LLVM's -default-gcov-version flag is set to something invalid. 603 GCOVOptions Options; 604 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 605 Options.EmitData = CodeGenOpts.EmitGcovArcs; 606 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 607 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 608 Options.NoRedZone = CodeGenOpts.DisableRedZone; 609 Options.FunctionNamesInData = 610 !CodeGenOpts.CoverageNoFunctionNamesInData; 611 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 612 MPM.add(createGCOVProfilerPass(Options)); 613 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 614 MPM.add(createStripSymbolsPass(true)); 615 } 616 617 if (CodeGenOpts.hasProfileClangInstr()) { 618 InstrProfOptions Options; 619 Options.NoRedZone = CodeGenOpts.DisableRedZone; 620 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 621 MPM.add(createInstrProfilingLegacyPass(Options)); 622 } 623 if (CodeGenOpts.hasProfileIRInstr()) { 624 PMBuilder.EnablePGOInstrGen = true; 625 if (!CodeGenOpts.InstrProfileOutput.empty()) 626 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 627 else 628 PMBuilder.PGOInstrGen = DefaultProfileGenName; 629 } 630 if (CodeGenOpts.hasProfileIRUse()) 631 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 632 633 if (!CodeGenOpts.SampleProfileFile.empty()) 634 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 635 636 PMBuilder.populateFunctionPassManager(FPM); 637 PMBuilder.populateModulePassManager(MPM); 638 } 639 640 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 641 SmallVector<const char *, 16> BackendArgs; 642 BackendArgs.push_back("clang"); // Fake program name. 643 if (!CodeGenOpts.DebugPass.empty()) { 644 BackendArgs.push_back("-debug-pass"); 645 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 646 } 647 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 648 BackendArgs.push_back("-limit-float-precision"); 649 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 650 } 651 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 652 BackendArgs.push_back(BackendOption.c_str()); 653 BackendArgs.push_back(nullptr); 654 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 655 BackendArgs.data()); 656 } 657 658 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 659 // Create the TargetMachine for generating code. 660 std::string Error; 661 std::string Triple = TheModule->getTargetTriple(); 662 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 663 if (!TheTarget) { 664 if (MustCreateTM) 665 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 666 return; 667 } 668 669 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 670 std::string FeaturesStr = 671 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 672 llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); 673 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 674 675 llvm::TargetOptions Options; 676 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 677 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 678 Options, RM, CM, OptLevel)); 679 } 680 681 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 682 BackendAction Action, 683 raw_pwrite_stream &OS) { 684 // Add LibraryInfo. 685 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 686 std::unique_ptr<TargetLibraryInfoImpl> TLII( 687 createTLII(TargetTriple, CodeGenOpts)); 688 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 689 690 // Normal mode, emit a .s or .o file by running the code generator. Note, 691 // this also adds codegenerator level optimization passes. 692 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 693 694 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 695 // "codegen" passes so that it isn't run multiple times when there is 696 // inlining happening. 697 if (CodeGenOpts.OptimizationLevel > 0) 698 CodeGenPasses.add(createObjCARCContractPass()); 699 700 if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, 701 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 702 Diags.Report(diag::err_fe_unable_to_interface_with_target); 703 return false; 704 } 705 706 return true; 707 } 708 709 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 710 std::unique_ptr<raw_pwrite_stream> OS) { 711 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 712 713 setCommandLineOpts(CodeGenOpts); 714 715 bool UsesCodeGen = (Action != Backend_EmitNothing && 716 Action != Backend_EmitBC && 717 Action != Backend_EmitLL); 718 CreateTargetMachine(UsesCodeGen); 719 720 if (UsesCodeGen && !TM) 721 return; 722 if (TM) 723 TheModule->setDataLayout(TM->createDataLayout()); 724 725 legacy::PassManager PerModulePasses; 726 PerModulePasses.add( 727 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 728 729 legacy::FunctionPassManager PerFunctionPasses(TheModule); 730 PerFunctionPasses.add( 731 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 732 733 CreatePasses(PerModulePasses, PerFunctionPasses); 734 735 legacy::PassManager CodeGenPasses; 736 CodeGenPasses.add( 737 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 738 739 std::unique_ptr<raw_fd_ostream> ThinLinkOS; 740 741 switch (Action) { 742 case Backend_EmitNothing: 743 break; 744 745 case Backend_EmitBC: 746 if (CodeGenOpts.EmitSummaryIndex) { 747 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 748 std::error_code EC; 749 ThinLinkOS.reset(new llvm::raw_fd_ostream( 750 CodeGenOpts.ThinLinkBitcodeFile, EC, 751 llvm::sys::fs::F_None)); 752 if (EC) { 753 Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile 754 << EC.message(); 755 return; 756 } 757 } 758 PerModulePasses.add( 759 createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); 760 } 761 else 762 PerModulePasses.add( 763 createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); 764 break; 765 766 case Backend_EmitLL: 767 PerModulePasses.add( 768 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 769 break; 770 771 default: 772 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 773 return; 774 } 775 776 // Before executing passes, print the final values of the LLVM options. 777 cl::PrintOptionValues(); 778 779 // Run passes. For now we do all passes at once, but eventually we 780 // would like to have the option of streaming code generation. 781 782 { 783 PrettyStackTraceString CrashInfo("Per-function optimization"); 784 785 PerFunctionPasses.doInitialization(); 786 for (Function &F : *TheModule) 787 if (!F.isDeclaration()) 788 PerFunctionPasses.run(F); 789 PerFunctionPasses.doFinalization(); 790 } 791 792 { 793 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 794 PerModulePasses.run(*TheModule); 795 } 796 797 { 798 PrettyStackTraceString CrashInfo("Code generation"); 799 CodeGenPasses.run(*TheModule); 800 } 801 } 802 803 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 804 switch (Opts.OptimizationLevel) { 805 default: 806 llvm_unreachable("Invalid optimization level!"); 807 808 case 1: 809 return PassBuilder::O1; 810 811 case 2: 812 switch (Opts.OptimizeSize) { 813 default: 814 llvm_unreachable("Invalide optimization level for size!"); 815 816 case 0: 817 return PassBuilder::O2; 818 819 case 1: 820 return PassBuilder::Os; 821 822 case 2: 823 return PassBuilder::Oz; 824 } 825 826 case 3: 827 return PassBuilder::O3; 828 } 829 } 830 831 /// A clean version of `EmitAssembly` that uses the new pass manager. 832 /// 833 /// Not all features are currently supported in this system, but where 834 /// necessary it falls back to the legacy pass manager to at least provide 835 /// basic functionality. 836 /// 837 /// This API is planned to have its functionality finished and then to replace 838 /// `EmitAssembly` at some point in the future when the default switches. 839 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 840 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 841 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 842 setCommandLineOpts(CodeGenOpts); 843 844 // The new pass manager always makes a target machine available to passes 845 // during construction. 846 CreateTargetMachine(/*MustCreateTM*/ true); 847 if (!TM) 848 // This will already be diagnosed, just bail. 849 return; 850 TheModule->setDataLayout(TM->createDataLayout()); 851 852 Optional<PGOOptions> PGOOpt; 853 854 if (CodeGenOpts.hasProfileIRInstr()) 855 // -fprofile-generate. 856 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 857 ? DefaultProfileGenName 858 : CodeGenOpts.InstrProfileOutput, 859 "", "", true, CodeGenOpts.DebugInfoForProfiling); 860 else if (CodeGenOpts.hasProfileIRUse()) 861 // -fprofile-use. 862 PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false, 863 CodeGenOpts.DebugInfoForProfiling); 864 else if (!CodeGenOpts.SampleProfileFile.empty()) 865 // -fprofile-sample-use 866 PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false, 867 CodeGenOpts.DebugInfoForProfiling); 868 else if (CodeGenOpts.DebugInfoForProfiling) 869 // -fdebug-info-for-profiling 870 PGOOpt = PGOOptions("", "", "", false, true); 871 872 PassBuilder PB(TM.get(), PGOOpt); 873 874 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 875 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 876 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 877 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 878 879 // Register the AA manager first so that our version is the one used. 880 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 881 882 // Register the target library analysis directly and give it a customized 883 // preset TLI. 884 Triple TargetTriple(TheModule->getTargetTriple()); 885 std::unique_ptr<TargetLibraryInfoImpl> TLII( 886 createTLII(TargetTriple, CodeGenOpts)); 887 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 888 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 889 890 // Register all the basic analyses with the managers. 891 PB.registerModuleAnalyses(MAM); 892 PB.registerCGSCCAnalyses(CGAM); 893 PB.registerFunctionAnalyses(FAM); 894 PB.registerLoopAnalyses(LAM); 895 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 896 897 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 898 899 if (!CodeGenOpts.DisableLLVMPasses) { 900 bool IsThinLTO = CodeGenOpts.EmitSummaryIndex; 901 bool IsLTO = CodeGenOpts.PrepareForLTO; 902 903 if (CodeGenOpts.OptimizationLevel == 0) { 904 // Build a minimal pipeline based on the semantics required by Clang, 905 // which is just that always inlining occurs. 906 MPM.addPass(AlwaysInlinerPass()); 907 908 // At -O0 we directly run necessary sanitizer passes. 909 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 910 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 911 912 // Lastly, add a semantically necessary pass for ThinLTO. 913 if (IsThinLTO) 914 MPM.addPass(NameAnonGlobalPass()); 915 } else { 916 // Map our optimization levels into one of the distinct levels used to 917 // configure the pipeline. 918 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 919 920 // Register callbacks to schedule sanitizer passes at the appropriate part of 921 // the pipeline. 922 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 923 PB.registerScalarOptimizerLateEPCallback( 924 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 925 FPM.addPass(BoundsCheckingPass()); 926 }); 927 928 if (IsThinLTO) { 929 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 930 Level, CodeGenOpts.DebugPassManager); 931 MPM.addPass(NameAnonGlobalPass()); 932 } else if (IsLTO) { 933 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 934 CodeGenOpts.DebugPassManager); 935 } else { 936 MPM = PB.buildPerModuleDefaultPipeline(Level, 937 CodeGenOpts.DebugPassManager); 938 } 939 } 940 } 941 942 // FIXME: We still use the legacy pass manager to do code generation. We 943 // create that pass manager here and use it as needed below. 944 legacy::PassManager CodeGenPasses; 945 bool NeedCodeGen = false; 946 Optional<raw_fd_ostream> ThinLinkOS; 947 948 // Append any output we need to the pass manager. 949 switch (Action) { 950 case Backend_EmitNothing: 951 break; 952 953 case Backend_EmitBC: 954 if (CodeGenOpts.EmitSummaryIndex) { 955 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 956 std::error_code EC; 957 ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC, 958 llvm::sys::fs::F_None); 959 if (EC) { 960 Diags.Report(diag::err_fe_unable_to_open_output) 961 << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); 962 return; 963 } 964 } 965 MPM.addPass( 966 ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr)); 967 } else { 968 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 969 CodeGenOpts.EmitSummaryIndex, 970 CodeGenOpts.EmitSummaryIndex)); 971 } 972 break; 973 974 case Backend_EmitLL: 975 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 976 break; 977 978 case Backend_EmitAssembly: 979 case Backend_EmitMCNull: 980 case Backend_EmitObj: 981 NeedCodeGen = true; 982 CodeGenPasses.add( 983 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 984 if (!AddEmitPasses(CodeGenPasses, Action, *OS)) 985 // FIXME: Should we handle this error differently? 986 return; 987 break; 988 } 989 990 // Before executing passes, print the final values of the LLVM options. 991 cl::PrintOptionValues(); 992 993 // Now that we have all of the passes ready, run them. 994 { 995 PrettyStackTraceString CrashInfo("Optimizer"); 996 MPM.run(*TheModule, MAM); 997 } 998 999 // Now if needed, run the legacy PM for codegen. 1000 if (NeedCodeGen) { 1001 PrettyStackTraceString CrashInfo("Code generation"); 1002 CodeGenPasses.run(*TheModule); 1003 } 1004 } 1005 1006 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1007 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1008 if (!BMsOrErr) 1009 return BMsOrErr.takeError(); 1010 1011 // The bitcode file may contain multiple modules, we want the one that is 1012 // marked as being the ThinLTO module. 1013 for (BitcodeModule &BM : *BMsOrErr) { 1014 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1015 if (LTOInfo && LTOInfo->IsThinLTO) 1016 return BM; 1017 } 1018 1019 return make_error<StringError>("Could not find module summary", 1020 inconvertibleErrorCode()); 1021 } 1022 1023 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1024 const HeaderSearchOptions &HeaderOpts, 1025 const CodeGenOptions &CGOpts, 1026 const clang::TargetOptions &TOpts, 1027 const LangOptions &LOpts, 1028 std::unique_ptr<raw_pwrite_stream> OS, 1029 std::string SampleProfile, 1030 BackendAction Action) { 1031 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1032 ModuleToDefinedGVSummaries; 1033 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1034 1035 setCommandLineOpts(CGOpts); 1036 1037 // We can simply import the values mentioned in the combined index, since 1038 // we should only invoke this using the individual indexes written out 1039 // via a WriteIndexesThinBackend. 1040 FunctionImporter::ImportMapTy ImportList; 1041 for (auto &GlobalList : *CombinedIndex) { 1042 // Ignore entries for undefined references. 1043 if (GlobalList.second.SummaryList.empty()) 1044 continue; 1045 1046 auto GUID = GlobalList.first; 1047 assert(GlobalList.second.SummaryList.size() == 1 && 1048 "Expected individual combined index to have one summary per GUID"); 1049 auto &Summary = GlobalList.second.SummaryList[0]; 1050 // Skip the summaries for the importing module. These are included to 1051 // e.g. record required linkage changes. 1052 if (Summary->modulePath() == M->getModuleIdentifier()) 1053 continue; 1054 // Doesn't matter what value we plug in to the map, just needs an entry 1055 // to provoke importing by thinBackend. 1056 ImportList[Summary->modulePath()][GUID] = 1; 1057 } 1058 1059 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1060 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1061 1062 for (auto &I : ImportList) { 1063 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1064 llvm::MemoryBuffer::getFile(I.first()); 1065 if (!MBOrErr) { 1066 errs() << "Error loading imported file '" << I.first() 1067 << "': " << MBOrErr.getError().message() << "\n"; 1068 return; 1069 } 1070 1071 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1072 if (!BMOrErr) { 1073 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1074 errs() << "Error loading imported file '" << I.first() 1075 << "': " << EIB.message() << '\n'; 1076 }); 1077 return; 1078 } 1079 ModuleMap.insert({I.first(), *BMOrErr}); 1080 1081 OwnedImports.push_back(std::move(*MBOrErr)); 1082 } 1083 auto AddStream = [&](size_t Task) { 1084 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1085 }; 1086 lto::Config Conf; 1087 Conf.CPU = TOpts.CPU; 1088 Conf.CodeModel = getCodeModel(CGOpts); 1089 Conf.MAttrs = TOpts.Features; 1090 Conf.RelocModel = getRelocModel(CGOpts); 1091 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1092 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1093 Conf.SampleProfile = std::move(SampleProfile); 1094 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1095 Conf.DebugPassManager = CGOpts.DebugPassManager; 1096 switch (Action) { 1097 case Backend_EmitNothing: 1098 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1099 return false; 1100 }; 1101 break; 1102 case Backend_EmitLL: 1103 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1104 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1105 return false; 1106 }; 1107 break; 1108 case Backend_EmitBC: 1109 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1110 WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); 1111 return false; 1112 }; 1113 break; 1114 default: 1115 Conf.CGFileType = getCodeGenFileType(Action); 1116 break; 1117 } 1118 if (Error E = thinBackend( 1119 Conf, 0, AddStream, *M, *CombinedIndex, ImportList, 1120 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1121 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1122 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1123 }); 1124 } 1125 } 1126 1127 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1128 const HeaderSearchOptions &HeaderOpts, 1129 const CodeGenOptions &CGOpts, 1130 const clang::TargetOptions &TOpts, 1131 const LangOptions &LOpts, 1132 const llvm::DataLayout &TDesc, Module *M, 1133 BackendAction Action, 1134 std::unique_ptr<raw_pwrite_stream> OS) { 1135 if (!CGOpts.ThinLTOIndexFile.empty()) { 1136 // If we are performing a ThinLTO importing compile, load the function index 1137 // into memory and pass it into runThinLTOBackend, which will run the 1138 // function importer and invoke LTO passes. 1139 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1140 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1141 /*IgnoreEmptyThinLTOIndexFile*/true); 1142 if (!IndexOrErr) { 1143 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1144 "Error loading index file '" + 1145 CGOpts.ThinLTOIndexFile + "': "); 1146 return; 1147 } 1148 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1149 // A null CombinedIndex means we should skip ThinLTO compilation 1150 // (LLVM will optionally ignore empty index files, returning null instead 1151 // of an error). 1152 bool DoThinLTOBackend = CombinedIndex != nullptr; 1153 if (DoThinLTOBackend) { 1154 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1155 LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); 1156 return; 1157 } 1158 } 1159 1160 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1161 1162 if (CGOpts.ExperimentalNewPassManager) 1163 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1164 else 1165 AsmHelper.EmitAssembly(Action, std::move(OS)); 1166 1167 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1168 // DataLayout. 1169 if (AsmHelper.TM) { 1170 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1171 if (DLDesc != TDesc.getStringRepresentation()) { 1172 unsigned DiagID = Diags.getCustomDiagID( 1173 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1174 "expected target description '%1'"); 1175 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1176 } 1177 } 1178 } 1179 1180 static const char* getSectionNameForBitcode(const Triple &T) { 1181 switch (T.getObjectFormat()) { 1182 case Triple::MachO: 1183 return "__LLVM,__bitcode"; 1184 case Triple::COFF: 1185 case Triple::ELF: 1186 case Triple::Wasm: 1187 case Triple::UnknownObjectFormat: 1188 return ".llvmbc"; 1189 } 1190 llvm_unreachable("Unimplemented ObjectFormatType"); 1191 } 1192 1193 static const char* getSectionNameForCommandline(const Triple &T) { 1194 switch (T.getObjectFormat()) { 1195 case Triple::MachO: 1196 return "__LLVM,__cmdline"; 1197 case Triple::COFF: 1198 case Triple::ELF: 1199 case Triple::Wasm: 1200 case Triple::UnknownObjectFormat: 1201 return ".llvmcmd"; 1202 } 1203 llvm_unreachable("Unimplemented ObjectFormatType"); 1204 } 1205 1206 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1207 // __LLVM,__bitcode section. 1208 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1209 llvm::MemoryBufferRef Buf) { 1210 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1211 return; 1212 1213 // Save llvm.compiler.used and remote it. 1214 SmallVector<Constant*, 2> UsedArray; 1215 SmallSet<GlobalValue*, 4> UsedGlobals; 1216 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1217 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1218 for (auto *GV : UsedGlobals) { 1219 if (GV->getName() != "llvm.embedded.module" && 1220 GV->getName() != "llvm.cmdline") 1221 UsedArray.push_back( 1222 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1223 } 1224 if (Used) 1225 Used->eraseFromParent(); 1226 1227 // Embed the bitcode for the llvm module. 1228 std::string Data; 1229 ArrayRef<uint8_t> ModuleData; 1230 Triple T(M->getTargetTriple()); 1231 // Create a constant that contains the bitcode. 1232 // In case of embedding a marker, ignore the input Buf and use the empty 1233 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1234 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1235 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1236 (const unsigned char *)Buf.getBufferEnd())) { 1237 // If the input is LLVM Assembly, bitcode is produced by serializing 1238 // the module. Use-lists order need to be perserved in this case. 1239 llvm::raw_string_ostream OS(Data); 1240 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 1241 ModuleData = 1242 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1243 } else 1244 // If the input is LLVM bitcode, write the input byte stream directly. 1245 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1246 Buf.getBufferSize()); 1247 } 1248 llvm::Constant *ModuleConstant = 1249 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1250 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1251 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1252 ModuleConstant); 1253 GV->setSection(getSectionNameForBitcode(T)); 1254 UsedArray.push_back( 1255 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1256 if (llvm::GlobalVariable *Old = 1257 M->getGlobalVariable("llvm.embedded.module", true)) { 1258 assert(Old->hasOneUse() && 1259 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1260 GV->takeName(Old); 1261 Old->eraseFromParent(); 1262 } else { 1263 GV->setName("llvm.embedded.module"); 1264 } 1265 1266 // Skip if only bitcode needs to be embedded. 1267 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1268 // Embed command-line options. 1269 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1270 CGOpts.CmdArgs.size()); 1271 llvm::Constant *CmdConstant = 1272 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1273 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1274 llvm::GlobalValue::PrivateLinkage, 1275 CmdConstant); 1276 GV->setSection(getSectionNameForCommandline(T)); 1277 UsedArray.push_back( 1278 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1279 if (llvm::GlobalVariable *Old = 1280 M->getGlobalVariable("llvm.cmdline", true)) { 1281 assert(Old->hasOneUse() && 1282 "llvm.cmdline can only be used once in llvm.compiler.used"); 1283 GV->takeName(Old); 1284 Old->eraseFromParent(); 1285 } else { 1286 GV->setName("llvm.cmdline"); 1287 } 1288 } 1289 1290 if (UsedArray.empty()) 1291 return; 1292 1293 // Recreate llvm.compiler.used. 1294 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1295 auto *NewUsed = new GlobalVariable( 1296 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1297 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1298 NewUsed->setSection("llvm.metadata"); 1299 } 1300